Journal of Science and Technology in Civil Engineering, HUCE, 2025

A CATBOOST-BASED SURROGATE MODEL FOR FAST
PREDICTION OF FREE VIBRATION RESPONSE IN
TRI-DIRECTIONAL FUNCTIONALLY GRADED PLATES

Dieu T. T. Do™*, Son Thai®"*

“Faculty of Management Information Systems, Ho Chi Minh University of Banking,
36 Ton That Dam street, Saigon ward, Ho Chi Minh City, Vietham
bFaculty of Civil Engineering, Ho Chi Minh City University of Technology (HCMUT),
268 Ly Thuong Kiet street, Dien Hong ward, Ho Chi Minh city, Vietham
“Vietmam National University Ho Chi Minh City (VNU-HCM), Linh Xuan ward, Ho Chi Minh city, Vietnam

Article history:
Received 21/7/2025, Revised 06/10/2025, Accepted 16/10/2025

Abstract

Accurate numerical analysis of tri-directional functionally graded (3D-FGM) plates is computationally inten-
sive, posing a major challenge for design optimization and reliability assessment. To overcome this, we propose
an efficient surrogate model based on the CatBoost algorithm and benchmark its performance against a finely
tuned Artificial Neural Network (ANN) for rapid prediction of free vibration responses. A high-fidelity dataset
comprising 20000 samples was generated using a validated model that integrates Isogeometric Analysis (IGA)
with Generalized Shear Deformation Theory (GSDT). Each sample includes eighteen input parameters (mate-
rial control points) and three outputs: natural frequency, total ceramic volume fraction, and plate mass. The
models were systematically evaluated by investigating the influence of hyperparameters and dataset size on
prediction accuracy (measured by MSE and MAPE) and computational time. The results demonstrate that the
optimized CatBoost model achieves nearly nine-fold lower test MSE and is over 10.8 times faster than the
ANN. These findings highlight CatBoost as a highly accurate and efficient surrogate, enabling fast and reliable
analysis of complex composite structures for future engineering applications.
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chine learning; isogeometric analysis; surrogate model.

© 2025 Hanoi University of Civil Engineering (HUCE)

1. Introduction

Functionally Graded Materials (FGMs) represent a sophisticated class of advanced composites,
offering a superior alternative to conventional laminated materials. Unlike laminates with discrete
interfaces prone to stress concentration and delamination, FGMs feature material properties that vary
continuously and smoothly in one or more spatial directions. This gradual transition, typically be-
tween a ceramic phase providing high-temperature resistance and a metallic phase imparting fracture
toughness, results in a composite with tailored, location-specific performance. Consequently, FGMs
have been increasingly adopted in a wide range of demanding sectors, including aerospace engineer-
ing , nuclear plants, biomedical implants, and civil engineering [1-5]. While initial research focused
on uni-directional (1D) FGMs, where properties vary only through the thickness, the need to with-
stand complex, multi-axial operational conditions has spurred the development of bi-directional (2D)
and tri-directional (3D) FGMs. In 3D-FGM plates, the material composition is engineered to vary
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along all three Cartesian coordinates, providing an unprecedented level of design freedom. A funda-
mental aspect of designing with these materials is the analysis of their dynamic behavior, particularly
free vibration, which is critical for preventing catastrophic failure due to resonance.

The analytical complexity of 3D-FGM plates, however, makes closed-form solutions for vibra-
tion analysis intractable. Consequently, engineers rely on high-fidelity numerical methods like the
Finite Element Method (FEM) and Isogeometric Analysis (IGA). While powerful, these methods are
computationally expensive, as the need to capture continuous material variation requires fine mesh
discretization and the solution of large systems of equations. This computational bottleneck becomes
a critical barrier for essential engineering tasks that demand a large number of repeated analyses, such
as structural optimization, reliability assessment, and the development of real-time “digital twins”.
To overcome this challenge, the engineering community has increasingly turned to surrogate models-
data-driven, computationally inexpensive mathematical approximations of high-fidelity simulations.
The core principle involves using a finite set of simulation data to train an approximation model that,
once trained, can predict outputs for new inputs almost instantaneously. The application of machine
learning (ML) has proven particularly effective for this purpose. Artificial Neural Networks (ANNs),
particularly Multi-Layer Perceptrons (MLPs), are a well-established tool for surrogate modeling the
complex mechanical behavior of FG structures. Indeed, numerous studies have successfully em-
ployed ANNS to predict a wide range of behaviors in FGM plates, including their dynamic responses,
free vibration, and buckling characteristics [6-9].

