Optimization to water supply system design and operation scheme in high rise buildings
Abstract
Greenhouse Gas emission from high-rise buildings has been increasing mainly due to excessive energy consumption of the HVAC system, structural system and electrical system. Electricity consumption for pump system accounts for 15% of total electricity usage in building. Therefore the reduction of electricity in operation is crucial to the overall reduction of GHGs in urban areas. In this study, a lab-scale experiment was conducted to test the electricity consumption in applying different design approaches; the energy efficiency of the system was calculated. Finally, this study proposes the advanced water supply design scheme to reduce electricity consumption of the pump system.
Article history: Received 12 March 2018, Revised 03 April 2018, Accepted 27 April 2018
Downloads
1. The Author assigns all copyright in and to the article (the Work) to the Journal of Science and Technology in Civil Engineering (JSTCE) – Hanoi University of Civil Engineering (HUCE), including the right to publish, republish, transmit, sell and distribute the Work in whole or in part in electronic and print editions of the Journal, in all media of expression now known or later developed.
2. By this assignment of copyright to the JSTCE, reproduction, posting, transmission, distribution or other use of the Work in whole or in part in any medium by the Author requires a full citation to the Journal, suitable in form and content as follows: title of article, authors’ names, journal title, volume, issue, year, copyright owner as specified in the Journal, DOI number. Links to the final article published on the website of the Journal are encouraged.
3. The Author and the company/employer agree that any and all copies of the final published version of the Work or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published on the website.