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Abstract

This study aims to develop a gene expression programming (GEP)-based model for estimating the strength
of self-compacting concrete (SCC) using fly ash (FA). The model considers the effects of six input variables,
including the binder content, the FA proportion, the water/binder ratio, the fine aggregate content, the coarse
aggregate content, and the superplasticizer dosage. The 28-day compressive strength of 114 concrete samples
was used to generate the prediction model. The trial runs indicate that the GEP model with four genes and
120 chromosomes demonstrates strong performance, achieving a high coefficient of correlation and low errors
(e.g., RMSE and MAE). The selected model is reliable, transparent, and easy to use in practice in designing
the mix proportion for the SCC. The analysis of variable contributions demonstrates that the water/binder ratio
and proportion of FA have the most significant influence on the strength of the SCC, while the fine aggregate
content shows a comparatively minor effect. Thus, the strength of SCC could be increased significantly by
reducing the water/binder ratio with a low proportion of FA content. The novel model from this study could
help engineers in estimating the strength of SCC with reasonable FA content and choosing the appropriate mix
proportion to achieve the design strength.
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1. Introduction

Self-compact concrete (SCC) is a type of concrete that is compacted by its own weight to pro-
duce strong concrete without the need for vibrating compaction [1]. The advantages of SCC include
lower permeability of the concrete structure, shorter construction time, enhanced concrete quality,
and reduced noise from vibration processes [1-3]. There are some factors that could affect the prop-
erties of SCC, such as binder content, proportions of coarse and fine aggregates, water/binder ratio,
superplasticizer dosage, and the inclusion of supplementary admixtures [4, 5].

In the design and application of SCC, two fundamental properties must be simultaneously satis-
fied: fresh-state workability and hardened-state mechanical performance. While flowability, passing
ability, and resistance to segregation govern the placement efficiency and homogeneity of SCC in
complex formworks, the unconfined compressive strength (UCS) remains the most critical parameter
for evaluating structural performance and reliability. UCS is a direct indicator of the load-bearing
capacity of concrete, serving as the primary basis for mix proportioning, quality control, and compli-
ance with structural design codes. In SCC incorporating supplementary cementitious materials such
as fly ash, compressive strength not only reflects the degree of hydration and pozzolanic activity but
also dictates the long-term durability and service life of the material. Therefore, reliable prediction
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of UCS is indispensable for optimizing mixture design, ensuring safety in structural applications, and
promoting the sustainable use of industrial by-products.

Mix design for SCC has often been developed based on empirical rules and trial-and-error adjust-
ments of paste, aggregates, and admixtures [6-9]. While straightforward, these methods assume con-
stant material behavior and still require multiple trial batches to reach both slump-flow and strength.
According to Wang, et al. [7], such “simple” formulas may lead to significant prediction errors when
mixtures fall outside the calibration range. In general, empirical approaches do not adequately ac-
count for the interactions among water/binder ratio, binder type, and aggregate packing, all of which
are critical factors influencing SCC performance [5, 10-12].

To improve prediction, many studies have turned to Artificial Intelligence (AI) models for SCC
properties, especially the strength of mixes with fly ash or ground granulated blast furnace slag (GG-
BFS) [5, 10-12]. These methods reduce prediction errors and effectively handle complex nonlinear
relationships [7, 10]. However, common “black-box” tools like Artificial Neural Networks (ANNs)
and Adaptive Neuro-Fuzzy Inference System (ANFIS) remain difficult to interpret, and impractical
for engineers since they rarely yield explicit or transferable formulations [13]. Thus, developing a
practical, straightforward, and transparent Al approach is beneficial [5, 10-12].

Gene-Expression Programming (GEP) is an evolutionary algorithm and a branch of traditional
genetic programming. In GEP, the solution is expressed as tree-like structures composed of input
variables, constants, and functions [14, 15]. This “white-box” modeling approach can efficiently
address scientific problems with some advantages, including generating accurate yet simple mathe-
matical expressions or equivalent representations in various programming languages that are readily
applicable in practice [15]. Thus, the GEP technique has been successfully applied to model, analyze,
and simulate a wide range of civil engineering problems [12, 14, 16—18].

