
Journal of Science and Technology in Civil Engineering, HUCE, 2025, 19 (2): 18–31

FUZZY POSSIBILITY-BASED SAFETY ASSESSMENT OF
PORTAL STEEL FRAME

Pham Hoang Anh a,∗, Ha Manh Hunga, Vu Tien Chuonga, Nguyen Ba Duana

aFaculty of Building and Industrial Construction, Hanoi University of Civil Engineering,
55 Giai Phong road, Hai Ba Trung district, Hanoi, Vietnam

Article history:
Received 03/3/2025, Revised 25/3/2025, Accepted 22/4/2025

Abstract

This paper investigates the application of fuzzy possibility theory for assessing the safety of portal steel frames,
addressing the limitations of traditional methods such as Load and Resistance Factor Design (LRFD) and Al-
lowable Stress Design (ASD) in handling uncertainties and subjective judgments in structural systems. Portal
steel frames, widely used in industrial buildings, are susceptible to various uncertainties in loads, material prop-
erties, and geometric dimensions. Unlike probability theory, fuzzy possibility theory offers a robust framework
for quantifying the possibility of safety or failure under imprecise or incomplete information, making it ideal
for capturing real-world variability. The study establishes a practical procedure for structural fuzzy possibil-
ity analysis. It further introduces a new fuzzy possibility degree model that accounts for the importance of
information at different membership levels, enhancing the assessment of structural safety compared to exist-
ing models. Numerical results demonstrate that the proposed model, operating within an extended possibility
measure interval of (−1, 2), provides more refined and reasonable outcomes than traditional models confined
to (0, 1), effectively distinguishing between absolute safety, absolute failure, and intermediate cases. Through
a case study of a portal steel frame subjected to dead loads, live loads, wind loads, and foundation settlement,
the paper evaluates safety and failure possibilities using deterministic and different fuzzy methods. Findings
highlight the superiority of the proposed fuzzy possibilistic model in capturing complex uncertainties, though
its non-traditional results require careful interpretation. Validating the model against empirical data, explor-
ing sensitivity analyses, and developing normalization methods to bridge traditional and extended possibility
frameworks, offer valuable insights for enhancing structural safety assessments in civil engineering.
Keywords: fuzzy possibility theory; structural safety assessment; portal steel frames.
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1. Introduction
Ensuring the safety and reliability of structures is paramount in civil engineering. Traditional

safety assessment methods, such as Load and Resistance Factor Design (LRFD) and Allowable Stress
Design (ASD), primarily rely on probabilistic approaches, often assuming precise values for input
parameters like loads, material properties, and geometric dimensions. While these methods have
proven useful, they may not fully capture the inherent uncertainties (e.g., variable wind loads) and
subjective judgments that are often present in real-world structural systems. These uncertainties can
arise from various sources, including manufacturing variations, environmental conditions, and a lack
of precise information. Furthermore, expert knowledge and experience, which play a crucial role in
safety assessment, are often difficult to incorporate directly into traditional probabilistic frameworks.
Portal steel frames are widely used in industrial and commercial buildings due to their efficiency and
ease of construction. Especially, the prefabricated steel frame structure of a single-story is a widely
used structure for industrial buildings. This is a type of light steel frame with columns and girders
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made of welded I-shaped steel with outstanding advantages of reducing material costs, automating
the manufacturing process, and easy construction and installation. The design specifications of this
structure in Vietnam are currently defined in the design standard TCVN 5575:2012 [1] which is based
on ASD. The structure is required to be designed to withstand various types of loads including static
loads, live loads for roof repairs, crane loads, horizontal and vertical winds, and even earthquakes
[2]. The design parameters are assumed to be precise [2–4]. However, like any structural system,
these structures are susceptible to various uncertainties that can affect their safety. Accurate safety
assessment is crucial to prevent failures and ensure the structural integrity of these frames [5].