More recently, ensemble learning methods, which combine multiple weak learners to create a sin-
gle strong predictor, have gained prominence. Among these, gradient boosting decision tree (GBDT)
algorithms have demonstrated exceptional performance on tabular data. Algorithms such as XGBoost
and LightGBM have been successfully applied to analyze FG plates and other structural problems
[10-16]. For example, Do et al. [11] utilized XGBoost for the transient analysis of FG plates, and
Do [17] employed a suite of ensemble methods to predict the buckling behavior of tri-directional FG
plates.

This paper focuses on CatBoost (Categorical Boosting), a state-of-the-art GBDT library that in-
troduces key innovations to improve accuracy and reduce overfitting. Its primary advantages include
Ordered Boosting, a permutation-driven training scheme that mitigates the target leakage problem,
and the use of Symmetric (Oblivious) Trees. This tree structure acts as a powerful regularizer while
also allowing for extremely fast predictions. The power and versatility of CatBoost have been demon-
strated across a diverse range of recent engineering applications. In structural and materials engineer-
ing, it has been successfully used to predict the compressive strength of high-performance concrete
[18] and to forecast construction delay risks [19]. Its capabilities also extend to geotechnical chal-
lenges, such as real-time rock mass classification in hard-rock tunnelling [20], and to energy systems,
where it has been applied to predict residential heating consumption [21] and optimize electric vehicle
battery state of charge estimation [22]. These diverse applications solidify its position at the forefront
of applied machine learning.

Despite the successful application of ANNs and other boosting algorithms, a direct and rigorous
comparison of a well-tuned CatBoost model against an optimized ANN for the specific problem of
free vibration of 3D-FGM plates is currently absent from the literature. This study aims to fill this
critical gap. The primary contributions of this work are the development of a high-performance Cat-
Boost surrogate model for 3D-FGM plates and a rigorous, data-driven comparative analysis against
a benchmark ANN. The models are holistically evaluated based on prediction accuracy (MSE and
MAPE) and computational efficiency (training time), using a large-scale dataset of up to 20000 sam-
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ples. This paper also generates valuable insights into the influence of dataset size and hyperparameter
tuning on the performance of both modeling approaches for this class of complex structural dynamics
problems.

2. Machine learning framework and Dataset
2.1. Problem formulation and Data generation

In this study, the dataset is generated from a high-fidelity numerical model grounded in two key
theoretical concepts. The first is the use of tri-directional functionally graded materials (3D-FGM),
which are advanced composites with properties varying continuously along all three Cartesian coor-
dinates. This material variation is often described by the volume fraction of the ceramic constituent,
V.. For instance, a common approach is a power-law model:

veno=(3 G (53]

where ky, ky, k; are the power-law indexes along the plate’s dimensions a, b, h. The effective material
properties, P, can then be estimated using schemes like the rule of mixture:

P n,0) =P Ve (1,0 + PV (&,1,0) (2)

The second concept is the Generalized Shear Deformation Theory (GSDT), an efficient higher-
order plate theory used to analyze the mechanical responses. GSDT accurately captures shear defor-
mation effects across the plate’s thickness without requiring shear correction factors. The theory is
characterized by its unique displacement field, where the in-plane displacements (u, v) for any point
in the plate are defined as:

u(x,y,z,1) =uo(x,y,t) — 2w (x,y, 1) + f (2) Bx (x,, 1)

3
v(x,y,2,1) = vo (x,y,1) — 2woy (x, ¥, 1) + f(2) By (x, ¥, 1) ©)

here, ug, vo, wo are the mid-plane displacements, Sy, By are the rotations, and f(z) is a shape function
that defines the distribution of transverse shear strain through the thickness. In the referenced model,
this shape function is given by:

473 4
2 4)

This theoretical framework provides the basis for the isogeometric analysis used to generate our
training data.

The foundation of this study is a high-quality dataset generated from a numerical model of a tri-
directional FGM plate. The model is based on a robust combination of Isogeometric Analysis (IGA)
and a Generalized Shear Deformation Theory (GSDT), a methodology validated for its accuracy in
our previous work [9].

