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Abstract

This study proposes a hybrid RDMO-XGBoost method for bi-objective optimization of nonlinear steel frames,
targeting minimal structural mass and top-story displacement under static loads. Traditional linear elastic mod-
els fail to capture the nonlinear inelastic behavior of steel frames, such as yielding and buckling, necessitating
advanced optimization strategies. The Rao-DE Multi-Objective Optimization (RDMO) algorithm, combined
with Differential Evolution, ensures diverse and accurate Pareto solutions without parameter tuning. Integrated
with XGBoost, a machine learning tool, the method predicts frame responses rapidly, reducing reliance on
time-intensive finite element analysis. Applied to a two-story frame, RDMO-XGBoost reduced computation
time by over 55% (from 50,400 to 22,370 seconds) compared to generalized differential evolution 3 (GDE3)
and RDMO, while maintaining comparable performance in convergence, coverage, and diversity. Anchor point
results confirm its effectiveness, achieving lower mass (5148.891 kg) and displacement (0.807 mm), demon-
strating its potential for efficient and robust steel frame design optimization.
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1. Introduction

Designing steel structures, particularly steel frames, which is a fundamental task in structural
engineering, involves balancing cost, strength, and safety under diverse loading conditions [1]. Tra-
ditional methods, which typically rely on linear elastic assumptions, fail to capture the nonlinear
inelastic behavior that steel frames exhibit when subjected to heavy loads, such as yielding or buck-
ling [2]. This limitation poses significant challenges in multi-objective optimization (MOQ), where
the objectives of minimizing structural weight and controlling excessive deformations must be ad-
dressed concurrently to ensure practical and resilient frame designs [3]. Since assessing the nonlinear
inelastic responses of steel frames through finite element analysis (FEA) requires substantial time and
computational resources, particularly for complex frame systems, there emerges a pressing need for
faster, yet reliable, optimization strategies [4, 5].

Recent research has underscored the potential of metaheuristic algorithms as powerful tools for
tackling these challenges, delivering effective solutions to intricate structural problems involving non-
linear inelastic behavior [6]. Algorithms such as Differential Evolution (DE), Harmony Search (HS),
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and Particle Swarm Optimization (PSO), which systematically explore a wide range of design pos-
sibilities, demonstrate strong performance even when confronted with the complex nonlinear con-
straints inherent in steel frame optimization [7-10]. In MOO, where the focus shifts from seeking a
single optimal solution to generating a Pareto set that balances competing goals like weight reduction
and displacement control under inelastic conditions, additional complexities arise [11]. Because this
process demands extensive evaluations to span the design space, and because configuring these algo-
rithms to handle nonlinear inelastic responses can be intricate, traditional approaches often falter in
maintaining computational efficiency.

To address these challenges, this study introduces a hybrid approach that integrates the Rao-DE
Multi-Objective Optimization algorithm (RDMO) with XGBoost, a robust machine learning tool en-
gineered for rapid predictions [6, 12, 13]. RDMO, which merges the simplicity of the Rao-1 algorithm
with the robust search capabilitis of Differential Evolution (DE), utilizes a ranking system to assess
solutions while eliminating the need for additional parameter tuning [7, 14, 15]. By incorporating
multiple high- and low-ranked solutions, RDMO improves both the diversity and precision of out-
comes, surpassing tools like Differential Evolution for Multi-Objective Optimization (DEMO), gen-
eralized differential evolution 3 (GDE3), and Multi-Objective Evolutionary Algorithm with Inverted
Generational Distance and Non-dominated Sorting (MOEA-IGD-NS) in evaluations of solution va-
riety and proximity to optimal results [16-19]. However, when applied to steel frames exhibiting
nonlinear inelastic behavior under heavy loads, RDMQO’s dependence on repeated finite element anal-
ysis (FEA) evaluations hampers its efficiency, highlighting the need for a more streamlined approach
[20].

Incorporating machine learning, specifically Extreme Gradient Boosting (XGBoost), mitigates
this inefficiency by predicting the nonlinear inelastic responses of steel frames without requiring con-
tinuous FEA assessments. Developed by Chen and Guestrin, XGBoost excels at rapidly identifying
patterns in data, making it well-suited for estimating critical parameters such as load capacities or de-
formations with limited initial data [14, 21, 22]. Previous studies, which evaluated its performance on
structures with inelastic behavior, confirm its capacity to accelerate optimization processes while pre-
serving result accuracy [23]. This method extends the success of MOEA/D-EpDE_XGBoost (MEX),
a framework that reduced computation time by over 50% compared to its baseline, indicating that
combining RDMO with XGBoost could achieve comparable efficiency gains for steel frame opti-
mization [3, 24].

