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Abstract

This paper introduces the development of a 3-node triangular plate element, which utilizes C0-type shape func-
tions enhanced by a cubic function at the bubble node positioned at the element’s centroid. This element is
designed for the static analysis of functionally graded (FG) plates based on high-order shear deformation the-
ory (HSDT). The in-plane strains of the element are averaged over sub-triangular domains bounded by straight
lines connecting the vertex nodes to the bubble node. The cell-based smoothed (CS) technique simplifies the
integration of in-plane stiffness matrices by confining it to the boundaries of the sub-triangular domains. To
reduce the shear-locking phenomenon caused by the thin plate’s thickness, the approach of mixed interpolation
tensorial components (MITC3+) is employed to independently interpolate the transverse shear strains. Several
benchmark FG plates subjected to thermo-mechanical loading are statically analyzed using the proposed ele-
ment, referred to as the CS-MITC3+ plate element. The robustness of the presented element is evaluated in
comparison with references.
Keywords: FG plates; HSDT; CS-FEM; MITC3+; thermo-mechanical loading.
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1. Introduction
Functionally graded (FG) plates, originating from functionally graded materials first proposed

by Japanese scientists in 1984 during a space exploration research project [1], are composed of two
distinct materials: ceramic on the top side and metal on the bottom side in order that their material
properties continuously vary along the thickness direction. The FG plates avoid stress concentration
and combine the advantages of ceramics, such as excellent thermal insulation and wear resistance,
with the durability, ductility, and fatigue resistance of metals. Due to these superior properties, FG
plates are increasingly being applied in various fields.

Analyzing FG plates necessitates the development of analytical theories and solution methods
to accurately predict their responses, considering arbitrary shapes, boundary conditions, and loads.
The classical Kirchhoff plate theory [2] is applicable to thin FG plates as it neglects transverse shear
strains. In contrast, the shear deformation theories, which account for transverse shear strains, are
suitable for thick FG plates. The first-order shear deformation theory (FSDT) of Reissner [3] and
Mindlin [4] assumes that the transverse shear strains are constant through the plate’s thickness and
requires a shear correction factor to adjust the transverse shear strain energy. To capture the variation
of transverse shear strains through the thickness, especially ensuring their zero values at the bottom
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and top planes of the plate, numerous higher-order shear deformation theories (HSDT) have been
developed to enhance the analysis of FG plates [5–10].

Over the past decades, various analytical and numerical methods have been proposed to solve
the problem of FG plates. Among these, the finite element method (FEM) has been the most widely
used and advantageous due to its ability to handle FG plates of any shape, with varied boundary
conditions and loads. The simplest formulations of plate elements are the 3-node triangular elements,
derived from C0-type displacement approximations and shear deformation theories. These 3-node
triangular plate elements remain the most conventional choice for modeling plates with complex
geometries. However, the 3-node triangular plate elements using the C0-type approximation functions
cannot represent the transverse shear strains as zero, which corresponds to the actual behavior of
thin plate structures. This leads to the shear deformation energy of these elements exceeding the
actual shear deformation energy as the plate thickness becomes thinner. This phenomenon is referred
to as shear locking. To overcome the phenomenon of shear locking, various methods have been
suggested for 3-node triangular plate elements such as the Mindlin-type (MIN3) [11], Discrete Shear
Gap (DSG3) [12] or Mixed Interpolation of Tensorial Components (MITC3) [13].

Moreover, the strain and stress fields of plates modeled using standard C0-type 3-node triangular
plate elements remain constant within each individual element. To minimize the strain differences
between elements, the strain fields of elements are averaged on sub-domains defined by elements
sharing common edges, common nodes, or sub-triangular domains achieved by connecting vertex
nodes to bubble nodes. These approaches are respectively demonstrated in the Edge-based Smoothed
(ES-), Node-based-Smoothed (NS-) or Cell-based Smoothed (CS-) FEM of the Smoothed FEM (S-
FEM) [14]. The smoothed strain techniques have been proposed for shear-locking free 3-node trian-
gular plate elements, such as DSG3, MITC3, and MIN3, to analyze FG plates [15–20]. Alternatively,
Lee et al. [21] introduced an enriched C0-type interpolation by incorporating a cubic shape function
at the bubble node positioned at the centroid of the 3-node triangular plate element, and developed
a shear-locking removal technique known as MITC3+. The MITC3+ plate element was first intro-
duced with the CS technique in [22] to study the behaviors of isotropic plates under static loads. In
comparison with the ES or NS techniques, which search elements having common edges or nodes for
smoothed domains, the CS technique is straightforwardly implemented in the loop of element stiffness
computation, resulting in saved computational time. Therefore, this study suggests using the MITC3+
plate element, improved by the CS technique, to analyze FG plates under thermo-mechanical loading
based on the third-order shear deformation theory.