Specifically, this study investigates the free vibration of a fully clamped (CCCC) tri-directional
Al/Al,O3 square plate. The plate model under consideration is illustrated in Fig. 1. The plate has
a length-to-thickness ratio (a/h ) of 5. The material properties for the ceramic phase (Al,Os3) are:
E. =380 GPa, v, = 0.3, and p, = 3960 kg/m3; and for the metal phase (Al): E,, = 70 GPa, v,, = 0.3,
and p,, = 2703 kg/m3. The effective material properties are estimated using the rule of mixture. A
multi-mesh approach is employed, with a 3 X 3 X 1 design mesh for material representation and a
refined 15 X 15 cubic element analysis mesh to ensure solution accuracy.

3
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The dataset is structured with 18 input variables (control points defining the material distribution)
and 3 output variables: the first non-dimensional natural frequency, total ceramic volume fraction,

and total mass. The non-dimensional frequency is calculated as @ = wh 'D—m. To assess model

m
scalability, three datasets were created with 5000, 10000, and 20000 data pairs. For all experiments,
the data was randomly partitioned into a training set (80%) and a testing set (20%).

N
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Figure 1. The functionally graded plate model

2.2. Artificial neural network surrogate model

The Artificial Neural Network (ANN) serves as the benchmark surrogate model in this study.
Specifically, a Multi-Layer Perceptron (MLP), a class of feed-forward ANN, is used. The MLP is
a powerful and flexible function approximator, capable of learning highly complex and nonlinear
relationships between inputs and outputs, making it a standard choice for surrogate modeling in en-
gineering.

The ANN architecture investigated is based on the configurations detailed in the provided data
analysis. It consists of an input layer, one to three hidden layers, and an output layer. A systematic
hyperparameter search is conducted by varying the number of hidden layers (one, two, or three)
and the number of nodes (neurons) within each hidden layer (20, 50, or 100). The connections
between nodes are governed by weights and biases, which are the parameters learned during the
training process. The output of a neuron is determined by an activation function, which introduces
nonlinearity into the network, allowing it to model complex patterns. Based on the experimental
setup, the Softplus function is used as the activation function for the hidden layers.

The training process involves iteratively adjusting the network’s weights to minimize a loss func-
tion that quantifies the difference between the model’s predictions and the true target values. The
Adam optimizer, an efficient and widely used gradient-based optimization algorithm, is employed for
this purpose. The performance of the ANN is evaluated using two standard regression metrics:

- Mean Squared Error (MSE): This metric calculates the average of the squared differences be-
tween the predicted and actual values. It is defined as:

MSE = % ; (vi- 1?,-)2 (5)

where 7 is the number of samples, Y; is the actual value, and ¥; is the predicted value. MSE is
particularly sensitive to large errors or outliers due to the squaring term.
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- Mean Absolute Percentage Error (MAPE): This metric expresses the average absolute difference
as a percentage of the actual values. It is defined as:

1 n
MAPE = ﬂ
n

i=1

(6)

Y, - ¥;
Y;

MAPE provides an intuitive, relative measure of error and is less sensitive to the scale of the target
variable. The use of both MSE and MAPE offers a more comprehensive and nuanced assessment of
model performance than either metric alone.

2.3. CatBoost surrogate model

The primary focus of this investigation is the CatBoost algorithm, a state-of-the-art implemen-
tation of gradient boosting on decision trees (GBDT) [23]. Like other GBDT methods, CatBoost
builds an ensemble of decision trees sequentially, where each new tree is trained to correct the errors
made by the previous ones. However, CatBoost distinguishes itself through several novel architectural
features that are hypothesized to give it a performance edge.

The key advantages of CatBoost, which form the basis for its evaluation in this study, are rooted
in its sophisticated approach to model training and structure:

- Ordered boosting: to prevent the overfitting that can arise from target leakage, CatBoost employs
a unique permutation-driven training process. For each sample in the training data, the model is
updated using a separate model that was trained only on the samples that appeared earlier in a random
permutation of the data. This clever technique ensures that the model learns from a ‘“historical”
perspective, preventing it from using information about the current sample’s target to inform its own
features, which leads to more robust and generalizable models.