Given that steel frames under significant loads display complex nonlinear inelastic behavior—such
as yielding and buckling—accurate analysis is essential, and conventional linear models fail to fully
capture these responses [25]. The Blandford model, which monitors stretching and buckling, inte-
grates with the Generalized Displacement Control (GDC) method to provide reliable solutions for
these phenomena, as facilitated by software like the Practical Advanced Analysis Program (PAAP)
[26-28]. Nevertheless, because conducting such detailed analyses repeatedly for large-scale frame
designs consumes excessive computational resources, the proposed RDMO-XGBoost approach em-
ploys XGBoost to estimate frame responses after a few actual tests, iteratively refining predictions
throughout the optimization process [29, 30]. This combination aims to deliver faster results without
compromising precision.

The optimization focuses on two primary objectives: reducing the weight of steel frames, which
lowers costs, and constraining horizontal deformations, which ensures structural integrity under in-
elastic conditions [31-33]. By combining RDMO’s efficient search mechanism with XGBoost’s swift
predictive capabilities, this method seeks to outperform existing tools in terms of speed, solution di-

49



Nguyen, M.-C., et al. / Journal of Science and Technology in Civil Engineering

versity, and computational efficiency, with its effectiveness to be validated on steel frame designs [34].
Previous research, which showcased the benefits of integrating metaheuristics with machine learning,
underpins this effort to enhance optimization techniques for steel frames exhibiting nonlinear inelastic
behavior [35].

2. Bi-objective optimization of steel frames
2.1. Objective functions

Designing steel frames requires balancing cost efficiency and structural stability, often through
multi-objective optimization. This study formulates a bi-objective problem to address the nonlinear
inelastic behavior of steel frames under static loads, surpassing basic linear elastic models. The
approach targets two goals: minimizing the total mass (and thus cost, linked directly to material use)
by adjusting member cross-sections, enhancing economic and environmental outcomes. The first
objective function is expressed as:

nm n;
Minimize 7 (X) =p Z A(x) Z L, (1)
i=1 g=1
where p represents the material density, while X = (x1, x2,..., X,;s) (x; € [1, UB;]) denotes a vector

design variables. Each variable specifies the cross-sectional area assigned to a particular group of
structural elements. x; is an integer number ranging from 1 to UB;, indicating the sequential index
of a W-shaped section selected from the design catalog, where signifies the total number of available
sections. Additionally, n; corresponds to the count of frame components within the member group,
A (x;) denotes the cross-sectional area of the elements in the member group, and L, indicates the
length of ¢ member in that group.

The second goal aims to maintain the safety and stability of steel frames by reducing peak horizon-
tal displacement at the top point under given loads. Large deformations may cause failure, impaired
performance, or excessive vibrations. This is mathematically formulated as:

Minimize F»(X) = |A| 2)

where A represents the horizontal displacement of the structual top. This objective implicitly pro-
motes the use of larger cross-sections and a more robust structural design to withstand loading and
maintain acceptable deformation limits.

2.2. Constraint handling

The optimization process must incorporate several constraints to ensure structural feasibility and
adherence to design standards. These constraints include:

Constructability constraints: Constructability constraints ensure steel frame designs remain
practical by preventing unrealistic optimization outcomes. These rules require that an upper column’s
section depth be less than that of its lower column. Additionally, for beam-to-column flange connec-
tions, the beam’s flange width must be narrower than the column’s flange width. For beam-to-column
web connections, the column’s web height must exceed the beam’s flange width. These conditions
are expressed mathematically as:

up
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where n._., np_c1, and np_» represent the counts
of column-to-column, beam-to-column flange,
and beam-to-column web connections, respec-
tively; D' and D} are the depths of lower and
upper columns; and, by and by are the column
and beam flange widths, respectively, at a beam-
to-column flange connection; b, and T, are the
beam flange width and column web height. Fig. 1
illustrates the construction of a beam-to-column
connection.