This paper aims to develop a simple, robust, and practical prediction model for estimating the
compressive strength of SCC using the GEP technique. The novel model could be used conveniently
by applying an accurate and transparent empirical equation or a Python implementation. In addi-
tion, this proposed model also provides engineers with a useful tool for selecting appropriate mix
proportions and determining the optimal FA replacement ratio to achieve the desired design strength.

2. Data preparation

The dataset from the report of Belalia-Douma, et al. [10] was used in this study to develop
a prediction model for estimating the compressive strength of SCC containing FA. The dataset in-
cludes 114 experimental test results, which were gathered from the research of Sahmaran, et al. [19],
Muthupriya, et al. [20], Mahalingam, et al. [21], Giineyisi, et al. [22], Bing6l, et al. [23], Dhiyanesh-
waran, et al. [24], Belalia-Douma, et al. [10], and among others. Six input variables, including total
binder content, FA proportion, water/binder ratio, fine aggregate content, coarse aggregate content,
and superplasticizer dosage, were investigated, and the output was the 28-day compressive strength
of SCC concrete. Table 1 illustrates an example of the dataset.

In this study, Ordinary Portland Cement (OPC) was selected as the main binder, and part of it was
replaced with Class F fly ash, a low-calcium by-product from coal-fired power plants [10]. The fine
aggregate came from natural river sand, while the coarse aggregate was crushed granite, serving as
the primary load-bearing skeleton of the concrete mix. To maintain workability at a low water/binder
ratio and to allow the mixture to flow and compact under its own weight, a polycarboxylate ether
(PCE)-based superplasticizer was added [10]. This type of high-range water reducer is particularly
effective in self-compacting concrete, although its efficiency may vary depending on the specific mix
proportions and material properties.
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Table 1. Example of a part of the dataset

Total Fly Fine Coarse . Compressive
. Water/ Superplasticizer

Binder ash binder aggregates aggregates (ke/m?) strength

(kg/m®) (%) kgm®)  (kg/m?) § (MPa)
701 37 0.27 774 723 8.10 69.5
733 37 0.26 748 698 8.40 68.2
400 30 0.39 946 900 1.40 45.0
370 36 0.43 960 900 1.85 46.0
400 45 0.39 916 900 1.40 45.0
400 45 0.39 916 900 1.40 47.0

Table 2 shows the structure of the data used in this study. It can be observed that a wide range of
total binders was employed; however, the popular binder content (cement and fly ash) ranges between
400 to 600 kg/m>. Besides, FA was used in combination with cement at different proportions from 0 to
60%, which indicates that a high amount of FA was used in the study. Moreover, the water/binder ratio
was low and fluctuated from 0.26 to 0.48. For the aggregate, the proportion of fine aggregate exceeded
that of coarse aggregate, and the amount of each type of aggregate was from 600 to 1000 kg/m>.
Typically, the superplasticizer was used with a dosage of 1 to 13 kg/m3. Finally, the compressive
strength of the SCC at 28 days ranged from 17 to 87 MPa. Fig. 1 illustrates the distribution of the
input and output data, while Table 3 provides the statistical analysis of the dataset.
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Figure 1. Histogram of input and output variables

Table 2. Structure of the collected dataset

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

Parameters Ranges Number of data
Binder (do) 370-443(kg/m?) 16
443-515 (kg/m?) 31
515-588 (kg/m>) 50
588-660 (kg/m>) 14
660-733 (kg/m>) 3
FA (d)) 0-12 (%) 17
12-24 (%) 26
24-36 (%) 34
36-48 (%) 20
48-60 (%) 17
Water/binder (d;) 0.26-0.30 19
0.30-0.35 15
0.35-0.39 28
0.39-0.44 32
0.44-0.48 20
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Parameters Ranges Number of data
Fine aggregate (d3) 656-732 (kg/m?) 17
732-809 (kg/m?) 22
809-885 (kg/m?) 14
885-962 (kg/m>) 51
962-1038 (kg/m?) 10
Coarse aggregate (dy) 590-659 (kg/m3 ) 38
659-728 (kg/m?>) 11
728-797 (kg/m>) 18
797-866 (kg/m?>) 19
866-935 (kg/m?) 28
Superplasticizer (ds) 1-5 (kg/m3) 33
5-9 (kg/m?) 38
9-13 (kg/m>) 30
13-18 (kg/m?) 8
18-22 (kg/m®) 5
Compressive strength (Y) 17-31 MPa 21
31-45 MPa 34
45-59 MPa 27
59-73 MPa 16
73-87 MPa 16
Table 3. Statistical analysis of input and output data
Variable d() d 1 d2 d3 d4 d 5 Y
Max 733 60 0.45 1038 935 21.84 86.8
Min 370 0 0.26 656 590 0.74 17
Range 363 60 0.19 382 345 21.1 69.8
Mean 523.49 28.75 0.37 852.87 742.63 8.01 48.23
SD 71.22 16.59 0.06 89.93 121.81 4.67 17.56
CoV 5072.54 275.09 0.00 8087.67 14 837.49 21.80  308.20

Note SD: standard deviation, and CoV: coefficient of variation.