To address the limitations of traditional methods in handling imprecise and uncertain information,
fuzzy set theory and, more specifically, fuzzy possibility theory offer a powerful alternative. Fuzzy
set theory provides a mathematical framework for representing and manipulating uncertain or vague
information [6]. Unlike probability theory, which quantifies the likelihood of an event occurring,
fuzzy possibility theory quantifies the possibility of an event occurring [7]. This makes it particularly
well-suited for dealing with situations where the available information is imprecise or incomplete,
and where subjective judgments play a significant role. Existing studies on structural safety assess-
ment using fuzzy possibility have explored various aspects of uncertainty modeling and analysis. Re-
searchers have employed fuzzy sets to represent uncertain parameters like material properties (yield
strength, modulus of elasticity), geometric imperfections (out-of-plumbness, residual stresses), and
loading conditions (dead loads, live loads, wind loads) [8–10]. Fuzzy structural analysis techniques,
including fuzzy finite element methods, have been applied to determine fuzzy structural responses
(displacements, stresses, internal forces) [11–13]. These fuzzy responses are then used in conjunc-
tion with fuzzy failure criteria to evaluate the possibility of failure [14, 15]. Studies have demonstrated
the ability of fuzzy possibility-based methods to capture the combined effect of multiple uncertainties
and provide a more comprehensive picture of structural safety compared to traditional probabilistic
approaches. Findings often highlight the importance of carefully selecting appropriate membership
functions and the need for efficient computational techniques to handle the complexity of fuzzy struc-
tural analysis. Some research has also focused on comparing fuzzy possibility results with those
obtained from probabilistic methods, illustrating the differences in representing and interpreting un-
certainty [16]. Nevertheless, the studies on portal steel frames are rare. Applying fuzzy possibility
theory to the safety assessment of portal steel frames allows for the incorporation of uncertainties in
a more comprehensive and nuanced manner.

This paper explores the application of fuzzy possibility theory in assessing the safety of portal
steel frames. It examines the fundamental concepts of fuzzy possibility, proposes a methodology for
fuzzy possibility-based structural safety analysis. Significantly, a new fuzzy possibility degree model
is proposed, which reflects the importance of the fuzzy information that has not been considered in
the past works. The paper also presents a case study of portal steel frame safety assessment using
this approach, comparing and contrasting it with traditional methods. In the numerical investigations,
the conditions of safety under dead load, live load, wind load, and foundation settlement are assessed
according to TCVN 5575:2012 [1]. Finally, it identifies limitations associated with the current state of
research and proposes potential directions for future investigations in this important area of structural
safety.

2. Fuzzy possibility
2.1. Fuzzy possibility concept

Consider the limit state function of the structure GF = gF (X) with X = [X1, X2, . . . , Xn]T being
n-dimensional fuzzy input vector, and the membership function µXi (xi) (i = 1, 2, . . . , n) corresponds
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to the i-th fuzzy input Xi. The membership level is denoted by α ∈ [0, 1]. The membership function
µXi (xi) essentially defines how each value in the input space is mapped to a degree of membership
between 0 and 1. An α-cut of the fuzzy input Xi is an interval variable at the membership level α,
i.e., Xiα =

[
Xiα, Xiα

]
, where Xiα and Xiα are the lower bound and upper bound of the interval variable

Xiα, respectively. The limit state function GF corresponding to Xiα is also an interval quantity at the
membership level α, i.e., GFα =

[
GFα,GFα

]
, where GFα and GFα are the lower bound and upper

bound of the interval variable GFα, respectively.
Traditionally, in the fuzzy safety-failure possibilistic model, the structure is considered safe if

GF > 0 or failed if GF ≤ 0. Cremona and Gao [17] defined the fuzzy failure possibility index π f as

π f = sup {α | GF = gF (X) ≤ 0} (1)

where sup{·} is the supremum. At the α-level, the interval safety and interval failure possibilities are
defined, respectively, as

hs (α) = Poss {GFα = gF (Xα) > 0} =

1 GFα > 0
0 GFα ≤ 0

(2)

h f (α) = Poss {GFα = gF (Xα) ≤ 0} =

1 GFα ≤ 0
0 GFα > 0

(3)

where Poss {·} is the possibility of the event; Xα ∈
[
Xα,Xα

]
is the input interval vector at level α. The

fuzzy safety possibility πs and fuzzy failure possibility π f can be obtained by aggregating the safety
possibility hs (α) and failure possibility h f (α) at all membership levels α:

