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NONLINEAR DYNAMIC ANALYSIS OF BASE-ISOLATED 
FRAMES USING JULIA

1. Introduction 

Over the years, many techniques have been developed to reduce or mitigate the vibration response 
in civil structures. These control techniques can be classified into four groups: passive, active, semi-active 
and hybrid. Active control systems require a power source for operation since electro-hydraulic actuators are 
used to provide control forces. This requirement faces to a risk when the power source is interrupted during 
storm or earthquake. Semi-active control systems offer a combination of features associated with passive 
and active control systems. They also consume energy to develop control forces whose magnitude is usu-
ally adjusted using a small power source. This technology of control is a promising one since semi-active 
control systems can produce a large control force at a significantly low power source like a battery. In hybrid 
control systems, a passive control device is used in combination with an active control actuator, but the two 
components do not function simultaneously. Instead, they are in active state in two different phases. Overall, 
three groups of control techniques presented above are of high technology and costly. In some situations, 
it is more reasonable to use one of the passive control techniques that do not require any power source to 
operate and are often much cheaper [1]. 

Seismic isolation is one of passive control techniques developed almost 100 years ago. Recently, this 
technique has become a practical strategy for earthquake-resistant design. In general, this technique uses 
isolators, or bearings, in the base of structures to endorse a surface of horizontal discontinuity. Base isolation 
techniques follow two basic approaches [2]. In the first approach, a layer of low lateral stiffness between the 
structure and the foundation is introduced. The natural periods of the whole system are lengthened to values 
much longer than that of fixed-base structure. Thus, the earthquake-induced forces in the superstructure 
are reduced. This type of isolation is effective even if the system is linear and undamped. The second most 
common type of isolation system uses sliding elements between foundation and base of the structure [3]. 
Therefore, the input energy from an earthquake is mainly converted into kinetic energy, and only a small 
amount of energy from earthquake transforms into the strain energy stored in the structure, allowing the 
structural elements to remain within an elastic range during earthquakes. The excellent performance of 
existing base-isolated structures during several past severe earthquakes proves that this control technique 
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is reliable enough to protect structures from earthquakes, and their implementation will be promisingly more 
widespread in future. This article is limited to considering the dynamic behavior of structures using the iso-
lation system in the first approach. 

In the elastic design approach of base-isolated system, the design codes worldwide often assume 
no yielding in the superstructure and foundation. Eurocode (2004) allows a maximum behavior factor value 
of 1.5 for base-isolated buildings. US ASCE 7 (2010) allows the strength reduction factor for a base-isolated 
superstructure to be 0.375 times the one for a corresponding fixed-base structure and no larger than 2. Giv-
en that the large majority of ASCE 7 overstrength factors are between 2 and 3, the superstructure is likely 
to remain elastic for the design-level seismic hazard. In chapter 10 of Vietnamese code TCVN 9386:2012, 
the superstructures are also assumed to remain in elastic range during earthquakes. If the superstructure is 
assumed to be linear like this, and damping is viscous and classical, then the direct analysis or modal anal-
ysis of base-isolated structures are both acceptable. However, typically at least one of these assumptions 
is not valid. 

Normally, the bearing systems behave inelastically. This nonlinear behavior is often captured by Bouc-
Wen model [4-6]. Specifically, the Wen’s model was used in [7] to optimize the performance of base-isolated 
system subjected to ground acceleration. Recently, Ghodke and Jangid [8] proposed a linear model of shape 
memory alloy to analyze base-isolated structures subjected to earthquake excitations. Previously, Jangid 
[9] investigated the response of a multi-story isolated structure mounted on lead rubber bearings subjected 
to seismic excitations. However, the detailed formulations were not shown in these researches. Also, in 
these researches, methods in the β-Newmark family were often used with very small time-steps (about 10-3 
seconds) to attain acceptable accuracy. The methods proposed in [10] and [11] offered better numerical 
aspects in solving dynamic problems. So, in this article, we propose to use them for obtaining responses of 
base-isolated structures. In addition, the article also provides detailed formulation to solve the problems of 
base isolation using the well-known Runge-Kutta method. With these reformulations, accurate results can 
be achieved while the time-step size can be of larger values. The language used for modeling base-isolated 
structures is Julia. It is relatively new language, but its grammar is as simple as MATLAB and it often match-
es the performance of C language.