In the next section, the HSDT-type behaviors of FG plates are briefly presented, followed by a de-
tailed derivation of the formulation of the proposed 3-node triangular plate element. The accuracy and
efficiency of the suggested element are assessed through several benchmark FG plates in Section 3.
Finally, conclusions are drawn in the last section.

2. Formulation of CS-MITC3+ plate element for higher-order shear deformation theory of
functionally graded plates
Although many functionally graded distributions, such as sandwich, bi-directional or tri-directional

FG materials [19, 23–25], have been proposed, this research focuses on one-directional FG plates
composed of metal and ceramic, where the FG material properties gradually change from metal at
the bottom plane to ceramic at the top plane. The Young’s modulus E(z), coefficients of thermal con-
duction k(z) and expansion α(z) of the FG plates vary through the thickness by the power law [5] as
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follows

E (z) = (Ec − Em)
(
2z + t

2t

)n

+ Em

k (z) = (kc − km)
(
2z + t

2t

)n

+ km; α (z) = (αc − αm)
(
2z + t

2t

)n

+ αm

(1)

where Em, km, αm and Ec, kc, αc are respectively the Young’s moduli, thermal conduction and expan-
sion coefficients of the metal and ceramic; t is the plate’s thickness; n is the power law index; z is the
axis of the Cartesian coordinate system Oxyz in which Oxy locates on the middle plane of the plate
as shown in Fig. 1. The Poisson’s ratio ν(z) is assumed to be constant.

Figure 1. Geometry of FG plate with positive
directions of the displacement fields

Figure 2. Positive sign conventions of dofs of
presented element

The FG plates are subjected to transverse distributed load p, and temperature Tm at the bottom and
Tc at the top. The temperature T (z) varying through thickness is determined by the one-dimensional
Fourier equation of heat conduction [26]

d
dz

[
k (z)

dT (z)
dz

]
= 0 with T (z = −t/2) = Tm,T (z = t/2) = Tc (2)

Solving Eq. (2) gives

T (z) = Tm + (Tc − Tm)
(
2z + t

2t

) ∞∑
q=0

[
−

(
2z + t

2t

)n kc − km

km

]q

/(nq + 1)

∞∑
q=0

(
−

kc − km

km

)q

/(nq + 1)

(3)

and the first 7 terms of the series (3) are enough convergence to obtain T (z).
According to the higher-order shear deformation theory [27], the displacement fields u, v,w in the

x-, y-, z-directions respectively of the FG plates are

u = u0 + zθy −
4z3

3t2

(
θy + βy

)
; v = v0 − zθx +

4z3

3t2 (θx + βx) ; w = w0 (4)

in which u0, v0,w0, θx and θy are the translational and rotational displacements of middle plane with
their directions and senses defined in Fig. 1; and βx = ∂w/∂x, βy = ∂w/∂y.