πs = Poss {GF = gF (X) > 0} =
∫ 1

0
hs (α) dα (4)

π f = Poss {GF = gF (X) ≤ 0} =
∫ 1

0
h f (α) dα (5)

The fuzzy possibility model defined above by Cremona and Gao has certain limitations in the
assessment of structural safety. The transition domain, i.e., GFα < 0 and GFα > 0, is not considered
in this model. Wang et al. [18] introduced the rank-fuzzy possibility model, in which the interval
safety and interval failure possibilities are given by

hs (α) = Poss {GFα = gF (Xα) > 0} =
max
{
0, len (GFα) −max

{
0,−GFα

}}
len (GFα)

(6)

h f (α) = Poss {GFα = gF (Xα) ≤ 0} =
max
{
0, len (GFα) −max

{
0,GFα

}}
len (GFα)

(7)

where len (GFα) = GFα −GFα. The fuzzy safety (failure) possibility can then be computed by Eq. (4)
(Eq. (5)). Note that this model gives πs ∈ [0, 1], π f ∈ [0, 1], and πs + π f = 1. This rank-fuzzy
possibility model is superior to the original model of Cremona and Gao because it does consider the
transition domain. However, as shown in the study by Shi and Lu [19], both models cannot distinguish
the difference among different absolute safety (failure) cases.
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In 2019, Shi and Lu [19] proposed a new model for fuzzy safety possibility and fuzzy failure
possibility which overcomes the shortcomings of the traditional models. The α-cut safety possibility
and α-cut failure possibility are defined by Shi and Lu, respectively, as

hs (α) = Poss {GFα = gF (Xα) > 0} =



1 +
GFα

GFα
0 < GFα

GFα

GFα −GFα

GFα ≤ 0 ≤ GFα

−
GFα

GFα
GFα < 0

(8)

h f (α) = Poss {GFα = gF (Xα) ≤ 0} =



−
GFα

GFα
0 < GFα

−
GFα

GFα −GFα

GFα ≤ 0 ≤ GFα

1 +
GFα

GFα
GFα < 0

(9)

The fuzzy safety possibility πs and fuzzy failure possibility π f are then obtained by substituting
Eq. (8) to Eq. (4) and Eq. (9) to Eq. (5), respectively. Note that πs + π f = 1 and πs ∈ (−1, 2);
π f ∈ (−1, 2) according to Eqs. (8) and (9). These fuzzy possibilities can measure the safety (πs)
or failure (π f ) degree. The bigger the πs (π f ) is, the higher the safety degree (failure degree) of
the structure is [19]. An absolute safety (failure) structure corresponds to 0 < GFα (GFα < 0), for
α ∈ [0, 1]. A structure with GFα ≤ 0 ≤ GFα has an uncertain safety degree.

Nevertheless, the fuzzy safety and failure possibilities obtained by Eq. (4) and (5) do not reflect
the importance of the information at different membership levels because the interval safety (failure)
possibility calculated at different α levels is of equal importance degree. This does not reflect the
nature of the information distribution of the fuzzy limit state function GF . Therefore, in this study,
alternative fuzzy safety and failure possibility measures are introduced as follows.

2.2. Alternative fuzzy safety-failure possibility degree
The new fuzzy safety possibility πnew

s and new fuzzy failure possibility πnew
f are estimated by

πnew
s = Possnew {GF = gF (X) > 0} =

∫ 1

0
hs (α)α dα∫ 1

0
α dα

= 2
∫ 1

0
hs (α)α dα (10)

πnew
f = Possnew {GF = gF (X) ≤ 0} =

∫ 1

0
h f (α)α dα∫ 1

0
α dα

= 2
∫ 1

0
h f (α)α dα (11)

It can be easily proved that πnew
s +πnew

f = 1 by substituting Eq. (6) or (8) into Eq. (10), and Eq. (7)
or (9) into Eq. (11). Since the membership degree α is taken into account, the new fuzzy possibility
model better reflects the importance of the information, i.e., the uncertainty of the information at
different membership levels.
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3. Fuzzy possibility-based safety assessment
This section presents a practical methodology for the safety assessment of portal steel frame using

the fuzzy possibility measure. The basic components for the fuzzy safety assessment of the structure
include uncertainty modeling; fuzzy structural analysis; fuzzy safety-failure possibility analysis.

