Topology and size optimization for X-bracing system of nonlinear inelastic space steel frames
Abstract
In this article, a Python-programmed advanced design paradigm is firstly introduced to topology and size optimization of the X-bracing system of nonlinear inelastic space steel frames. For that purpose, an advanced analysis method considering both geometric and material nonlinearities is utilized as an effective finite element analysis (FEA) solver. In which, X-bracing members are modeled by truss elements, while the beam and column members are simulated by beam-column ones. The bracing members’ cross-sectional area and their position are respectively treated as discrete size and topology design variables. The problem aims to minimize the weight of X-bracing system so that the constraints on the strength, inter-story drift and maximum displacement are satisfied. An adaptive hybrid evolutionary firefly algorithm (AHEFA) is employed as an optimizer. Numerical examples are exhibited to illustrate the powerful ability of the present methodology.
Downloads
Copyright (c) 2022 Hanoi University of Civil Engineering
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. The Author assigns all copyright in and to the article (the Work) to the Journal of Science and Technology in Civil Engineering (JSTCE) – Hanoi University of Civil Engineering (HUCE), including the right to publish, republish, transmit, sell and distribute the Work in whole or in part in electronic and print editions of the Journal, in all media of expression now known or later developed.
2. By this assignment of copyright to the JSTCE, reproduction, posting, transmission, distribution or other use of the Work in whole or in part in any medium by the Author requires a full citation to the Journal, suitable in form and content as follows: title of article, authors’ names, journal title, volume, issue, year, copyright owner as specified in the Journal, DOI number. Links to the final article published on the website of the Journal are encouraged.
3. The Author and the company/employer agree that any and all copies of the final published version of the Work or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published on the website.