From the displacement fields in Eq. (4), the strain fields are determined by

ε =
[
εx εy γxy

]T
= εm + zεb + z3εκ; γ =

[
γxz γyz

]T
= γ0 + z2γ1

εth =
[
εth

x ε
th
y γ

th
xy

]T
= α (z)∆T (z)

[
1 1 0

]T
with ∆T (z) = T (z) − Tm

(5)

3

Corrected Proof



Chau-Dinh, T., et al. / Journal of Science and Technology in Civil Engineering

where
εm =

[
u0,x v0,y u0,y + v0,x

]T
; εb =

[
θx,x θy,y θx,y + θy,x

]T

εκ = c
[
θx,x + βx,x θy,y + βy,y θx,y + θy,x + βx,y + βy,x

]T

γ0 =
[
θx + w0.x θy + w0.y

]T
; γ1 = 3c

[
θx + βx θy + βy

]T

(6)

with c = −4/(3t2) and the subscript commas denote derivatives.
The stress fields are computed from the strain fields in Eq. (5) as follows

σ =
[
σx σy τxy

]T
= E

(
ε − εth

)
; τ =

[
τxz τyz

]T
= Gγ (7)

with

E (z) =
E (z)

1 − ν(z)2

 1 ν (z) 0
ν (z) 1 0

0 0 [1 − ν (z)]/2

 ; G (z) =
E (z)

2 [1 − ν (z)]

[
1 0
0 1

]
(8)

2.1. MITC3+ plate element for HSDT-type FG plates

To solve the behaviors of the FG plates based on the HSDT, the displacement fields given in
Eq. (4) are approximated by those of 3-node triangular plate elements expressed by

u0 =

4∑
I=1

HIu0I; v0 =

4∑
I=1

HIv0I; w0 =

4∑
I=1

HIw0I

θx =

4∑
I=1

HIθxI; θy =
4∑

I=1

HIθyI; βx =

4∑
I=1

HIβxI; βy =

4∑
I=1

HIβyI

(9)

where u0I , v0I , w0I , θxI , θyI are the displacements of node I with w04 = 0; βxI , βyI are the warping
of node I used to interpolate βx, βy independently from the derivatives of deflection βx = ∂w/∂x and
βy = ∂w/∂y [28], in which the positive sign conventions of the 7 degrees of freedom (dofs) at each
node of the 3-node triangular plate element with a bubble node are defined in Fig. 2; and HI are the
shape functions including a cubic bubble function H4 defined at the centroid (node 4) of the element
in the natural coordinate system rst [21] as follows

H4 = 27rs (1 − r − s)

H1 = 1 − r − s − H4/3; H2 = r − H4/3; H3 = s − H4/3
(10)

Owing to the cubic bubble function at the centroid, the strain fields of the 3-node triangular ele-
ment are enriched and non-constant on each element. As a result, the strain fields on plate structures
are smoother than those given by the standard 3-node triangular element. Particularly, from the dis-
placement approximations in Eq. (9), the strain fields in Eq. (6) can be expressed in terms of the nodal
displacements by

εm =

4∑
I=1

Bm
I uI; εb =

4∑
I=1

Bb
I uI; εκ =

4∑
I=1

BκI uI

γ0 =

4∑
I=1

B0
I uI; γ1 =

4∑
I=1

B1
I uI

(11)
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in which uI =
[
u0I v0I w0I θxI θyI βxI βyI

]T
is the degrees of freedom at node I; and the gradient

matrices are

Bm
I =

HI,x 0 0 0 0 0
0 HI,y 0 0 0 0

HI,y HI,x 0 0 0 0

 ; Bb
I =

0 0 0 HI,x 0 0
0 0 0 0 HI,y 0
0 0 0 HI,y HI,x 0


BκI =

0 0 0 HI,x 0 HI,x 0
0 0 0 0 HI,y 0 HI,y

0 0 0 HI,y HI,x HI,y HI,x


(12)

B0
I =

[
0 0 HI,x HI 0 0 0
0 0 HI,y 0 HI 0 0

]
; B1

I = 3c
[
0 0 0 HI 0 HI 0
0 0 0 0 HI 0 HI

]
(13)

The transverse shear strains γ0 in Eq. (11) directly computed from the C0-type displacements
given by Eq. (9) cannot yield a zero value. It leads to an over-forecasting of the transverse shear strains
in FG plates when their thickness becomes thin, which is known as the shear-locking phenomenon. To
make the presented element effectively usable for both thin and thick FG plates, the transverse shear
strains,

[
γ̂rt

0 γ̂
st
0

]T
, in the natural coordinate system are interpolated again based on the MITC3+ shear

removal technique suggested by Lee et al. [21] as follows

γ̂rt
0 =

2
3

(
γrt

0(B) −
1
2
γst

0(B)