3.1. Uncertainty modeling of the input parameters

Using fuzzy sets to represent uncertain input parameters such as loads, material properties, and
geometric imperfections. This is done by choosing the membership function µXi (xi) for each uncer-
tain input parameter Xi. Some common types of membership functions are:

- Triangular membership function: This is defined by a triangular shape and is characterized by
a peak point (where membership is 1) and two end points (where membership is 0). It’s simple and
widely used in applications with linear relationships.

- Trapezoidal membership function: Similar to the triangular membership function but with a
plateau where the membership degree is 1. It’s defined by four parameters: two for the feet of the
trapezoid and two for the shoulders. It’s useful when the system has a range of values with full
membership.

- Gaussian membership function: Defined by a bell-shaped curve and is characterized by two
parameters: the mean and the standard deviation. It’s smooth and differentiable, making it suitable
for applications requiring smooth transitions.

- Sigmoidal membership function: Defined by an S-shaped curve. It’s useful in applications where
the transition between membership degrees is gradual.

- Generalized bell membership function: Defined by three parameters: the width, the slope, and
the center. It provides a flexible shape that can be adjusted to fit various kinds of data.

Factors to consider when choosing the membership function for the fuzzy input parameters are
nature of the data, computational efficiency, and expert knowledge. Choosing the right membership
function is critical as it significantly influences the accuracy and effectiveness of the possibility-based
safety assessment. In the numerical example in Section 4, for the sake of simplicity, triangular mem-
bership function is assumed for the fuzzy inputs.

3.2. Fuzzy structural analysis

Performing structural analysis with fuzzy input parameters to obtain fuzzy responses. For the
fuzzy possibility-based safety assessment, we need to determine the interval GFα of the limit state
function GF at the membership level α. The bounds of GFα are estimated as follows:

GFα = min gF (Xα) , Xα ∈
[
Xα,Xα

]
(12)

GFα = max gF (Xα) , Xα ∈
[
Xα,Xα

]
(13)

where Xα and Xα are the vectors of lower bounds and upper bounds of the fuzzy inputs at level α;
gF (Xα) is the limit state function.

Several methods can be used to determine GFα and GFα. In this study, the Taylor’s Approximation
Method (TAM) [20–23] is suggested to efficiently estimate the limit state interval. The finite element
method is applied as the core deterministic structural analysis, where the frame members are modelled
as 2D beam elements.
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3.3. Fuzzy safety-failure possibility analysis

Determining the possibility of safety πnew
s and the possibility of failure πnew

f based on the fuzzy
limit state function. This procedure is performed as follows:

Step 1: Discretize the membership of the inputs into m levels α j ( j = 1, 2, . . . ,m) and determine
the input interval vector Xα j =

[
Xα j
,Xα j

]
at each level α j by using the membership functions µXi (xi)

(i = 1, 2, . . . , n).
Step 2: Estimate the output interval GFα j =

[
GFα j

,GFα j

]
for each level α j through fuzzy structural

analysis with TAM method.
Step 3: Using Eqs. (6) and (7) or Eqs. (8) and (9) to compute the α j-cut safety possibility hs

(
α j
)

and failure possibility h f
(
α j
)
.

Step 4: Based on Eq. (10) and (11), the fuzzy safety and failure possibilities are determined as
follows:

πnew
s =

∑m
j=1 hs

(
α j
)
α j∑m

j=1 α j
(14)

πnew
f =

∑m
j=1 h f

(
α j
)
α j∑m

j=1 α j
(15)

4. Numerical applications and case study
4.1. Comparison of different fuzzy possibility models

In this investigation, the membership level of the fuzzy inputs is discretized into 100 uniform
portions α j ( j = 1, 2, . . . , 100). The fuzzy safety possibility and fuzzy failure possibility are estimated
by the use of existing methods (Wang et al. [18] and Shi and Lu [19]) and the proposed model
presented in Section 3.3.

a. Absolute safety

A limit state function GF = gF (X) = X1+X2 is considered, in which X1 and X2 are two triangular
fuzzy numbers with parameters (X1, X̂1, X1) and (X2, X̂2, X2), respectively. The fuzzy safety possi-
bility and fuzzy failure possibility obtained by different methods for different parameters are given
in Table 1. The membership functions of GF are depicted in Fig. 1. Fig. 1 shows that GF > 0 for
all cases, implying absolutely safe condition. Clearly, the safety redundancies for the five cases de-
picted in Fig. 1 vary. It is straightforward to see that a higher output corresponds to a safer structure.