Strength constraints: These limitations guar-
antee that the structure’s load-bearing capacity,
denoted as R, exceeds the applied load, S. They
are generally assessed using nonlinear finite ele-
ment analysis, which incorporates material inelas-
ticity and geometric nonlinearities, expressed as:
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Figure 1. Constructability of a beam-to-column

connection
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where ULF = 3 is the ultimate load factor.

(6)

Geometric constraints: These constraints limit the the horizontal displacement of the structual

top as:
|A|
At

Cser —

where A” is the allowable value of A.
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The constraints are incorporated using a penalty function approach. This method adds penalty
terms to the objective functions proportional to the violation of the constraints. The penalty terms
increase as the constraint violation increases, guiding the optimization algorithm towards feasible

solutions as follows:
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where « is the penalty parameter, which is used to add a heavy penalty to infeasible solutions. Since
an individual having the greater objectives is removed in the optimization process, infeasible solutions
will be eliminated from the population. In the current study, « is set to 10,000.

2.3. Direct analysis for steel frames

To evaluate the constraints presented in the above section, nonlinear inelastic analysis is applied
using the Practical Advanced Analysis Program (PAAP), which can provide a robust framework
for modeling and analyzing steel frames, capturing their complex responses more accurately than
simplified approaches. As outlined in Thai and Kim (2009), PAAP integrates advanced numerical
techniques to account for both material inelasticity and geometric nonlinearities, offering a practi-
cal alternative to computationally intensive FEA [27]. Central to PAAP’s capability is its use of a
beam-column model, which simulates the interaction between beams and columns in steel frames.
This model discretizes frame members into only 1 to 2 elements that account for axial, flexural,
and shear deformations, incorporating inelastic effects like plastic hinge formation at critical sections
under extreme loads [27]. By employing stability functions and updated Lagrangian formulations,
the beam-column approach in PAAP precisely captures second-order effects and load redistribution
post-yielding, enhancing the accuracy of displacement and stress predictions [25, 27]. In PAAP, the
Generalized Displacement Control (GDC) method, proposed by Yang and Shieh (1990), is used to
efficiently solve nonlinear problems with multiple critical points [26, 27].

In the context of MOO for steel frames, as explored in various studies, PAAP’s ability to model
nonlinear inelastic behavior supports the development of hybrid optimization approaches like RDMO-
XGBoost [6]. While PAAP provides reliable baseline analyses, its repeated use for large-scale designs
can be time-consuming, prompting the integration of machine learning tools like XGBoost to predict
responses rapidly after initial PAAP evaluations [29]. This combination aligns with the optimization
goals of minimizing frame weight and controlling displacement, as seen in Nguyen et al. and Truong
et al., enhancing both efficiency and accuracy [3]. By leveraging PAAP, researchers can validate
designs against constructability constraints—such as ensuring upper columns have shallower depths
than lower ones—while addressing the practical demands of cost, safety, and environmental impact [5,
31]. Overall, PAAP serves as a cornerstone for advancing the analysis and optimization of steel frames
exhibiting nonlinear inelastic behavior, bridging traditional engineering with modern computational
strategies.

3. The proposed RDMO-XGBoost method
3.1. RDMO

The RDMO algorithm, introduced by Nguyen, Pham, and Truong, merges the straightforward
Rao-1 method with the powerful search capabilities of DE to address MOO challenges, such as
optimizing truss structures for weight and displacement [6]. Its core principle lies in producing a
diverse set of optimal solutions (Pareto front) by balancing conflicting goals without the burden of
tuning complex control parameters, a common drawback in many MOO techniques. Unlike tradi-
tional Rao-1, which relies solely on the best and worst solutions, RDMO enhances exploration by
using multiple high- and low-ranked solutions, evaluated via non-dominated sorting and crowding
distance measures. This approach, combined with a DE crossover strategy, ensures a robust trade-off
between solution diversity and convergence speed, outperforming established algorithms like DEMO
and GDE3 in terms of coverage and accuracy, as demonstrated in tests on five truss structures.
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Key advantages of RDMO include its simplicity—no algorithm-specific parameters need set-
ting—making it user-friendly and adaptable, and its robustness, shown through consistent perfor-
mance across various truss examples. The main formula updates a solution’s position as follows:

Xzew = X + 1 Krpest = Xpworst) (10)
where X,pes; and X,,ors; are randomly selected solutions among the best-ranked solutions and the
worst-ranked solutions, respectively, defined by non-dominated sorting.