)
+

1
3

(
γrt

0(C) + γ
st
0(C)

)
+

1
3

[(
γrt

0(F) − γ
rt
0(D)

)
−

(
γst

0(F) + γ
st
0(E)

)]
(3s − 1)

γ̂st
0 =

2
3

(
γrt

0(A) −
1
2
γst

0(A)

)
+

1
3

(
γrt

0(C) + γ
st
0(C)

)
+

1
3

[(
γrt

0(F) − γ
rt
0(D)

)
−

(
γst

0(F) + γ
st
0(E)

)]
(3r − 1)

(14)

in which γrt
0(∗), γ

st
0(∗) represent the transverse shear strains in the natural coordinate system, which are

directly determined from displacement approximations by Eq. (11) at the typing points (*) with their
respective coordinates (A) = (1/6, 2/3), (B) = (2/3, 1/6), (C) = (1/6, 1/6), (D) = (1/3 + 10−4, 1/3 −
2 × 10−4), (E) = (1/3 − 2 × 10−4, 1/3 + 10−4), (F) = (1/3 + 10−4, 1/3 + 10−4) [21].

As a result, the transverse shear strains γ0 in Eq. (11) are rewritten in terms of the nodal displace-
ments using the MITC3+ shear-locking removal technique outlined in Eq. (14) by

γ̂0 =

4∑
I=1

B̂0
I uI (15)

To HSDT-type FG plates under thermo-mechanical loading, the weak form is

Ne∑
e=1


∫
Ωe

δ
[
εT

m ε
T
b ε

T
κ

]T ⌣
E

[
εT

m ε
T
b ε

T
κ

]
dΩ +

∫
Ωe

δ
[
γ̂T

0 γ
T
1

]T ⌣
G

[
γ̂T

0 γ
T
1

]
dΩ


=

Ne∑
e=1


∫
Ωe

δwpdΩ +
∫
Ωe

δ
[
εT

m ε
T
b ε

T
κ

]T [
NT

th MT
th PT

th

]
dΩ


(16)

where Ne is the number of elements; Ωe is the domain of an element; and
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Nth =

t/2∫
−t/2

α (z)∆T (z) E[1 1 0]T dz; Mth =

t/2∫
−t/2

α (z)∆T (z) zE[1 1 0]T dz

Pth =

t/2∫
−t/2

α (z)∆T (z) z3E[1 1 0]T dz

(17)

⌣

E =

Ā B̄ Ē
B̄ D̄ F̄
Ē F̄ H̄

 ;
⌣

G =
[
Ās B̄s

B̄s D̄s

]
(18)

with (
Ā, B̄, D̄, Ē, F̄, H̄

)
=

t/2∫
−t/2

(
1, z, z2, z3, z4, z6

)
Edz;

(
Ās, B̄s, D̄s

)
=

t/2∫
−t/2

(
1, z2, z4

)
Gdz (19)

By substituting the relations between the strains and nodal displacements given in Eqs. (11) and
(15) into the weak form in (16) and following the standard FEM procedure, the discretized equilibrium
equations can be obtained as follows

Ne∑
e=1

keue =

Ne∑
e=1

fe (20)

wherein, ue =
[
uT

1 uT
2 uT

3 uT
4

]T
;

ke
IJ =

∫
Ωe

(
BT

I

⌣

EBJ + BT
sI

⌣

GBsJ

)
dΩ; fe

I =

∫
Ωe

[0 0 HI 0 0 0 0]T pdΩ +
∫
Ωe

BT
I

[
NT

th MT
th PT

th

]
dΩ

(21)
with

BI =

[(
Bm

I

)T (
Bb

I

)T (
BκI

)T
]T

; BsI =

[(
B̂0

I

)T (
B1

I

)T
]T

(22)