- Symmetric (oblivious) trees: CatBoost grows decision trees in a balanced, symmetric fashion.
At each level of the tree, the same feature and splitting criterion are used for all nodes. This structural
constraint acts as a powerful regularizer, preventing the model from creating overly complex, deep
branches that fit to noise in the training data. This not only improves the model’s generalization but
also results in a highly regular structure that can be evaluated with extreme speed, making CatBoost
one of the fastest GBDT libraries for prediction.

- Computational efficiency: the algorithm is highly optimized for performance on both CPU and
GPU architectures and has demonstrated excellent scalability on large datasets, a critical feature for
modern machine learning applications.

The hyperparameter investigation for the CatBoost model is designed to explore the parameters
that most directly control the bias-variance tradeoff. Based on the provided data analysis , the search
space includes:

- Tree depth: The maximum depth of each decision tree, explored over the values {1, 2, 3, 4}.
Deeper trees can capture more complex interactions but are more prone to overfitting.

- Learning_rate: A factor that shrinks the contribution of each tree, explored over the values {0.01,
0.05, 0.1, 0.2, 0.3, 0.4}. This range was chosen to cover a broad spectrum of learning behaviors, from
slow and steady (low rates) for better generalization, to faster convergence (high rates). The inclusion
of higher rates was validated by our results, as the optimal model for the largest dataset achieved its
best performance with a learning_rate of 0.3.

To ensure a direct and fair comparison, the performance of the CatBoost model is evaluated using
the same MSE and MAPE metrics as the ANN model.
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3. Results and discussions

This section presents the study’s main findings. First, the process of identifying the optimal set-
tings (hyperparameters) for both the ANN and CatBoost models is presented. Subsequently, these
optimized models are compared head-to-head to evaluate their performance based on prediction ac-
curacy and computational cost.

All training processes were carried out using Python 3.7 on a laptop running Windows 11, 64-bit
with an Intel® Core™ 7-8550U CPU @ 1.80 GHz 2.00 GHz, and 12.0 GB of RAM.

The performance of various ANN architectures was evaluated by systematically varying the num-
ber of hidden layers and the number of nodes per layer. The results, compiled from the experimental
data, are detailed in Tables 1, 2, and 3, corresponding to the datasets with 5000, 10000, and 20000
data pairs, respectively. For each dataset, the optimal model was identified as the one providing the
lowest Test MSE, indicating the best generalization performance.

Table 1. Performance of ANN architectures (Dataset size = 5000)

No. hidden layers one-hidden layer two-hidden layer three-hidden layer

No. nodes per layer 20 50 100 20 50 100 20 50 100

MSE Training 1.41E-05 1.54E-05 2.92E-05 1.19E-05 1.10E-05 8.50E-06 1.31E-05 1.03E-05 1.97E-05
Test  1.45E-05 1.56E-05 2.99E-05 1.16E-05 1.07E-05 8.14E-06 1.28E-05 1.01E-05 1.94E-05

MAPE (%) Training 0.4580  0.5623 09139 04201 03695 03140 04641 04139 0.7245
Test 04621 05622 09178 04170 03697 0.3084 04613 04125 0.7191

Time (sec) 14549 15099 15624 162.80 17347 17952 176770  183.63  211.81

As shown in Table 1 for the 5000-sample dataset: The optimal architecture is the two-hidden-
layer model with 100 nodes each, which achieved a Test MSE of 8.14 x 1076, Although more complex
models exist, this configuration provides the best balance between model capacity and generalization,
avoiding the overfitting seen in overly complex structures on smaller data.

Table 2. Performance of ANN architectures (Dataset size = 10000)

No. hidden layers one-hidden layer two-hidden layer three-hidden layer

No. nodes per layer 20 50 100 20 50 100 20 50 100

MSE Training 1.33E-05 1.61E-05 1.87E-05 1.09E-05 1.11E-05 6.63E-06 1.19E-05 9.58E-06 6.59E-06
Test  1.50E-05 1.76E-05 2.02E-05 1.20E-05 1.19E-05 7.56E-06 1.35E-05 1.08E-05 7.25E-06

MAPE (%) Training 0.4459  0.6299  0.6207 0.3696  0.3641  0.2610  0.4477  0.4251 0.3128
Test 04685  0.6500 0.6368  0.3833 03721 0.2794  0.4697 0.4462  0.3240

Time (sec) 164.27 16997 18228 167.79  181.68  231.51 176.48  197.98  264.85

As presented in Table 2 for the 10000-sample dataset: The optimal model is the three-hidden-
layer model with 100 nodes each, yielding a Test MSE of 7.25 x 107, With more data available,
a more complex architecture can be trained effectively, allowing it to capture more intricate patterns
without significant overfitting, thus surpassing the performance of simpler models.