Table 1. Fuzzy safety and failure possibilities output for absolute safety cases

Case 1 Case 2 Case 3 Case 4 Case 5

(X1, X̂1, X1) (0, 1, 2) (0, 1, 2) (1, 3, 5) (3, 4, 5) (5, 6, 6.5)
(X2, X̂2, X2) (0, 1, 2) (1, 2, 3) (1, 2, 3) (2, 3, 4) (4, 5, 6)

Wang et al. [18]
1.00000
0.00000

1.00000
0.00000

1.00000
0.00000

1.00000
0.00000

1.00000
0.00000

Shi and Lu [19]
1.38743
−0.38743

1.53315
−0.53315

1.56726
−0.56726

1.75939
−0.75939

1.85410
−0.85410

Proposed
1.54973
−0.54973

1.69206
−0.69206

1.69206
−0.69206

1.83448
−0.83448

1.90162
−0.90162
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The data in Table 1 demonstrate that the proposed safety-failure possibilistic models provide a more
effective assessment of structural safety, aligning closely with intuitive understanding. Specifically,
the safety rankings for the five cases are as follows: Case 5 > Case 4 > Case 3 > Case 2 > Case 1.
In contrast, the model by Wang et al. fails to differentiate between these varying levels of structural
safety redundancy, yielding identical results across all five cases. Compared with the results by Shi
and Lu, the proposed model gives higher fuzzy safety possibility values.

Figure 1. Membership function of GF for the absolute safety cases

b. Absolute failure
Consider the limit state function in the previous section (absolute safety case) with the input

parameters given in Table 2. Fig. 2 indicates that the structure reaches complete failure under the
conditions specified in Table 2. Table 2 also presents the fuzzy safety possibilities and fuzzy failure
possibilities calculated using the new possibility model and the existing ones. Additionally, Fig. 2
illustrates the membership functions of the limit state function GF corresponding to five sets of fuzzy
input parameters. In this example, the structure exhibits complete failure. As depicted in Fig. 2, all
results of GF across the five cases are negative; however, the extent to which they fall below zero
varies. From Fig. 2, it is intuitively apparent that Case 1 is safer than Case 5, as the output for
Case 1 exceeds that of Case 5. This observation is supported by the new fuzzy failure possibilities,
calculated as πnew

f = 1.54973 for Case 1 and πnew
f = 1.95447 for Case 5, confirming that Case 1 is

Table 2. Fuzzy safety and failure possibilities output for absolute failure cases

Case 1 Case 2 Case 3 Case 4 Case 5
(X1, X̂1, X1) (−2, −1, 0) (−3, −2, −1) (−5, −3, −2) (−6, −5, −4) (−8, −7.5, −7)
(X2, X̂2, X2) (−2, −1, 0) −2, −1.5, 0) (−3, −2, −1) (−4, −3, −1) (−7, −6.5, −6)

Wang et al. [18]
0.00000
1.00000

0.00000
1.00000

0.00000
1.00000

0.00000
1.00000

0.00000
1.00000

Shi and Lu [19]
−0.38743
1.38743

−0.55312
1.55312

−0.63939
1.63939

−0.73162
1.73162

−0.93182
1.93182

Proposed
−0.54973
1.54973

−0.68745
1.68745

−0.74339
1.74339

−0.81621
1.81621

−0.95447
1.95447
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indeed safer than Case 5, aligning with the intuitive assessment. The proposed new fuzzy safety and
failure possibility measures provide more reasonable outcomes compared to Wang et al. model. The
safety ranking for the five cases is as follows: Case 1 > Case 2 > Case 3 > Case 4 > Case 5. In
contrast, Wang et al. fuzzy possibilistic model fails to distinguish the varying degrees of safety across
these cases. Furthermore, the proposed model provides clearer fuzzy safety and failure possibility
results compared to the model by Shi and Lu.