2.2. Cell-based smoothed (CS) MITC3+ plate element for HSDT-type FG plates

To smooth the strain fields of plates discretized by 3-node triangular elements, the strain fields
on adjacent elements are averaged using the ES- or NS-FEM. However, these approaches require
additional computational time to identify elements with common edges or nodes. In this study, the
in-plane strains of the MITC3+ plate element, which are not constant on the element domain, are
averaged over sub-domains based on the CS-FEM [14] to transform surface integration of the ele-
ment stiffness matrices in Eq. (21) to line integration. The cell-based smoothed method is directly
implemented within each iteration of computing element stiffness matrices. Specifically, the 3-node
triangular MITC3+ plate element is divided into 3 sub-triangular domains by straight lines connect-
ing the vertex nodes to the bubble node. The in-plane strains in each sub-triangular domain ΩS C with
the area AS C are smoothed by

ε̃m =
1

AS C

∫
ΩS C

εmdΩ; ε̃b =
1

AS C

∫
ΩS C

εbdΩ; ε̃κ =
1

AS C

∫
ΩS C

εκdΩ (23)
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By applying Green’s theorem to the surface integrations of the shape function derivatives and us-
ing 2 Gaussian quadrature points to compute the line integrations, the following terms are determined

H̃Ix =

∫
ΩS C

HI,xdA =
3∑

ed=1

∫
Led

HInxdL =
3∑

ed=1

2∑
qp=1

Hqp
I Wqpned

x

H̃Iy =

∫
ΩS C

HI,ydA =
3∑

ed=1

∫
Led

HInydL =
3∑

ed=1

2∑
qp=1

Hqp
I Wqpned

y

(24)

in which Led is the length of each edge of the sub-triangular domain ΩS C; ned
x and ned

y are respectively
the x- and y-direction components of vector normal to edge ed of the domain ΩS C; Hqp

I are the values
of the shape functions evaluated at Gaussian quadrature points qp with their weight Wqp.

Substituting the relationship between the in-plane strains and the nodal displacements given in
Eq. (11) into Eq. (23) and employing the results in Eq. (24), the in-plane smoothed strains in Eq. (23)
can be expressed as follows

ε̃m =

4∑
I=1

B̃m
I uI; ε̃b =

4∑
I=1

B̃b
I uI; ε̃κ =

4∑
I=1

B̃κI uI (25)

where

B̃m
I =

H̃Ix 0 0 0 0 0
0 H̃Iy 0 0 0 0

H̃Iy H̃Ix 0 0 0 0

 ; B̃b
I =

0 0 0 H̃Ix 0 0
0 0 0 0 H̃Iy 0
0 0 0 H̃Iy H̃Ix 0


B̃κI =

0 0 0 H̃Ix 0 H̃Ix 0
0 0 0 0 H̃Iy 0 H̃Iy

0 0 0 H̃Iy H̃Ix H̃Iy H̃Ix


(26)

As a result, the formulation of the CS-MITC3+ plate element for the HSDT-type FG plates can
be derived from the stiffness of the MITC3+ plate element given in Eq. (21) as follows

k̃e
IJ =

3∑
sc=1

[(
B̃m

I

)T

S C

(
B̃b

I

)T

S C

(
B̃κI

)T

S C

]T
E

[(
B̃m

J

)
S C

(
B̃b

J

)
S C

(
B̃κJ

)
S C

]
AS C +

∫
Ωe

BT
sI

⌣

GBsJdΩ (27)

The displacements of the bubble node (node 4) are eliminated by applying the condensation tech-
nique to the equilibrium equations k̃eue = fe to construct the formulation of the stiffness matrix
and force vector of the CS-MITC3+ plate element, involving only nodal displacements at the vertex
nodes. Subsequently, the discretized equilibrium equations of the FG plates are obtained

KU = F (28)

in which U represents the nodal displacements of all nodes in the FG plates, while K and F denote the
plate’s stiffness matrix and force vector, respectively, assembled from the element stiffness matrices
and force vectors.