As detailed in Table 3 for the 20000-sample dataset: the optimal architecture remains the three-
hidden-layer, 100-node model, which achieves the best overall performance with a Test MSE of
8.03 x 1075, While the test MSE on the 20000-sample dataset is slightly higher than that of the
10,000-sample dataset, this is attributed to dataset variance-a consequence of the stochastic nature of
the data partitioning process. It is plausible that the random 20% split for the larger dataset resulted
in a test set containing a higher proportion of outliers or more complex samples. The close proximity

6
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of the training and test loss curves in Fig. 2 strongly suggests that the model generalizes well and is
not suffering from overfitting.

Table 3. Performance of ANN architectures (Dataset size = 20000)

No. hidden layers one-hidden layer two-hidden layer three-hidden layer

No. nodes per layer 20 50 100 20 50 100 20 50 100
MSE Training 1.33E-05 1.99E-05 1.51E-05 1.11E-05 1.66E-05 9.90E-06 1.07E-05 8.13E-06 7.90E-06
Test  1.34E-05 2.02E-05 1.52E-05 1.10E-05 1.69E-05 1.03E-05 1.06E-05 8.33E-06 8.03E-06

MAPE (%) Training 0.4095 0.6505 04754 03852 0.5772 0.3959 03551 0.3568  0.4067
Test 04124  0.6554 04780 03850 0.5858  0.4031 03559 0.3618  0.4072

Time (sec) 167.23 17854  185.13  169.01 21020 250.62  191.61 24099 294.50

A similar investigation was conducted for CatBoost, focusing on tree depth and learning_rate. The
optimal model for each dataset was selected based on the lowest Test MSE, which also consistently
corresponded to a low Test MAPE.

Table 4. Performance of CatBoost models (Dataset size = 5000)

depth learning rate 0.01 0.05 0.1 0.2 0.3 0.4
1 MSE Training 1.76E-04 7.96E-05 7.82E-05 8.04E-05 8.16E-05 8.14E-05
Test 2.05E-04 9.74E-05 9.79E-05 1.01E-04 1.07E-04 1.14E-04
MAPE (%) Training 2.0356 1.1132 1.1080 1.1796 1.2062 1.2217
Test 2.1968 1.2464 1.2426 1.3049 1.3637 1.4265
Time (sec) 5.69 5.66 5.72 5.47 5.65 5.58
2 MSE Training 5.08E-05 1.28E-05 8.19E-06 5.14E-06 3.86E-06 3.14E-06
Test 6.90E-05 2.77E-05 2.52E-05 2.67E-05 2.68E-05 2.84E-05
MAPE (%) Training 1.0071 0.5077 0.4200 0.3392 0.2927 0.2656
Test 1.1880 0.7201 0.6824 0.7267 0.7201 0.7417
Time (sec) 7.96 8.12 7.98 7.89 7.91 7.8
3 MSE Training 2.46E-05 5.19E-06 2.63E-06 1.10E-06 5.34E-07 2.70E-07
Test 4.07E-05 1.97E-05 1.99E-05 2.46E-05 3.00E-05 3.19E-05
MAPE (%) Training 0.6911 0.3354 0.2432 0.1591 0.1100 0.0773
Test 0.8893 0.6176 0.6214 0.6945 0.7666 0.8005
Time (sec) 11.3 11.16 11.2 10.9 11.2 10.93
4 MSE Training 1.39E-05 2.07E-06 6.78E-07 1.16E-07 2.44E-08 5.88E-09
Test 3.07E-05 1.89E-05 2.10E-05 2.51E-05 3.25E-05 4.09E-05
MAPE (%) Training 0.5277 0.2138 0.1229 0.0499 0.0229 0.0112
Test 0.7784 0.6123 0.6664 0.7366 0.8345 0.9262
Time (sec) 15.45 16.18 16.08 15.58 15.61 16.13