3. Modelling the compressive strength of SCC using FA

3.1. GEP-based model development

Gene-expression programming (GEP) is a computational modeling technique that applies Dar-
win’s principle of natural selection to solve scientific problems [25]. In GEP, the initial population
is generated randomly, consisting of function sets and terminal sets [14]. The main operations, such
as selection, mutation, transposition, and crossover, will be applied to create a new population. The
output of the program will be evaluated by a fitness function. The solution of the GEP model is
expressed by expression trees (ETs), which include several sub-ETs [14].

Pham, et al. [14] demonstrated that the GEP technique is able to generate prediction models with
high accuracy and low errors. In addition, this technique was also applied in the research of Murad, et
al. [26], Raheel, et al. [27], Al-Bodour, et al. [28], Namazi, et al. [29], Amin, et al. [30], Tung, et al.
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[31], Onyelowe, et al. [32], Kumar, et al. [33], and among others. Furthermore, the GEP technique
could provide transparent and practical equations, which could be ready to use in practice [14, 15].

In this study, GeneXpro Tools 5.0 software was applied to develop a GEP-based model for es-
timating the compressive strength of SCC using FA. Six input variables were considered, including
the binder content (dp), the FA proportion (d;), the water/binder ratio (d>), the fine aggregate con-
tent (d3), the coarse aggregate content (d4), and the superplasticizer dosage (ds). The output variable
was defined as the 28-day compressive strength of SCC (Y). The optimal parameters were achieved
through trial runs. As a result, the model was developed with four to seven genes (sub-ETs), 120 to
200 chromosomes, and a head size of 9 to 10. Besides, the addition function (+) was applied to link
sub-ETs, and the fitness function was root mean square error (RMSE). Fourteen different mathemat-
ical operators were utilized, including addition (+), subtraction (-), power of two (x%), multiplication
(), square root ( 4/), natural logarithm (In), exponential (exp), power (x"), power of three (x3), cube
root (\3/), inverse (1/x), addition with four inputs (x; + x + x3 + x4), subtraction with four inputs
(x1 — x2 — x3 — x4), and multiplication with four inputs (x; * xp * x3 * x4). In summary, the parameter
setting for the GEP-based model can be found in Table 4.

Table 4. Parameter setting for the GEP modelling

Parameter Model
Input variables 6
Output variables 1
Chromosomes 120-200
Genes 4-7
Head size 9-10
Tail size 28
Gene size 65
Linking function Addition
Fitness function RMSE

In addition, K-Fold Cross Validation was applied to divide 114 data into training, testing, and
validation subsets (K = 20). As a result, 80 (70%) and 17 (15%) points of data were used for model
development (training and testing subsets). The remaining 17 (15%) points of data were used for
independent validation purposes.

3.2. GEP-based model result

Several models were run with different setting parameters. Table 5 illustrates that GEP 02 achieved
the highest coeflicient of correlation (R-value) in both the training and testing phases. In addition,
considering the complexity of the model, GEP 02 used four genes with 120 chromosomes to generate
the solution, which is much simpler than other models. As a result, model GEP 02 was selected as
the proposed GEP-based model for estimating the strength of SCC.

Fig. 2 presents the Python code of the model generated by GeneXpro Tools, while Fig. 3 shows
the tree expressions of the selected GEP-based model with 4 sub-ETs. The mathematical formula
obtained from the GEP 02 is presented as Eq. (1). This formula is simple, transparent, and ready to
use in practice.

