Predicting dynamic responses of frame structures subjected to stochastic wind loads using temporal surrogate model
Abstract
Determining structures' dynamic response is a challenging and time-consuming problem because it requires iteratively solving the governing equation of motion with a significantly small time step to ensure convergent results. This study proposes an alternative approach based on the deep learning paradigm working in a complementary way with conventional methods such as the finite element method for quickly forecasting the responses of structures under random wind loads with reasonable accuracy. The approach works in a sequence-to-sequence fashion, providing a good trade-off between the prediction performance and required computation resources. Sequences of known wind loads plus time history response of the structure are aggregated into a 3D tensor input before going through a deep learning model, which includes a long short-term memory layer and a time distributed layer. The output of the model is a sequence of structures' future responses, which will subsequently be used as input for computing structure' next response. The credibility of the proposed approach is demonstrated via an example of a two-dimensional three-bay nine-story reinforced concrete frame structure.
Downloads
Copyright (c) 2022 Hanoi University of Civil Engineering
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. The Author assigns all copyright in and to the article (the Work) to the Journal of Science and Technology in Civil Engineering (JSTCE) – Hanoi University of Civil Engineering (HUCE), including the right to publish, republish, transmit, sell and distribute the Work in whole or in part in electronic and print editions of the Journal, in all media of expression now known or later developed.
2. By this assignment of copyright to the JSTCE, reproduction, posting, transmission, distribution or other use of the Work in whole or in part in any medium by the Author requires a full citation to the Journal, suitable in form and content as follows: title of article, authors’ names, journal title, volume, issue, year, copyright owner as specified in the Journal, DOI number. Links to the final article published on the website of the Journal are encouraged.
3. The Author and the company/employer agree that any and all copies of the final published version of the Work or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published on the website.