In the case of the 5000-sample dataset (Table 4): The optimal model has a depth of 3 and a
learning rate of 0.1, achieving a Test MSE of 1.99 x 107>. This configuration strikes a good balance,
as deeper trees (depth 4) on this smaller dataset showed signs of overfitting with a slightly higher
error.
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Table 5. Performance of CatBoost models (Dataset size = 10000)

depth learning rate 0.01 0.05 0.1 0.2 0.3 0.4
1 MSE Training 1.76E-04  7.78E-05 7.75E-05 7.86E-05 8.05E-05 7.96E-05
Test 1.92E-04 8.71E-05 8.79E-05 9.18E-05 9.53E-05 9.47E-05
MAPE (%) Training 2.0414 1.0743 1.0823 1.1294 1.1762 1.1830
Test 2.1292 1.1512 1.1509 1.2311 1.2854 1.2987
Time (sec) 7.74 7.45 8.04 7.72 7.66 8.34
2 MSE Training 5.04E-05 1.25E-05 7.79E-06  5.02E-06 3.79E-06 2.97E-06
Test 6.05E-05 1.87E-05 1.33E-05 1.09E-05 1.08E-05 1.07E-05
MAPE (%) Training 1.0042 0.4959 0.4070 0.3279 0.2838 0.2507
Test 1.1109 0.5960 0.5121 0.4609 0.4471 0.4321
Time (sec) 10.17 10.12 10.15 10.23 10.42 10.22
3 MSE Training 2.44E-05 497E-06  2.71E-06 1.14E-06 6.12E-07 3.80E-07
Test 3.20E-05 9.82E-06  7.62E-06  6.90E-06 6.81E-06  7.25E-06
MAPE (%) Training 0.6833 0.3230 0.2424 0.1547 0.1116 0.0861
Test 0.7888 0.4390 0.3815 0.3271 0.2999 0.2888
Time (sec) 13.87 14.03 13.65 13.54 14.38 13.89
4 MSE Training 1.37E-05 2.08E-06 8.23E-07 1.97E-07 6.20E-08 2.16E-08
Test 2.02E-05 6.52E-06  5.79E-06  5.96E-06 6.42E-06 8.13E-06
MAPE (%) Training 0.5148 0.2119 0.1298 0.0607 0.0332 0.0193
Test 0.6288 0.3481 0.2978 0.2491 0.2215 0.2239
Time (sec) 19.24 19.11 19.59 19.89 19.95 19.17

Results from the 10000-sample dataset (Table 5) indicate that the optimal configuration is a model
with a depth of 4 and a learning rate of 0.1, which yields a Test MSE of 5.79 x 10~°. The larger dataset
allows a deeper tree to learn more effectively, resulting in a significant improvement in accuracy.

Table 6. Performance of CatBoost models (Dataset size = 20000)

depth learning rate 0.01 0.05 0.1 0.2 0.3 04
1 MSE Training 1.75E-04  7.83E-05 7.76E-05 7.72E-05 7.85E-05 7.86E-05
Test 1.86E-04 8.20E-05 8.22E-05 8.26E-05 8.40E-05 8.70E-05
MAPE (%) Training 2.0379 1.0831 1.0941 1.1219 1.1515 1.1671
Test 2.0916 1.1022 1.1281 1.1514 1.1894 1.2273
Time (sec) 11.41 11.72 10.99 11.01 11.41 10.9
2 MSE Training 5.10E-05 1.21E-05 7.61E-06  4.74E-06 3.35E-06 2.60E-06
Test 5.61E-05 1.50E-05 1.02E-05 7.01E-06 5.58E-06  4.85E-06
MAPE (%) Training 1.0069 0.4865 0.3995 0.3170 0.2630 0.2304
Test 1.0646 0.5351 0.4543 0.3777 0.3317 0.3038
Time (sec) 14.44 14.29 14.23 14.84 14.36 15.13
3 MSE Training 2.42E-05 4.78E-06  2.44E-06 1.00E-06  4.93E-07 3.06E-07
Test 2.78E-05 6.86E-06  4.24E-06  2.34E-06 1.73E-06 1.47E-06
MAPE (%) Training 0.6827 0.3173 0.2291 0.1432 0.0985 0.0763
Test 0.7335 0.3706 0.2906 0.2072 0.1572 0.1317
Time (sec) 19.51 18.55 18.77 19.01 19.03 20.03
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depth learning rate 0.01 0.05 0.1 0.2 0.3 0.4
4 MSE Training 1.35E-05 2.02E-06 7.20E-07 1.80E-07 5.98E-08 2.20E-08
Test 1.64E-05 3.63E-06 1.78E-06 1.04E-06 9.01E-07 1.03E-06
MAPE (%) Training 0.5151 0.2065 0.1201 0.0570 0.0315 0.0185
Test 0.5701 0.2668 0.1762 0.1056 0.0716 0.0562
Time (sec) 27.25 28.19 28.19 27.56 27.04 28.44