Figure 2. Membership function of GF for the absolute failure cases

c. Safety-failure cases

The limit state function presented in previous cases remains under consideration. Table 3 lists the
fuzzy safety possibilities and fuzzy failure possibilities derived from the different possibility mod-
els for various parameter sets. Additionally, Fig. 3 displays the membership functions of GF across
different cases. Table 3 reveals that the safety degree rankings provided by the new fuzzy possibilis-
tic model and the other possibilistic models are identical, following the order: Case 5 > Case 4 >
Case 3 > Case 1 > Case 2. This consistency highlights the effectiveness of the proposed fuzzy pos-
sibilistic model. A straightforward intuitive observation from Fig. 3 clearly shows distinctions of the
membership functions.

Table 3. Fuzzy safety and failure possibilities output for safety-failure cases.

Case 1 Case 2 Case 3 Case 4 Case 5

(X1, X̂1, X1) (−1, 0, 1) (−1, −0.5, 0) (0,0.5,1) (−1, 0.5, 3) (−0.5, 2, 3)
(X2, X̂2, X2) (−1, 0, 1) (−1, −0.5, 1) (−1, 0.5, 1) (−0.5, 1, 3) (0, 2, 5)

Wang et al. [18]
0.50495
0.49505

0.10291
0.89709

0.89709
0.10291

0.93825
0.06175

0.99634
0.00366

Shi and Lu [19]
0.50000
0.50000

−0.11630
1.11630

1.11630
−0.11630

1.11721
−0.11721

1.34931
−0.34931

Proposed
0.50000
0.50000

−0.33441
1.33441

1.33441
−0.33441

1.38641
−0.38641

1.52160
−0.52160
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Figure 3. Membership function of GF for the safety-failure cases

4.2. Fuzzy portal steel frame

Consider a portal steel frame with girders and columns made of prefabricated I-shaped steel [4].
The geometric dimensions of the frame include: (i) Frame span L; (ii) Crane rail elevation b; (iii)
Column top elevation H; (iv) Roof slope angle α (Fig. 4(a)). The cross-section and dimensions
are shown in Fig. 4(b). The frame is subjected to dead load, live load, crane load, wind load, and
support settlement. The structure is analyzed according to the planar frame model, with rigid nodal
connections. The loads and internal force combinations are in accordance with TCVN 2737:2023
standard [9]. TCVN 5575:2012 is used for the safety assessment of girders and columns.

(a) Layout of the portal steel frame

(b) Cross-section of the columns and girders

Figure 4. Geometry and cross-section details of the portal steel frame [4]
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a. Input data
The nominal values of the input parameters are given in Table 4. For numerical investigation

in this study, the loads (roof dead load, roof live load and wind pressure), and material properties
(modulus of elasticity and strength of steel) are uncertain parameters and assumed as triangular fuzzy
numbers. The other input parameters are considered crisp.

Table 4. Nominal values of input parameters for the portal steel frame [4]

Parameter Notation Nominal value Unit

Span L 24 m
Height H 10 m
Step B 6 m
Crane rail elevation b 6.3 m
Roof slope angle α 5.71 Degree
Height of column web hcw 0.4 m
Height of girder web hgw 0.5 m
Flange width b f 0.24 m
Web thickness tw 0.008 m
Flange thickness t f 0.014 m
Modulus of elasticity E 2.1 × 108 kN/m2

Strength of steel f 2.1 × 105 kN/m2

Steel density ρ 7.85 Ton/m3

Roof dead load q0 0.31 kN/m2

Roof live load p0 0.3 kN/m2

Wind pressure w0 0.95 kN/m2

Crane load Q 10 Ton
Differential settlement Z 0.08 m
Support rotation φ 0.5 Degree

b. Deterministic structural analysis
Structural analysis is conducted to evaluate internal forces—such as bending moment, shear force,

and axial force—at the sections of columns and girders. Additionally, it assesses the horizontal dis-
placement at the column top. For this steel frame, various methods like the analytical approach or the
finite element method (FEM) can be employed for structural analysis. In this study, the finite element
method is utilized.