1 1
Y =(=36.90 + (2ds = 17.57) 7 +dy +da)? +d,”"* - 6.528% "

1
+ (5% + dy + dy - 13.76d5*d3ds)? — 0.1d2(3.67 + d1)"/*(ds + 2ds + do)'?
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where Y is compressive strength of SCC (MPa); dj is total binder (kg/m3); dy is FA proportion (%); d>
is water/binder; d5 is fine aggregate (kg/m3); dy is coarse aggregate (kg/m3 ); and ds is superplasticizer
(ke/m?).

Table 5. GEP model results with different setting parameters

R-value
Model Head size Number of genes Chromosomes
Training Testing

GEP 01 10 6 180 0.913 0.903
GEP 02 9 4 120 0.920 0.939
GEP 03 10 7 200 0.912 0.908
GEP 04 10 4 150 0.910 0.881
GEP 05 9 5 200 0.915 0.918

from math import *

def gepModel (d):

G1C7 = -36.9020087375773

G1C3 = -8.99601892037385

G1C8 = -8.565617778515

G2C5 = 6.52284079200141

G3C4 = -13.7560019998752

G4C5 = -10.2319168431063

G4C8 = 7.54635186350279

G4C3 = 3.66730212583038

y = 0.0

y = sqrt((G1C7+(1.0/ (pow ((d[5]+d[5]+G1C3+G1C8),2.0)))+d[1]+pow (sqrt (d[4]),2.0)))
y = y + sqrt(sqrt (pow((pow((1.0/(d[2])),3.0) *pow(sqrt(G2C5),gep3Rt(d[2]))),3.0)))
y =y + sqrt((exp ((d[5]*d[2]))+d[4]+d[1]+(pow(d[3],d[2])* (d[2]*d[2]*d[5]*G3C4))))
y =y + (1.0/((G4C5*%sqrt ((1.0/(((G4C3+d[1])*pow(d[2],2.0)*(d[3]1+d[5]+d[5]+d[0])*G4C8)))))))

return y

Figure 2. Python code of the proposed GEP model for estimating the compressive strength of SCC

Sub-ET 1 Sub-ET 2

(a) Sub-ET 1 (b) Sub-ET 2

Sub-ET 3

(c) Sub-ET 3
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Sub-ET 4

(d) Sub-ET 4

Figure 3. Tree expression of the proposed GEP model for estimating the compressive strength of SCC

3.3. Model performance

Fig. 4 illustrates the performance of the model during the training, testing, and validation phases.
In addition, the coeflicient of correlation (R), root mean square error (RMSE), and mean absolute
error (MAE) were applied to evaluate the accuracy of the proposed model. Table 6 summarizes the
statistical measures of the GEP-based model in training, testing, validation, and the entire data. It can
be seen that the coefficient of correlation (R-value) of all phases is consistently high, ranging from
0.920 to 0.948. Furthermore, the RMSE and MAE errors of the model are acceptable and approx-
imately 6.8 MPa and 5.5 MPa, respectively. These findings confirm that the proposed GEP-based
model demonstrates strong predictive accuracy, reliability, and suitability for practical applications.

Table 6. Performance of the proposed GEP model

Phase Training Testing Validation All data
R-value 0.920 0.937 0.948 0.926
R? 0.847 0.878 0.899 0.858
RMSE (MPa) 6.764 6.170 6.276 6.607
MAE (MPa) 5.475 4.419 5.333 5.297
90 y 90
80 - . 2 80
= e 2 o
& 70 - 0 :‘ _n;i 70 -
5 60 s ixe” Sece e = 60 .
%ﬁ 50 g.'. o 50
£ ;A £ AT
5 40 1 RCAD o TR ,;,:40 s
% 30 - .'.'"‘. . < 30 - A
& 20 A * e 2 20 P
10 10
0 LaSAMSiSNSIAMLMLIALL SAL IR ISANS 0 —

0 10 20 30 40 50 60 70 80 90
measured strength (MPa)

(a) Training phase

105

10 20 30 40 50 60 70
measured strength (MPa)

(b) Testing phase

80 90



Pham, V.-N. / Journal of Science and Technology in Civil Engineering

o N\
c o o o
L 1 L

[FE R Y th Oy ~J
(=] =
1 1
.
.
L

predicted strength (MPa)
(=]

—_ [
(=T =]
1 L

o

0 10 20 30 40 50 60 70 80 90
measured strength (MPa)

(c) Validation phase

predicted strength (MPa)
—_ (] L5 ] £ (¥ o ~J
o o & & o & & o

10

20 30 40 50 60 70 80 90

measured strength (MPa)