2. Modelling of base-isolated frames using linear elastic theory

2.1 Equivalent characteristics of base isolators 
The characteristics of a seismic isolator (effective stiffness Keff, and equivalent damping ratio ζeq) can 

be approximately extracted from data of cyclic loading experiment. For a single-degree-of-freedom (SDOF) 
oscillator, the effective stiffness Keff is defined as:

									                   (1)

where Fmax  and Fmin  are maximum and minimum values of restoring forces, respectively; and umax  
and umin are maximum and minimum values of displacements, respectively. Those values can be determined 
from the experimental hysteretic loops (see Fig. 1). Recall that the energy dissipated by viscous damping in 
a cycle is:

						                            (2)

Then, the damping ratio for the equivalent system ζeq is obtained by equating the true ED
e of the bear-

ing from experiment to the ED of a viscously damped oscillator given in Eq. (2).

									                 (3)

2.2 Modeling base-isolated frames
To make things simple, the behavior of isolation bearings is often modelled as a linear elastic ele-

ment with viscous damping. The characteristics Keff and ζeq of bearings are determined as mentioned above. 
Assume that the superstructure is also viscously damped linear elastic, then the equations of motion can be 
written as:

 								                 (4)
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where: M, C and K are the mass matrix, damping matrix, and stiffness matrix of the whole system, corre-
spondingly;  is the static influence coefficient vector; üg(t) is the ground acceleration. To make things even 
simpler, viscous damping is sometimes assumed to be of the classical type, or in other words, the product 
ΦTCΦ is diagonal. The displacement, velocity and acceleration responses of the system U, U̇ and Ü can be 
obtained by model analysis. However, more generally, the damping matrix is non-classical. It is normally due 
to the large difference between the damping property of the superstructure and the bearings. In this situation, 
the system of equations of motion is solved simultaneously to provide the responses U, U̇ and Ü. For this 
well-established problem, besides some well-known methods for solving these equations of motion, such as 
β-Newmark methods, θ-Wilson method, Houbolt method or some other finite difference ones, we can also 
use recently proposed methods that are more accurate and stable [10-12]. These methods are coded in Julia 
language as tools, provided in the package DirectStepIntegration.jl that can be downloaded and reused with 
the following Julia command:

Pkg.clone(“https://github.com/tkris1004/DirectStepIntegration.git”);          	 # clone the package

push!(LOAD_PATH,pwd()); 				             		  # set the path

using DirectStepIntegration			   ;	          		  # declare to use the package

For more information on using these tools, refer to [11] or the coding of the package. 

3. Modelling base-isolated frames using nonlinear theory 

3.1 Bouc-Wen model of base isolators
Despite of the appeal of the very simplicity of the linear elastic theory in modeling the base-isolated 

structures, it is often not accurate. This flaw is due to the way it accounts for the damping in isolation system. 
The assumption that damping is viscous in the superstructure is acceptable (indeed, it is accepted in many 
design codes). However, the same assumption for the isolation system is not supported by many experiments 
that have demonstrated that the energy dissipated by rubber and rubber-like elastomeric materials is nearly 
rate-independent. Fig. 1 below shows typical experimental hysteresis loop of different isolation bearings.

Figure 1. Typical hysteresis loop of different isolation bearings (adapted from [13])

Eq. (2) shows that ED is a function of forcing frequency ω. Experiments have shown that ED is near-
ly frequency-independent. This kind of damping is also called “hysteresis damping”, or “rate-independent 
damping”. A well accepted analytical model to capture this behavior of bearings is Bouc-Wen model. This 
model can capture, in analytical form, a range of hysteretic cycle shapes matching the behavior of a wide 
class of hysteretic systems. Due to its versatility and mathematical tractability, the Bouc-Wen model has 
gained popularity. It has been extended and applied to a wide variety of engineering problems. In the field of 
structural control, the Bouc-Wen model has been used in the modeling of behavior of magneto-rheological 
dampers, base-isolation devices for buildings and other kinds of damping devices as well.