3.2. Integrating XGBoost surrogate model into RDMO with discrete variables

XGBoost is a powerful machine learning algorithm designed for fast and accurate predictions,
widely used in optimization tasks like those for steel frames. Its core principle involves building an
ensemble of decision trees sequentially, where each tree corrects the errors of its predecessors by
minimizing a loss function, enhanced by gradient boosting techniques. Unlike traditional methods,
XGBoost incorporates regularization to prevent overfitting and uses a scalable, tree-based structure
to handle complex data patterns efficiently. Developed by Chen and Guestrin, it excels in speed due
to parallel processing and optimized memory usage, making it ideal for predicting nonlinear inelas-
tic behavior in structural analysis [13]. Key advantages include its high accuracy, ability to manage
sparse data, and flexibility with various objective functions, offering significant computational sav-
ings when paired with optimization algorithms like RDMO, as noted in recent studies [3]. XGBoost
improves the GTB framework by adding a regularization term to its loss function, curbing overfit-
ting by penalizing model complexity. This term factors in the number of leaves, score vector, and
leaf complexity. It uses Taylor expansion to refine the loss function and estimate the final ULF. Hy-
perparameters like tree type (‘gbtree’), number of trees, max depth, learning rate, subsample ratio,
and L1/L2 regularization (alpha, lambda) heavily influence performance. In this study, these were
fine-tuned via Bayesian Optimization to balance accuracy and efficiency [29].

In this study, we propose a combination of RDMO and XGBoost for bi-objective optimization of
steel frames with discrete variables, named as RDMO_XGBoost. The main step of RDMO_XGBoost
are as follows:

Step 1: Begin

- Create an initial population P consisting of NP random solutions within the defined search
space, where design variables are discrete and selected from the W-shaped section list (AISC-LRFD).
Each solution xi x_i xi is a vector of integers representing section indices:

- Xi= [Xi1, Xi2, . . . » Xip], where x;€ {1,2, ..., Sj}, and S; is the number of sections for variable j.

- Use FEA evaluate all individuals.

- Apply non-dominated sorting to rank all solutions in P, forming a group B of top-ranked solu-
tions (rank = 0) and a group W of the lowest-ranked solutions.

Step 2: Evolutionary process

- The RDMO mutation formula u;= Round(x;+random()(X pesi—Xrworst)) 18 used with rounding to
enforce discreteness. Xppest and Xpworst are randomly chosen in B and W, respectively. Then, DE
crossover is applied for finally creating new solutions S.

Step 2.1: When the conditions for using the XGBoost model are not yet satisfied:

Use FEA evaluate all individuals in S.

Apply non-dominated sorting and crowding distance for Q = S + P to form the new population
pP.

Apply non-dominated sorting to rank all solutions in P’, forming a group B of top-ranked solu-
tions (rank = 0) and a group W of the lowest-ranked solutions.
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Step 2.2: When the conditions for using the XGBoost model are satisfied:

Use XGBoost predict constraints of individuals in S in order to find approximate objectives of
individuals in S.

Apply non-dominated sorting and crowding distance for Q = S + P to form the new population
P’ _pre.

Identify and re-evaluate objectives of individuals in S which are chosen into P’_pre in the above
step, defined as S’.

Apply non-dominated sorting and crowding distance for Q = S’ + P to form the new population
P.

Apply non-dominated sorting to rank all solutions in P, forming a group B of top-ranked solutions
(rank = 0) and a group W of the lowest-ranked solutions.

Step 3: Termination

A standard stopping criterion ensures convergence, common to both RDMO and metaheuristic
methods.

Upon completion, the final population P forms the Pareto set of optimal solutions for the multi-

objective optimization problem.

| Generate inifial population P (NP solutions) |

| Evaluate all zolutions in P using FEA |

|

| Rank zolutions (non-dominated sorting) — Form groups B (top-ranked) and W (low-ranked) |

!

—>| Generate new solufions S using RDMO mutation and DE crossover |

Evaluate solutions in § using FEA |

% XGBoost condition met? (Data > Nminsizg)--

Combine S+P — Rank — Form new population P* |

| Use XGBoost to predict constraints and objectives

!

| Combine S+P — Rank — Form temporary population P’_pre |

| Re-evaluate selected solutions 3° (in P’ _pre) using FEA |

'

‘ Combine 5°+P — Rank — Form new population P* |

| Update groups B and W from P* If.

o 7
pping crtenon met?