3. Numerical investigations
In this section, the effectiveness of the suggested CS-MITC3+ plate element is assessed through

static analysis of various benchmark FG plates. The properties of FG ingredients are listed in Table 1.
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Table 1. Ingredient properties of FG plates

Al Al2O3 ZrO2-1 ZrO2-2

E (GPa) 70 380 200 151
ν 0.3 0.3 0.3 0.3

k (W/mK) 204 10.4 2.09 2.09
α (×10−6/°C) 23 7.2 10 10

(a) Subjected to sinusoidal load (b) Discretized by a regular mesh of
12×12×2 three-node triangular elements

Figure 3. Geometry of a simply supported FG plate

3.1. FG square plates under mechanical loads

A simply supported square plate of length a and thickness t is subjected to sinusoidal load p =
p0 sin (πx/a) sin (πy/a) as depicted in Fig. 3(a). The plate is made of Al and Al2O3 materials. To
compare with reference results, the deflection wc at the plate center and stresses σxx, τxy, τxz are
normalized by

w̄c =
10wcEct3

p0a4 ; σ̄xx (z) =
t

p0a
σxx

(a
2
,

a
2
, z

)
τ̄xy (z) =

t
p0a
τxy (0, 0, z) ; τ̄xz (z) =

t
p0a
τxz

(
0,

a
2
, z

) (29)

To study the convergence rate of the proposed element, the plate with a/t = 10 is simulated
by regular meshes of 12×12×2, 16×16×2, 20×20×2, or 24×24×2 three-node triangular elements.
Fig. 3(b) illustrates the 12×12×2 mesh. The relative errors

∣∣∣∣wc − wre f
c

∣∣∣∣/wre f
c and

∣∣∣∣σxx − σ
re f
xx

∣∣∣∣/σre f
xx at

z = t/3, in which wc, σxx, wre f
c , σre f

xx are respectively the deflections and normal stresses at the plate’s
center predicted by the different sizes of the CS-MITC3+ plate elements and the HSDT analytical
solutions [29], are graphed in the logarithmic scales in Fig. 4. For the various power law indices
n = 1, 2, 4, 8 and 10, the CS-MITC3+ plate element well converges to the analytical solutions. With
the 24×24×2 mesh, the relative errors are about 0.5% and 1.0% for the central deflections wc and the
normal stresses σxx at the point (a/2, a/2, t/3). Therefore, the mesh of 24×24×2 elements is used
to obtain the numerical results of the CS-MITC3+ plate element in this study. Owing to the HSDT,
the normalized shear stresses τ̄xy at point (0, 0) and τ̄xz at point (0, a/2) provided by the CS-MITC3+
plate element cubically vary through the thickness and are similar to those given by the analytical
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solutions [29] for n = 1 and 8 as demonstrated in Fig. 5. The transverse shear stresses vanish at the
bottom and top planes of the plate.

(a) The central deflections wc (b) The normal stresses σxx(a/2, a/2, t/3)

Figure 4. Convergence rates given by the CS-MITC3+ plate element as compared with the HSDT analytical
solutions [29] for the Al/Al2O3 plates under the sinusoidal load

(a) (b)

Figure 5. Variation of the normalized shear stresses through the thickness of the Al/Al2O3 plate
with a/t = 10 under the sinusoidal load

Table 2 lists the normalized deflections and stresses at the plate’s center determined by the CS-
MITC3+ plate element for the Al/Al2O3 plates with a/t = 4, 10 and 100. For both thick and thin
plates, these numerical results are in good agreement with those given by the HSDT analytical solu-
tion [29], the CS-DSG3 element [17], and the quasi-3D HSDT meshless method [30]. This means
that the presented elements can overcome the shear-locking phenomenon. Table 2 also shows the
effect of the power law index on the behaviors of FG plates. When the power law index or the per-
centage of the Al ingredient increases, the deflections increase and the stresses decrease, or the FG
plates become softer.
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Table 2. Normalized central deflections and stresses at the point (a/2, a/2, t/3) of the Al/Al2O3 plates
under the sinusoidal load

a/t Methods
n = 1 n = 4 n = 10

w̄c σ̄xx w̄c σ̄xx w̄c σ̄xx

4 CS-MITC3+ 0.7246 0.5762 1.1544 0.4374 1.3835 0.3209
CS-DSG3 [17] 0.7240 0.5761 1.1539 0.4371 1.3831 0.3207
Analytics [29] 0.7284 0.5812 1.1599 0.4449 1.3909 0.3259
Meshless [30] 0.7020 0.5911 1.1108 0.4330 1.3334 0.3097