The internal forces are calculated at specific sections of the structural members, including four
column sections (column base, section below the column shoulder, section above the column shoulder,
and column top) and two girder end sections, for each load case. Subsequently, the critical internal
forces at these sections are determined by applying load combinations as per TCVN 2737:2023:

- Basic combination 1: Includes permanent loads (e.g., dead load and differential settlement)
combined with a single live load.

- Basic combination 2: Incorporates permanent loads along with selected temporary adverse
loads.

The horizontal displacement at the column top is computed for three nominal load combinations,
as outlined in TCVN 5575:2012: dead load combined with wind load, dead load combined with crane
load, and dead load combined with 0.5 wind load plus crane load.
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c. Limit state function
The safety (failure) condition for the frame is checked according to limit state I (for strength) and

limit state II (for serviceability).
Limit state I: Columns and girders are evaluated as bending-compression members in accordance

with TCVN 5575:2012. If the relative eccentricity, me, exceeds 20, they are assessed solely as bending
members.

Limit state II: The frame is analyzed for horizontal displacement, with checks performed at
the column top elevation. For structures utilizing a heavy crane, the maximum allowable horizontal
displacement is determined based on TCVN 5575:2012. For light and medium cranes, the limit for
horizontal displacement is set to not exceed 1/300.

Thus, the limit state function is defined as:

gF (E, f , q0, p0,w0) = min
(
sc, sg,

H
300
− δmax

)
(16)

where sc, sg are the safety measures of column and of girder, respectively; δmax is the maximum
horizontal displacement at column top.

The safety measure sc is determined according to TCVN 5575:2012, as the minimum value of:
- Strength of column: f − σmax

c , where σmax
c is the maximum stress at column sections.

- Overall buckling of column: f − σbuckling
c , where σbuckling

c is the maximum buckling stress.

- Buckling of column web: ncw −
hcw

tw
, where ncw is the allowable slenderness for column web.

- Buckling of column flange: nc f −
b0

t f
, where nc f is the allowable slenderness for column flange,

b0 = 0.5
(
b f − tw

)
.

The safety measure sg is determined according to TCVN 5575:2012, as the minimum value of:
- Strength of girder: f − σmax

g , where σmax
g is the maximum stress at girder sections.

- Buckling of girder web: ngw −
hgw

tw
, where ngw is the allowable slenderness for girder web.

- Buckling of girder flange: ng f −
b0

t f
, where ng f is the allowable slenderness for girder flange.

d. Fuzzy safety assessment
The fuzzy safety assessment for the portal steel frame is carried out, focusing on the safety and

failure possibilities under specific parameter variations. The analysis assumes maximum variations
of −5% for the modulus of elasticity E and yield strength f , ±10% for the dead load q0, ±30% for the
live load p0, and ±20% for the wind load w0. The results are summarized in Table 5, which compares
four different approaches: a deterministic assessment and three fuzzy methods (Wang et al. [18], Shi
and Lu [19], and the current study). The membership function of the limit state function is shown in
Fig. 5. Some key observations and discussion are given below:

Deterministic assessment: The deterministic approach based on nominal values of the input pa-
rameters in Table 4 yields a safety possibility of 1 and a failure possibility of 0. This indicates a binary
outcome where the structure is considered entirely safe with no possibility of failure. However, this
approach does not account for uncertainties or variations in the input parameters, making it overly
simplistic and potentially unrealistic for real-world applications with inherent variability.

Fuzzy method by Wang et al.: Wang et al.’s fuzzy method provides a safety possibility of 0.8823
and a failure possibility of 0.1177, summing to 1. This suggests a more refined assessment, ac-
knowledging a small but non-zero probability of failure (11.77%). The reduction in safety possibility
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Table 5. Results of safety and failure possibilities for the portal steel frame

Possibility
Deterministic

assessment
Fuzzy method

Wang et al. Shi and Lu This study

Safety possibility 1.0000 0.8823 1.1364 1.3936
Failure possibility 0.0000 0.1177 −0.1364 −0.3936

Sum 1.0000 1.0000 1.0000 1.0000

Figure 5. Membership function of GF for considered portal steel frame

compared to the deterministic model reflects the incorporation of parameter uncertainties, offering
a more realistic evaluation. This approach adheres to the traditional possibility measure interval of
(0, 1).

