Optimization of steel roof trusses using machine learning-assisted differential evolution
Abstract
A steel truss is a preferred solution in large-span roof structures due to its good attributes such as lightweight, durability. However, designing steel trusses is a challenging task for engineers due to a large number of design variables. Recently, optimization-based design approaches have demonstrated the great potential to effectively support structural engineers in finding the optimal designs of truss structures. This paper aims to use the AdaBoost-DE algorithm for optimizing steel roof trusses. The AdaBoost-DE employed in this study is a hybrid algorithm in which the AdaBoost classification technique is used to enhance the performance of the Differential Evolution algorithm by skipping unnecessary fitness evaluations during the optimization process. An example of a duo-pitch steel roof truss with a span of 24 meters is carried out. The result shows that the AdaBoost-DE achieves the same optimal design as the original DE algorithm, but reduces the computational cost by approximately 36%.
Downloads
Copyright (c) 2021 National University of Civil Engineering
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. The Author assigns all copyright in and to the article (the Work) to the Journal of Science and Technology in Civil Engineering (JSTCE) – Hanoi University of Civil Engineering (HUCE), including the right to publish, republish, transmit, sell and distribute the Work in whole or in part in electronic and print editions of the Journal, in all media of expression now known or later developed.
2. By this assignment of copyright to the JSTCE, reproduction, posting, transmission, distribution or other use of the Work in whole or in part in any medium by the Author requires a full citation to the Journal, suitable in form and content as follows: title of article, authors’ names, journal title, volume, issue, year, copyright owner as specified in the Journal, DOI number. Links to the final article published on the website of the Journal are encouraged.
3. The Author and the company/employer agree that any and all copies of the final published version of the Work or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published on the website.