Free vibration and dynamic response of sandwich composite plates with auxetic honeycomb core
Abstract
This paper deals with the free vibration and dynamic responses of composite sandwich plates. The sandwich plate has three layers in which two face sheets are made of isotropic material, and the core layer is made of auxetic honeycomb structures with a negative Poisson's ratio. A smoothed finite element model based on the first-order shear deformation theory is established for the analysis purpose. In the model, only the linear approximation is necessary, and the discrete shear gap method for triangular plate elements is used to avoid the shear locking. The Newmark direct integration technique is used to capture the dynamic responses of the sandwich plates. The convergence study is made, and the accuracy of present results is validated by comparison with available data in the literature. The influence of geometrical parameters, material properties, and boundary conditions are explored and discussed. Numerical results show that auxetic materials have several different responses compared to conventional materials, and these behaviors are strongly influenced by the internal structure of the auxetic material.
Downloads
Copyright (c) 2021 National University of Civil Engineering

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. The Author assigns all copyright in and to the article (the Work) to the Journal of Science and Technology in Civil Engineering (JSTCE) – Hanoi University of Civil Engineering (HUCE), including the right to publish, republish, transmit, sell and distribute the Work in whole or in part in electronic and print editions of the Journal, in all media of expression now known or later developed.
2. By this assignment of copyright to the JSTCE, reproduction, posting, transmission, distribution or other use of the Work in whole or in part in any medium by the Author requires a full citation to the Journal, suitable in form and content as follows: title of article, authors’ names, journal title, volume, issue, year, copyright owner as specified in the Journal, DOI number. Links to the final article published on the website of the Journal are encouraged.
3. The Author and the company/employer agree that any and all copies of the final published version of the Work or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published on the website.