Fuzzy method by Shi and Lu: The Shi and Lu model reports a safety possibility of 1.1364 and a
failure possibility of −0.1364, also summing to 1. Unlike the traditional possibility measure, which
is confined to the interval (0, 1), Shi and Lu’s fuzzy possibility measure operates within the interval
(−1, 2).

Current study method: The proposed model in this study yields a safety possibility of 1.3936
and a failure possibility of −0.3936, summing to 1. Similar to Shi and Lu’s model, the current study
adopts a fuzzy possibility measure within the interval (−1, 2), rather than the traditional (0, 1) range.
The negative failure possibility is smaller than, and the safety possibility is greater than those of Shi
and Lu method, indicating a tailored approach to incorporating the importance of the information in
the portal steel frame analysis. This suggests the model is able to capture broader or more complex
uncertainty distributions, but its results must be interpreted within the context of this non-traditional
possibility measure.

5. Conclusions
This study discusses and investigates the fuzzy possibility-based safety assessment for structures,

specialized for the portal steel frame. It also introduces a practical procedure for fuzzy possibility
analysis. A new model is proposed to estimate the fuzzy safety and fuzzy failure possibility degrees.

Some remarks drawn from the numerical results are:
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- The deterministic model’s binary outcome contrasts sharply with the fuzzy methods, which
account for parameter uncertainties and provide a range of possibilities. This highlights the advantage
of fuzzy logic in handling real-world variability.

- Traditional possibility model, adhering to the (0, 1) interval, appears more conservative and
conventional, making it easier to interpret and compare with standard probability assessments. How-
ever, it may not capture the full range of uncertainties and cannot differentiate the absolute safety or
absolute failure cases.

- The current study’s models, operating within the (−1, 2) interval as that of Shi and Lu [19],
produce results outside the conventional (0, 1) range, which is intentional and reflects a modified
fuzzy possibilistic approach. The negative failure possibilities and safety possibilities greater than
1 are designed to handle specific uncertainty scenarios. Additionally, the proposed fuzzy possibility
measures offer more reasonable results compared to existing models (as implied in the broader context
of the paper), allowing for a broader representation of safety and failure possibilities.

Implications and recommendations:
- The safety evaluation of the portal steel frame, as per TCVN 5575:2012, in the presence of

uncertainties in input parameters, necessitates a thorough and meticulous assessment using fuzzy
approach.

- The fuzzy model and its possibility measure significantly impact the assessment of the portal
steel frame’s safety. Traditional approach, with its (0, 1) range, offers a straightforward and inter-
pretable outcome suitable for standard engineering applications. In contrast, the current study’s use
of the (−1, 2) interval provides a more flexible but less conventional framework, potentially better
suited for complex uncertainty scenarios.

- Practitioners should be cautious when interpreting negative failure possibilities or safety possi-
bilities exceeding 1 in the current study’s models. These values are valid within the (−1, 2) interval
but may be misinterpreted if viewed through the lens of traditional fuzzy logic.

- Future research could focus on validating the (−1, 2) interval models against empirical data,
conducting sensitivity analyses to assess the robustness of the results under varying parameter uncer-
tainties, and exploring the physical or engineering implications of negative failure possibilities and
safety possibilities greater than 1.

- To bridge the gap between models, a normalization or transformation method could be developed
to map results from the (−1, 2) interval to the traditional (0, 1) interval, facilitating comparison and
communication across different fuzzy approaches.

In summary, while the fuzzy methods provide a more comprehensive assessment of the portal
steel frame than the deterministic approach, the differences in possibility measure intervals (0, 1) for
traditional method versus (−1, 2) for the current study highlight the importance of understanding the
underlying framework. The extended (−1, 2) interval used by the current study offers an alternative
way to assess safety and failure, but its results require careful interpretation and validation to ensure
reliable and practical safety evaluations for the portal steel frame.
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