Return Pareto set from P

Figure 2. The flowchart of RDMO_XGBoost

In Step 2.2, the conditions for using the XGBoost model are defined as follows. The XGBoost sur-
rogate model is initially built when Data; reaches a minimum sample size (Npinsize = 1000), ensuring
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acceptable accuracy. This model is rebuilt when Data; increases by Ng = 20 samples. Furthermore,
a safety factor (7, from Truong et al. [3]) is used to reduce XGBoost model error. In particular, the
safety factor addresses potential inaccuracies in the XGBoost predictions, which may arise due to the
complexity of nonlinear structural behavior, limited training data, or model overfitting. Specifically,
7 is used to adjust the predicted values of critical parameters, such as the ultimate load factor (ULF)
or displacements, to ensure conservative estimates that prioritize structural safety and feasibility.

In addition, in the proposed RDMO-XGBoost algorithm, XGBoost is employed as a surrogate
model to predict the nonlinear inelastic responses of steel frames, significantly reducing the com-
putational burden of repeated finite element analyses (FEA) while maintaining prediction accuracy.
Specifically, XGBoost is used to estimate critical parameters associated with the constraint condi-
tions of the bi-objective optimization problem, which include ultimate load factor of the structure in
strength constraints and the horizontal displacement of the structual top in geometric constraints, as
outlined in Section 2.2 of the manuscript. To enhance prediction accuracy and model robustness, a
separate XGBoost model is trained for each distinct constraint parameter, allowing the algorithm to
capture the unique relationships between design variables and individual constraint responses. For
the XGBoost model applied to steel frames, the input variables corresponding to one type of frame
element section consist of 16 geometric characteristics of that section. Therefore, the total number of
input variables for the training model will be 16xD, where D is the number of design variables in the
optimization problem. Details on setting up the ML model for estimating the behavior of steel frames
can be found in Ref. [36]. Fig. 2 presents the procedure of RDMO_XGBoost algorithm.

4. Numerical example

This example optimizes a two-story, three- _

dimensional frame, as depicted in Fig. 3, targeting
two objectives: (1) minimizing the structure’s to-
tal mass and (2) reducing the top story’s horizon-
tal displacement. The frame’s beams and columns
are divided into eight groups, serving as design
variables. Columns draw from 97 sections (W10,
W12, W14, W16), while beams utilize 267 sec-
tions (W10-W44), yielding a design space ex-
ceeding 6.52E+17 combinations. Sections are or-
dered by cross-sectional area, with variables indi-
cating their positions in this space.

The material, A992 steel, has a yield strength
of 344.7 MPa, an elastic modulus of 200,000 MPa,
and a density of 7,850 kg/m>. Wind loads of 50 kN
act in the X-direction at front-face beam-column
joints. Beams bear vertical dead and live loads of
37.5 kN/m and 25 kN/m, respectively. Three load
combinations are applied: 1.2D + 1.6L, 1.2D +

b
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Figure 3. Two-story space frame

A,
o™
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0.5L + 1.6W, and 1.0D + 0.5L + 0.7W (D: dead, L: live, W: wind), with an inter-story drift limit of
h/400.

Three multi-objective optimization (MOO) algorithms—GDE3, RDMO, and RDMO_XGBoost
—are assessed. Implemented in Python, each uses a population of 50 over 300 iterations. Structural
analysis relies on the PAAP program [27]. Performance metrics include GD+, IGD+, hypervolume
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(HV), and spread, computed on a Core i7-8700 3.2 GHz system with 32 GB RAM. The GD+ metric
measures the convergence of the obtained Pareto front PFgpineq to the true or approximated Pareto
front PFy.. It calculates the average distance from each point in PFypuineg to its nearest point in
PFe, emphasizing how close the solutions are to the optimal set. A lower GD+ value indicates
better convergence. The formula is:

d’

|PF0btained| [ =1 !

GD+ (11)

IPFOblainedl ! /2
2

where |PFgptained| 18 the number of solutions in the obtained Pareto front, d;r = max{a; — z;, 0} rep-
resents the modified distance from a; in PFgpuined to its nearest reference point in PFyy. with the
corresponding value z;. The IGD+ metric evaluates both convergence and coverage by measuring
the average distance from each point in PFy. to its nearest point in PFgptineq- A lower IGD+ value
indicates that the obtained solutions are both close to and well-distributed across the true Pareto front.