According to the Bouc–Wen model, the restoring force restoring force can be visualized as two 
springs connected in parallel and is given by the following expression:

						              (5)

where: α=kp/ke is the ratio of post-yield stiffness kp to pre-yield (elastic) stiffness ke of the base isolators; uy is 
the yield displacement; z(t) is non-observable hysteretic displacement which is given by the following differ-
ential equation with initial condition z(0)=0:

					              (6)
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In the above equation, A, β > 0, γ, and n are dimensionless parameters controlling the behavior of 
the model. The parameter n control how sharp the transition from elastic to inelastic is. For small values of 
the positive exponential parameter n, this transition is smooth, while for large values this transition is abrupt. 
Parameters A, β and γ control the size and shape of the loop. Normally, A is set to unit to remove the redun-
dancy among these parameters. The valid range of γ is found to be [-β,β]. 

3.2 Modeling base-isolated frames

Figure 2. A 2-DOF model of 
a base-isolated structure

Figure 3. A base isolation embedded under a 
(cantilever) structure with N-DOFs

Fig. 2 shows a simplified model of a 2-DOF base-isolated structure. Top mass equilibrium gives:

							                (7)

Equilibrium of the bottom mass gives:

						               (8)

Substituting F from Eq. (5) into this equation yields:

				             (9)

Eqs. (6), (7) and (9) fully describe the whole system. This set of equations can be solved using simple 
numerical methods, such as the central difference method, or the methods in the β-Newmark family. How-
ever, we also have very powerful tools in Julia language to deal with this kind of problem. We recommend 
using these tools over other methods because these tools can solve much more complicated problems. To 
solve the set of equations (6), (7) and (9) with Julia, we need to cast them in a state-space formulation. The 
state vector is:

					            (10)

Then:

		         (11)

There are several good methods for solving this equation among which the Runge-Kutta method is 
commonly used due to its superiority performance. This method is also employed in this article using a Julia 
package named DifferentialEquation.jl contributed by Rackauckas [14].

In case of multi-degree-of-freedom (MDOF) system, such as the case of multi-story building shear 
frames, the state-space formulation needs a little arrangement. The model for the superstructure is assumed 
to be a cantilever with N concentrated masses attached at floor levels as shown in Fig. 3. Denote the mass 
matrix, damping matrix, and stiffness matrix of the fixed-base structure as Ms, Cs and Ks, respectively. Like 
Eq. (7), equilibrium of the superstructure can be written as:

						             (12)
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where: Us=[(u1   u2   ...   uN)]T is the displacement vector of the superstructure with respect to the foundation 
(bottom layer of the base isolator). The influence vector  for the case of shear frames is unit vector, =[(1   1   
...   1)]T. Equilibrium of the mass mb gives:

						            (13)

Considering that where , Eq. (13) can be rewritten as:

			         (14)

Now, we will write Eqs. (6), (12), and (14) in state-space form as:

		         (15)

where: is the state vector.

4. Nonlinear responses of base-isolated frames - case studies

4.1 Base-isolated shear frame with non-classical damping
Consider a shear frame, initially at rest, modeled as 4-DOF system as shown in Fig. 3, with floor 

masses ms=10 kN.s2/m. The lateral stiffness of each story is ks=1.6×104 kN/m. We consider this frame in two 
situations. For fixed-base situation, the mass matrix, stiffness matrix and damping matrix are:

					            (16)

The damping of the frame is assumed to be viscous and proportional to the stiffness matrix C=a1K 
where a1=0.0025 (classical damping, following one of the Rayleigh models). From this, we have:

					            (17)

For the base-isolated situation, the properties of the bearing are given as:

								              (18)

Thus, the augmented structural matrices now are:

					           (19)

where: ksb and csb are coupling matrices that can be found as:

						           (20)

The non-classical damping property of the whole system can be verified by  for any n≠r, 
where ϕn is the nth mode shape of the augmented system. The frame is subjected to the El Centro 1940 
earthquake with acceleration record of the ground given in the Appendix of Chapter 6 in [3]. The equation 
of motion is shown in Eq. (4), where the influence vector is =[1  1  1  1]T for the case of fixed-base, or  
=[(1  1  ...  1)]T

1×5 for the case of base-isolation. Similarly, different displacement vector is defined for the two 
cases: U=[u1  u2  u3  u4]

T for the first case, and U=[ub  u1  u2  u3  u4]
T for the second case.
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We would like to consider the responses of this system under these two cases and compare them. 
This problem can be solved using tools in DirectStepIntegration.jl package or using Runge-Kutta method in 
built-in commands in Julia. In this example, we will use tools in package DirectStepIntegration.jl (refer also 
to Section 3.1). After initiating the package, the rest of Julia codes is as follows:

m_s = 10; c_s = 40; k_s = 1.6e4; m_b = 10; c_b = 60; k_b = 1.6e3;
c_sb = [ -c_s  0  0  0];  k_sb = [ -k_s  0  0   0]; M_fb = eye(4)*m_s; M_bi = eye(5)*m_s;
C_fb = c_s*[2 -1 0 0; -1 2 -1 0;0 -1 2 -1;0 0 -1 1]; C_bi = [c_s+c_b  c_sb; c_sb’  C_fb]; 
K_fb = k_s*[2 -1 0 0; -1 2 -1 0;0 -1 2 -1;0 0 -1 1]; K_bi = [k_s+k_b  k_sb; k_sb’  K_fb];
dth_fb = (M_fb, C_fb, K_fb); dth_bi = (M_bi, C_bi, K_bi); tz_fb = (0.02, 2000); tz_bi = (0.02, 2000);
ic_fb = ([0.; 0.; 0.; 0.], [0.; 0 ;0.; 0.]); ic_bi = ([0.; 0.; 0.; 0.; 0.], [0.; 0.; 0.; 0.; 0.]);
p_fb = (0.02, -(readdlm("ElCentro.txt")[ :, 1])*ones(1,4)*M_fb);
p_bi = (0.02, -(readdlm("ElCentro.txt")[ :, 1])*ones(1,5)*M_bi);
u_fb, ud_fb, u2d_fb=tkris5(dth_fb, tz_fb, ic_fb, p_fb);
u_bi, ud_bi, u2d_bi=tkris5(dth_bi, tz_bi, ic_bi, p_bi);
The maximum value of the top displacement 8.258E-2 m of fixed-base structure is 

much larger than that of base-isolated structure 1.670E-2 m. Similarly, for the top total ac-

celeration, 15.05 m/s2 of fixed-base structure is much larger than 2.89 m/s2 of 

base-isolated one. The total acceleration is defined as . Table 1 shows the top displace-
ment and acceleration for the first five steps. The responses over the time from 0 to 40 seconds are shown 
in Fig. 4 where we can see the effectiveness of the base isolation in reducing the responses.

Table 1. Responses of the system for the first five steps

t (seconds)
utop (m) (m/s2)

Fixed-base Base-isolated Fixed-base Base-isolated
0.02 9.245E-6 3.191E-7 -1.101E-1 -1.101E-1