Focusing on the 20000-sample dataset, Table 6 summarizes the performance where: The best
performance is achieved with a depth of 4 and a learning rate of 0.3, resulting in an exceptionally low
Test MSE of 9.01 x 107, The combination of the largest dataset and a higher learning rate (enabled
by more data) allows the model to converge to a much more accurate solution.

A direct comparison between the optimal ANN and CatBoost models at each data level reveals
clear performance trends. In terms of prediction accuracy, while the ANN model performs better
on the smallest dataset (5000 samples), CatBoost’s performance scales much more effectively with
data. At 10000 samples, CatBoost surpasses the ANN, and at 20000 samples, the optimal CatBoost
model is significantly more accurate, with a Test MSE that is nearly 9 times lower than the best ANN
model (9.01 x 1077 vs. 8.03 x 10~%). This demonstrates CatBoost’s superior ability to leverage large,
complex datasets without overfitting. Regarding computational eficiency, CatBoost holds a dramatic
and consistent advantage in computational speed. For the largest dataset, the optimal CatBoost model
trained in just 27.04 seconds, whereas the optimal ANN required 294.50 seconds. This makes Cat-
Boost over 10.8 times faster, a critical advantage for any application requiring rapid model retraining
or iterative analysis. While inference time is also a key metric, both the optimized ANN and CatBoost
models perform single predictions almost instantaneously (on the order of milliseconds). Given this
negligible difference for the intended engineering applications, the training time stands out as the
more decisive measure of computational efficiency in this study.

» | —— Training loss
Training loss 0,008

. | Test loss
Test loss

0.030

)

= 0.025
0.006

ed Error

3 0.020

0015 0.004

Mean Squar

A

0.002

Loss (Mean Squared Error)

Loss

0.005

0,000 [ttt e e 0.000 —_———

Epoch Iterations

Figure 2. Convergence history of the optimal ANN Figure 3. Convergence history of the optimal
model showing training and test loss over epochs CatBoost model showing training and test MSE over
iterations

The convergence histories of the optimal ANN and CatBoost models are visualized in Fig. 2 and
Fig. 3, respectively. Both figures illustrate a stable and effective training process. For the ANN model
(Fig. 2), the training and test loss curves decrease sharply in the initial epochs and then converge
smoothly, remaining very close to each other. This proximity between the two curves indicates that
the model generalizes well to new data and does not suffer from significant overfitting. Similarly,
the CatBoost model (Fig. 3) also demonstrates rapid convergence, with the training and test MSE
curves dropping quickly before plateauing at very low values. The small and stable gap between the
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curves further confirms the model’s robustness. When considered alongside the numerical results, it
is evident that while both models are stable, the CatBoost model converges to a significantly lower
final error state, visually reinforcing its superior accuracy.

For the problem of predicting the free vibration behavior of 3D-FGM plates, CatBoost emerges
as the decisively superior surrogate model. It offers an exceptional combination of higher prediction
accuracy, remarkable computational speed, and excellent scalability, making it a highly practical and
robust choice for complex engineering analysis and future optimization tasks.

4. Conclusions

This paper presented the development and rigorous evaluation of surrogate models based on
CatBoost and Artificial Neural Networks (ANN) for predicting the free vibration response of tri-
directional functionally graded plates. The findings conclusively demonstrate that the CatBoost model
is decisively superior to the benchmark ANN. The optimal CatBoost model achieved a nearly nine-
fold reduction in prediction error (MSE) and was over 10.8 times faster to train on the largest dataset.
Furthermore, the analysis highlighted CatBoost’s excellent scalability, as its performance advantage
became more pronounced with increasing dataset size. These results establish CatBoost as a pow-
erful, fast, and reliable tool for structural engineers, enabling the acceleration of computationally
intensive workflows such as design optimization and reliability analysis. Future work could focus on
extending this methodology to more complex problems, including nonlinear analysis and the study of
functionally graded shells.
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