The formula is:
PFoel  \'/?
IGD+ = ! d? (12)
PPuuel| &

where |PFe| is the number of solutions in the true Pareto front, dl-+ = max{a; — z;, 0} represents the
modified distance from z; in PFyy, to the closest solution in PFgpineg With the corresponding value a;.
HV calculates the area/volume, which is dominated by the provided set of solutions with respect to a
reference point. The Spread metric assesses the diversity and uniformity of the solutions in PFopined-
It measures the distribution of solutions along the Pareto front by calculating the average deviation of
distances between consecutive solutions relative to the ideal spacing. A lower Spread value indicates
a more uniform distribution. The formula is:

Spread = Z dle + Z |d (x) - davg|] / (Z dle + Nobtained X davg (13)
i=1

X€PFobiained i=1

where d; is the distance between the extreme solutions of PFopained and PFire for the i-th objective,
d(x) is the Euclidean distance from solution x to its nearest neighbor in PFgptained, davg 18 the average
distance between consecutive solutions, and Noptained 1S the number of solutions in PFptained-

Each algorithm ran 20 independent trials. The 200
XGBoost variant, previously validated in [3, 22, 180
29], employs fixed hyperparameters: booster
‘gbtree’, n_estimators = 1000, learning_rate =
0.05, and subsample = 0.5, with its robustness as- :
sumed and not re-evaluated here. The XGBoost
model for nonlinear inelastic steel frames can be
found in Ref. [23]. This analysis highlights the

* All optimal results

~ 16.0 —e— Approximate Pareto front
£140 4

,_.
5
o
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8.0 1
6.0 1
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a]gorithms’ effectiveness in balancing mass and 5,000 10,'000 15,600 20,‘000 25,;)00 30,600 35,600 40,600 45,600
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displacement while navigating a vast design space

under realistic loading conditions. Because the ac- Figure 4. Approximate pareto-front

tual Pareto front for this multi-objective optimiza-
tion (MOQO) problem remains unidentified, an estimated version was created based on the outcomes
of all optimization attempts. This approximated Pareto front is illustrated in Fig. 4.
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Fig. 5 shows the performance of the considered algorithms using GD+, IGD+, HV, and spread
metrics. The performance of three multi-objective optimization algorithms—GDE3, RDMO, and
RDMO_XGBoost—is evaluated using GD+, IGD+, HV, and Spread metrics, revealing distinct strengths

and trade-offs.
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Figure 5. Indicators of MOO algorithms

The convergence and coverage performance of the algorithms are evaluated based on GD+, IGD+,
and HV. As can be seen in Fig. 5, GDE3 exhibits the highest GD+ (Max: 1.293, Ave: 0.905), indi-
cating poorer convergence to the Pareto front compared to RDMO (Max: 1.141, Ave: 0.759) and
RDMO_XGBoost (Max: 1.164, Ave: 0.778). Similarly, GDE3’s IGD+ (Max: 32.744, Ave: 12.785)
is significantly higher than RDMO (Max: 14.265, Ave: 4.070) and RDMO_XGBoost (Max: 14.358,
Ave: 4.081), suggesting weaker coverage of the Pareto front. However, GDE3 achieves a higher HV
(Max: 1,021,970, Ave: 1,013,723.5), reflecting better overall solution quality compared to RDMO
(Max: 1,038,650, Ave: 1,026,222.1) and RDMO_XGBoost (Max: 1,038,840, Ave: 1,025,667.3).
This indicates that while GDE3 struggles with convergence, it excels in capturing a larger solution
space, balancing mass and displacement effectively.