(d) All data

Figure 4. Performance of the proposed GEP model

3.4. Input significance

The proposed GEP-based model identifies that
the water/binder ratio has the greatest influence
on the compressive strength of self-compacting fly
ash concrete (as shown in Figs. 5 and 6). In this
case, the examined variables were varied within
the ranges specified in Table 3, while the remain-
ing variables were kept constant at their mean val-
ues. Theoretically, the water/binder ratio is the
dominant factor governing strength, as it directly
controls the porosity of the hardened paste and the
degree of cement hydration [34]. The fly ash (FA)
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Figure 5. Variable importance

proportion is the second most important parameter. At higher replacement levels, it appears that FA
reduces early-age strength (it takes longer for pozzolanic reactions to occur than for cement hydration

to happen) [35].
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Figure 6. Effects of key variables on the strength of SCC using FA
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Other factors, including the total binder, the coarse aggregate, and the superplasticizer, all play
a moderate role, but are still significant. The binder increases the material available for hydration,
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the coarse aggregates modify the mechanical skeleton and influence the quality of the interfacial
transition zone, while the superplasticizer enhances compaction and workability at low water/binder
ratios, thereby promoting strength development. By contrast, the fine aggregate content shows a
minor impact on the predicted compressive strength. This finding is consistent with the EFNARC
guidelines [36] which indicates that fine sand contributes primarily to the flowability and stability of
self-compacting mixtures rather than to their strength.

4. Proposed mix proportions for SCC

The proposed GEP-based model, as expressed in Equation (1), can be applied to optimize the mix
proportions of self-compacting concrete (SCC) incorporating fly ash (FA). For example, assuming a
target compressive strength of 50 MPa, the total binder content, fine aggregate, coarse aggregate, and
superplasticizer were kept constant at their mean values, as presented in Table 3.

Table 7 presents several mix designs with reasonable input proportions to achieve the target
strength. The SCC could achieve the strength of 50 MPa when the mix proportion consists of
525 kg/m® binder, 25% FA, the water/binder ratio of 0.35, 850 kg/m> of fine aggregate, 743 kg/m’
of coarse aggregate, and 8 kg/m® of superplasticizer. The suggested mix proportion shows good
agreement with the experimental results reported by Liu [37].

Table 7. Optimization and selection of SCC mixes

Estimation of

Mix Binder @ FA  Water/ Fine Coarse Superplasticizer =~ Compressive
design  (kg/m®) (%) binder aggreggte aggreg;lte (kg/m?) strength
(kg/m”)  (kg/m’) (MPa)
Mix 1 525 20 0.35 850 743 8 52.56
Mix 2 525 25 0.35 850 743 8 51.03
Mix 3 525 30 0.35 850 743 8 49.65
Mix 4 525 35 0.35 850 743 8 48.38
Mix 5 525 40 0.35 850 743 8 47.21

5. Conclusions and recommendations

This study developed a novel model for estimating the strength of SCC using FA. The GEP tech-
nique was applied to generate a prediction model considering the effects of binder content, FA propor-
tion, water/binder ratio, fine aggregate content, coarse aggregate content, and superplasticizer dosage.
The output variable was the 28-day compressive strength of SCC. The selected model demonstrated
strong performance, with a high coefficient of correlation (R = 0.926), and low prediction errors
(RMSE = 6.5 MPa, and MAE = 5.0 MPa). The GEP-based model is robust, transparent, and prac-
tical for mix design applications. Besides, the analysis of variable contributions indicates that the
water/binder ratio and FA content have a strong influence on the strength of SCC. A reduction in the
water/binder ratio leads to a significant increase in strength, whereas an increase in the FA content
results in a remarkable decrease in the strength of SCC. Furthermore, several mix proportions were
recommended to achieve a target compressive strength. The practical model developed in this study
offers engineers an effective tool for predicting the strength of SCC incorporating FA and for selecting
appropriate mix proportions to satisfy specific design requirements.

This study focused primarily on predicting the compressive strength of self-compacting fly ash
concrete. While strength is a critical criterion, in practice, workability can be equally important.
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However, the database employed in this study did not provide sufficient detail to develop a meaningful
predictive model for workability. Consequently, the scope of this research was limited to strength
prediction. Future studies should address the influence of mix proportions on flow behavior and
explore the feasibility of developing predictive models for workability.
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