10 CS-MITC3+ 0.5857 1.4757 0.8768 1.1666 1.0032 0.8692
CS-DSG3 [17] 0.5851 1.4757 0.8760 1.1665 1.0023 0.8691
Analytics [29] 0.5890 1.4898 0.8815 1.1794 1.0087 0.8785
Meshless [30] 0.5913 1.4874 0.8770 1.1592 0.9952 0.8468

100 CS-MITC3+ 0.5594 14.8243 0.8240 11.8069 0.9309 8.8209
CS-DSG3 [17] 0.5586 14.8218 0.8229 11.8051 0.9298 8.8198
Analytics [29] 0.5625 14.9676 0.8287 11.9209 0.9362 8.9060
Meshless [30] 0.5648 14.9440 0.8241 11.7370 0.9228 8.6011

The FG square plates are now subjected to uniformly distributed load p0 and composed of Al and
ZrO2-1. With the mesh of 24× 24× 2 CS-MITC3+ plate elements, the normalized central deflections
w̄c = 100wcEmt3/[12(1 − ν2)p0a4] of the Al/ZrO2-1 square plates with a/t = 5 and n = 0, 0.5, 1,
2 are given in Table 3 for both simply supported and clamped plate cases. The results are similar to
those provided by the CS-DSG3 element [17], isogeometric analysis (IGA) [31] or meshless local
Petrov-Galerkin (MLPG) method [32]. Fig. 4(a) illustrates the distributions of thickness-through
normalized normal stresses σ̄xx = t2σxx/(p0a2) at the plate center for simple supports, while Fig. 4(b)
presents them for clamped supports, as obtained by the CS-MITC3+ plate element. Fig. 4 shows the
excellent agreement of the normalized normal stresses predicted by the presented element and the
MLPG method [32] in the investigated studies of n = 0 and 2.

(a) Simple support (b) Clamped support

Figure 6. Variation of the normalized normal stresses through the thickness of the Al/ZrO2-1 plate with
a/t = 5 under the uniformly distributed load
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Table 3. Normalized central deflections w̄c of the Al/ZrO2-1 plates with a/t = 5 under the uniformly
distributed load

Boundaries Methods n = 0 n = 0.5 n = 1 n = 2

Simply CS-MITC3+ 0.1709 0.2310 0.2707 0.3122
CS-DSG3 [17] 0.1774 0.2343 0.2688 0.3060

IGA [31] 0.1717 0.2324 0.2719 0.3115
MLPG [32] 0.1657 0.2482 0.2878 0.3251

Clamped CS-MITC3+ 0.0749 0.0995 0.1166 0.1368
CS-DSG3 [17] 0.0732 0.0972 0.1139 0.1336

IGA [31] 0.0760 0.1014 0.1183 0.1369
MLPG [32] 0.0729 0.1069 0.1248 0.1438

3.2. Al/ZrO2-1 skew plates under uniformly distributed load

A skew plate shown in Fig. 7 has the length of each edge a, thickness t = a/100, and skew angle
α. The FG materials of the plate include Al and ZrO2-1. The plate is simply supported on all edges
and applied uniformly distributed load p0.

Figure 7. Geometry of Al/ZrO2-1 skew plate under uniformly distributed load

Figure 8. Normalized central deflections of the
simply supported Al/ZrO2-1 skew plate under

uniformly distributed load in the different cases
of the skew angles α and power law indices n

The FG skew plate is discretized by the reg-
ular mesh of 24×24×2 CS-MITC3+ plate el-
ements. The normalized deflections w̄c =

100wcEct3/
[
12

(
1 − ν2

)
p0a4

]
at the plate center

with various values of the skew angles α and
power law indices n are plotted in Fig. 8. The nu-
merical results in Fig. 8 indicate that the rigidity
of the FG plates decreases as the power law in-
dices increase because of the reduction in the ce-
ramic content. When the skew angle increases, the
span of the plate also increases, leading to an in-
crease in the central deflections as demonstrated in
Fig. 8. The thickness-through distributions of the
normalized normal stresses σ̄xx = t2σxx/