Regarding diversity of the algorithms, Spread values show GDE3 (Max: 0.828, Ave: 0.759)
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has less uniform solution distribution than RDMO (Max: 0.804, Ave: 0.709) and RDMO_XGBoost
(Max: 0.807, Ave: 0.717), suggesting RDMO variants provide more evenly distributed solutions. Sta-
bility, measured by standard deviation (Std), is lowest for RDMO across all metrics (e.g., GD+ Std:
0.146, IGD+ Std: 3.003), followed closely by RDMO_XGBoost (GD+ Std: 0.146, IGD+ Std: 4.081),
while GDE3 shows higher variability (GD+ Std: 0.212, IGD+ Std: 8.439). Comparing RDMO and
RDMO_XGBoost directly, their GD+ values are nearly identical (Ave: 0.759 vs. 0.778), and IGD+
scores are very close (Ave: 4.070 vs. 4.081), indicating that XGBoost integration does not compro-
mise convergence or coverage. Spread values (Ave: 0.709 vs. 0.717) and HV (Ave: 1,026,222.1
vs. 1,025,667.3) further confirm that RDMO_XGBoost maintains comparable diversity and solution
quality, proving that XGBoost does not degrade RDMQ’s performance. Consequently, RDMO and
RDMO_XGBoost outperform GDE3 in convergence, coverage, and diversity, with RDMO almost
similar to RDMO_XGBoost. GDE3, despite its higher HV, is less reliable for uniform and consistent
optimization.

The results in Fig. 6 compare the performance of GDE3, RDMO, and RDMO_XGBoost for two
anchor points: Anchor 1 (minimizing Objective 1, total structural mass) and Anchor 2 (minimizing
Objective 2, top-story displacement). For Anchor 1, RDMO achieves the lowest mass (Min: 5127.200
kg, Ave: 5442.584 kg), followed closely by RDMO_XGBoost (Min: 5148.891 kg, Ave: 5414.072 kg),
while GDE3 lags behind (Min: 5856.615 kg, Ave: 6493.900 kg). For Anchor 2, RDMO_XGBoost
yields the smallest displacement (Min: 0.807 mm, Ave: 0.824 mm), slightly outperforming RDMO
(Min: 0.817 mm, Ave: 0.834 mm), with GDE3 showing the highest values (Min: 1.143 mm, Ave:
1.171 mm). The close performance between RDMO and RDMO_XGBoost—evident in their mini-
mal differences in both objectives (e.g., mass Ave difference: 28.512 kg, displacement Ave difference:
0.010 mm)—demonstrates that integrating XGBoost does not degrade RDMO’s effectiveness, main-
taining its robustness in optimizing both mass and displacement.
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Figure 6. Minimum values

Table 1 presents the computational efficiency of GDE3, RDMO, and RDMO_XGBoost for opti-
mizing the two-story frame. GDE3 and RDMO, without surrogate assistance, demand 45,000 struc-
tural analyses, resulting in a total computation time of 50,400 seconds (100% ratio). Conversely,
RDMO_XGBoost reduces the structural analysis count to 18,045, with an additional 1,521 seconds for
XGBoost model building, yielding a total time of 22,370 seconds—equivalent to 44.39% of the base-
line. This indicates that RDMO_XGBoost achieves a substantial time saving of over 55% compared
to GDE3 and RDMO, highlighting the effectiveness of incorporating XGBoost surrogate models in
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enhancing computational efficiency without compromising optimization outcomes.

Table 1. Time analysis for two-story frame

XGBoost model Computing time

Optimization algorithm FEA runs . Ratio
training runs (second)
GDE3, RDMO 45,000 0 50,400 100.00%
RDMO_XGBoost 18,045 1,521 22,370 44.39%

5. Conclusions

This study successfully developed and validated a hybrid RDMO-XGBoost approach for multi-
objective optimization of nonlinear steel frames, focusing on minimizing structural mass and top-
story displacement. The integration of RDMO with XGBoost significantly enhanced computational
efficiency, reducing analysis time by over 55% (from 50,400 to 22,370 seconds) compared to GDE3
and standalone RDMO, while maintaining solution quality. Performance evaluations revealed that
RDMO and RDMO_XGBoost outperformed GDE3 in convergence (GD+ Ave: 0.759 and 0.778 vs.
0.905), coverage (IGD+ Ave: 4.070 and 4.081 vs. 12.785), and diversity (Spread Ave: 0.709 and
0.717 vs. 0.759), with RDMO_XGBoost showing nearly identical effectiveness to RDMO, confirm-
ing that XGBoost integration does not compromise RDMO’s robustness. Anchor point analysis fur-
ther highlighted their superiority, achieving lower mass (RDMO: 5127.200 kg, RDMO_XGBoost:
5148.891 kg) and displacement (RDMO_XGBoost: 0.807 mm, RDMO: 0.817 mm) compared to
GDE3. However, the study is limited by its focus on static loads, potentially overlooking dynamic
effects like seismic loading. Future work will explore these dynamic conditions and extend the ap-
proach to larger-scale steel structures.
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