0.04 5.567E-5 3.917E-6 -7.131E-3 -7.132E-3

0.06 1.428E-4 1.524E-5 -1.313E-2 -1.326E-2

0.08 2.661E-4 3.689E-5 -9.164E-3 -7.241E-3

0.1 4.238E-4 7.015E-5 -3.767E-2 -2.633E-2

Figure 4. Responses of the system during the first forty seconds

4.2 MDOF (4-storey) shear frame with damping modeled as Bouc-Wen element
The isolation system is a lead-rubber-bearing, modelled as a Bouc-Wen element with the following 

values of parameters: mb=10 tons, uy=5 mm, ke=8 kN/mm, α=0.1, n=2, β=0.9 and γ=0.1. The same super-
structure and the same (seismic) loading condition are used in this case study as in the previous case study 
in Section 4.1. For fixed-base situation, the mass matrix, stiffness matrix and damping matrix are given in 
Eqs. (16) and (17). The following Julia codes are used to obtain the system responses.
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In Fig. 5, beside the ground acceleration re-
cord, the relative bearing displacement and the story 
drift of the top floor are shown. The comparison in Fig. 
6(a) shows that there is a big reduction in the top sto-
ry drift when the frame is base-isolated. We can also 
observe similar reduction in other response quantities 
of the base-isolated frame as well. Due to limited num-
ber of pages for this article, we do not show all the 
results here, but readers can verify by themselves. 
The hysteretic behavior of the bearing can be seen 
through the loops in Fig. 6(b).

5. Conclusions

This article introduced the ways to model 
base-isolated frames using both linear elastic theory 

m_s = 10000; c_s = 0.04*m_s*100; k_s = 1600*m_s; m_b = 10000;  
M = eye(4)*m_s; C = c_s*[2 -1 0 0; -1 2 -1 0;0 -1 2 -1;0 0 -1 1]; K = k_s*[2 -1 0 0; -1 2 -1 0;0 -1 2 -1;0 0 -1 1];
dth = (M, C, K); tz = (0.02, 2000); ic = [0.; 0.; 0.; 0.; 0.; 0 ;0.; 0.;0.;0.;0.];
ztn_raw = (0.02, readdlm("ElCentro.txt")[ :, 1]);
alp=0.1; beta1=0.9; gamm=0.1; n=2; uy=0.005; ke=k_s/2;
ccd = (alp, beta1, gamm, n, uy, ke); rk_bi(dth, ccd, tz, ic, ztn_raw);
Results obtained after running these lines of Julia code are shown below. The ground acceleration 

üg input to the frame, the dimensionless hysteretic parameter z, the bearing displacement ub, the restoring 
force on the bearing F, the top story drift utop in base-isolated frame and in fixed-base frame are shown in 
Table 2 for the first five steps. Table 2 also provides maximum of selected responses. From this table, the 
effectiveness of the bearing system in reducing the structural responses can be seen. We can also see that 
during the first 0.1 seconds, there is no reduction in the top story drift contributed by the isolation system. 
This is certainly due to the hysteresis phenomenon of the bearing.

Table 2. Responses of the system for the first five steps

t (s) üg (m/s2) z F (kN) ub (m)
utop (m)

Base-isolated Fixed-base
0.02 -1.427E-2 7.291E-11 1.167E-5 1.458E-8 1.197E-5 9.245E-6

0.04 -1.101E-1 1.066E-8 1.795E-3 2.131E-6 6.456E-5 5.567E-5

0.06 -1.030E-1 3.734E-7 5.976E-2 7.468E-5 1.584E-4 1.428E-4

0.08 -8.973E-2 2.749E-6 4.400E-1 5.499E-4 2.887E-4 2.661E-4

0.1 -9.687E-2 1.059E-5 1.696E+0 2.119E-3 4.579E-4 4.238E-4

Maximum values over 40 seconds 6.013E-2 1.302E-2 8.258E-2

Figure 5. Ground acceleration and responses of the 
system during the first forty seconds

Figure 6. (a) Comparison of top story drift; (b) Hysteretic loops
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and nonlinear theory. In both cases, the nonlinear dynamic responses of the whole system can be obtained 
from commands of Julia programing language without much difficulty. The effectiveness of isolation system 
is illustrated through some case studies. Further studies can be dealt with the influence of bearing parame-
ters to system responses, the optimization of these parameters to obtain optimum design of frames subject-
ed to time-varying loading conditions, such as wind loads and/or earthquake-induced loads.
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