(
p0a2

)
at

the plate center given by the proposed element are
illustrated in Fig. 9 for different skew angles and
for n = 0.5 and 2. These results are in excellent
agreement with those obtained by the CS-DSG3 element [17].
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(a) n = 0.5 (b) n = 2

Figure 9. Distribution of the normalized normal stresses σ̄xx at the center of the simply supported
Al/ZrO2-1 plate under uniformly distributed load with various skew angles α and power law indices

(a) n = 0.5 and (b) n = 2

3.3. Al/ZrO2-2 square plates under thermo-mechanical load

A functionally graded square plate made of aluminum (Al) at the bottom plane and zirconia
(ZrO2-2) at the top plane is considered. The FG plate of the length a = 0.2 m and thickness t =
0.01 m is simply supported on all edges. The plate is subjected to thermo-mechanical load, including
temperature Tm on the bottom plane, Tc on the top plane, and uniformly distributed load p0 = l f ×
Em × t4/a4 on the top plane. The plate is modeled by the regular mesh of 24 × 24 × 2 CS-MITC3+
plate elements to obtain the normalized deflections wc/t at the plate center.

Figure 10. Normalized central deflections of the
Al/ZrO2-2 square plate due to variety of thermal

loads

Firstly, the Al/ZrO2-2 square plate is purely
applied temperature Tm = 20 ◦C and Tc = 0 ◦C,
100 ◦C, 200 ◦C, 300 ◦C, 400 ◦C or 500 ◦C. Fig. 10
demonstrates the variation of the normalized de-
flections computed by the CS-MITC3+ plate el-
ement as the temperature difference between the
bottom and top planes and the power law indices
increase. The thermal loads cause the FG plate
to deform upward. The deflections tend to signifi-
cantly increase when the power law indices, mean-
ing the aluminum content, are large because the
thermal conductivity of the metal is greater than
that of ceramics.

Secondly, the FG square plate is subjected to
both the thermal load of Tm = 20 ◦C and Tc =

300 ◦C, and the uniformly distributed load p0 =

l f × Em × t4/a4, in which l f denotes the load factor, with the negative sign indicating the downward
direction of the load. Fig. 11 represents the normalized deflections at the plate center given by the
CS-MITC3+ and CS-DSG3 elements in the various cases of the load factor l f = 0, −2, −4, −6, −8,
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−10, −12, 14 and the power law indices n = 0.5, 1, 2, 4. The numerical results of the CS-MITC3+
and CS-DSG3 elements are the same. When the mechanical loads increase, the deflections of the
Al/ZrO2-2 plate change from upward to downward directions as demonstrated in Fig. 12 for the case
l f = −8 and n = 2. It can be observed that the thermo-mechanical loading reduces the deflections of
the FG plate compared to the case of purely mechanical load.

Figure 11. Normalized central deflections of the
Al/ZrO2-2 square plate due to variety of mechanical
loads and thermal load of Tm = 20◦ and Tc = 300◦

Figure 12. Normalized deflections at central line of
the Al/ZrO2-2 square plate due to thermal,
mechanical and thermo-mechanical loads

4. Conclusions
Using HSDT and cell-based smoothed FEM, a 3-node triangular plate element has been devel-

oped for the static analysis of FG plates. The presented element utilizes C0-type shape functions
enriched by adding a cubic function at the bubble node. The in-plane strains are smoothed over sub-
triangular domains defined by the vertex and bubble nodes. Meanwhile, the transverse shear strains
are re-interpolated using the MITC3+ technique to mitigate the shear-locking phenomenon. The nu-
merical results for the investigated FG plates with various geometries, boundary conditions, loads
and exponent law indices show that the proposed CS-MITC3+ plate element can predict defections
and stresses in excellent agreement with methods such as analytical solutions, the CS-DSG3 element,
meshless approaches, or IGA. When subjected to both thermal and mechanical loadings, the FG plates
exhibit superior performance, as they reduce deflections and stresses compared to cases subjected to
only thermal or mechanical loadings.
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