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Abstract

This paper presents MOEA/D-EpDE XGBoost, a novel multi-objective optimization (MOO) algorithm de-
signed for efficient and accurate design optimization of nonlinear inelastic steel truss structures. The algo-
rithm integrates a gradient boosting machine learning model (XGBoost) with a dynamic resource allocation
multi-objective evolutionary algorithm (MOEA/D-DRA) and an improved pbest-based Differential Evolution
(EpDE) algorithm. XGBoost serves as a surrogate model for computationally expensive finite element analy-
ses (FEA), significantly reducing computational costs while maintaining solution accuracy. The performance
of MOEA/D-EpDE XGBoost is compared against five other established MOO algorithms (NSGA2, SPEA2,
GDE3, MOEA/D, and a standard ME algorithm) using a 47-bar powerline truss benchmark problem. Results
demonstrate that the proposed algorithm achieves superior convergence, diversity, and computational efficiency
compared to existing algorithms, while maintaining solution quality.
Keywords: multi-objective optimization; inelastic analysis; metaheuristic; XGBoost; MOEA/D; EpDE.
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1. Introduction
The design optimization of truss structures, especially when considering nonlinear inelastic ma-

terial behavior, presents a significant computational challenge [1–3]. Traditional methods, heavily
reliant on computationally expensive finite element analyses (FEA) to determine structural responses
under diverse loading conditions, become prohibitively time-consuming [1–3]. This is particularly
true within the framework of multi-objective optimization (MOO), where the goal is to identify a
set of optimal designs that effectively balance competing design criteria, rather than a single, abso-
lute optimum [4–6]. The inherent complexities of nonlinear inelastic analysis, compounded by the
need for extensive exploration of the design space necessary to locate Pareto optimal solutions, result
in substantial computational costs. As a result, traditional MOO algorithms are often impractical for
real-world applications involving large-scale truss structures. This necessitates the development of in-
novative and efficient optimization strategies that effectively manage computational resources while
maintaining solution quality.

A promising avenue for improving the efficiency of MOO in this context is the integration of ma-
chine learning (ML) algorithms. ML models can serve as surrogate models, efficiently approximating
the complex relationship between design variables and structural responses. This reduces reliance on
computationally intensive FEA. By training an ML model on a relatively small dataset of FEA results,

∗Corresponding author. E-mail address: truongviethung@tlu.edu.vn (Truong, V.-H.)

131

https://orcid.org/0009-0005-2807-2721
https://orcid.org/0000-0002-1109-7667
https://doi.org/10.31814/stce.huce2025-19(1)-11
mailto:truongviethung@tlu.edu.vn


Nguyen, N.-M., et al. / Journal of Science and Technology in Civil Engineering

engineers can then rapidly predict structural responses for a multitude of designs, leading to a sig-
nificant reduction in overall computational cost [7–11]. However, the effectiveness of this ML-based
surrogate modeling approach hinges critically on the choice of an appropriate ML algorithm capable
of accurately capturing the nonlinearities inherent in both material behavior and structural response,
while maintaining computational efficiency.

This research utilizes XGBoost [12], a robust and highly efficient gradient boosting machine
learning algorithm, to create accurate surrogate models for the computationally expensive FEA. XG-
Boost’s ability to effectively handle complex datasets and nonlinear relationships, coupled with its
demonstrated high accuracy and efficiency, makes it a highly suitable candidate for this application.
This ML surrogate model is then integrated within a novel MOO algorithm, MOEA/D-EpDE, de-
signed to efficiently and effectively address the multi-objective optimization problem [6]. MOEA/D-
EpDE combines the the multi-objective evolutionary algorithm based on decomposition with dynam-
ical resource allocation called MOEA/D DRA [13] and an improved pbest-based Differential Evolu-
tion (EpDE) algorithm [3] to achieve a superior balance between solution quality and computational
efficiency.

The MOEA/D algorithm [14] employs a decomposition-based approach, transforming the com-
plex multi-objective optimization problem into a set of simpler single-objective subproblems. This
strategy offers several advantages: more efficient exploration of the design space, improved computa-
tional efficiency through distributed computational load, and the ability to maintain solution diversity
and high quality [15–17]. The selection of EpDE [3, 6, 7] to solve these single-objective subprob-
lems is strategic due to its dynamic mutation strategy. This strategy effectively balances exploration
and exploitation, facilitating faster convergence to the Pareto front while preserving diversity in the
solution set.

In essence, this paper introduces MOEA/D-EpDE XGBoost, a novel algorithm that effectively
integrates a powerful machine learning model (XGBoost) with an advanced metaheuristic algorithm
(EpDE) within the MOEA/D DRA framework to address the computational challenges of nonlinear
inelastic truss optimization. This integrated approach is expected to yield substantial improvements
in both efficiency and solution quality compared to traditional methods, providing a robust and pow-
erful tool for engineers to perform efficient multi-objective design optimization. Subsequent sections
will detail the algorithm’s methodology, present results from a bi-objective optimization of a 47-bar
power line, and discuss the algorithm’s performance and implications for future research in structural
optimization.

2. Bi-Objective Optimization of Nonlinear Inelastic Truss Structures
The design of truss structures often involves competing objectives, demanding a balanced ap-

proach to optimize both cost-effectiveness and structural integrity. This study addresses this chal-
lenge by formulating a bi-objective optimization problem for nonlinear inelastic truss structures. This
approach acknowledges the inherent complexities of material behavior under significant loading and
geometric nonlinearities, going beyond simplified linear elastic assumptions. The two primary objec-
tives are:

2.1. Minimization of structural mass

The first objective function focuses on minimizing the total mass (or equivalently, cost, assuming a
linear relationship between mass and material cost) of the structure. This is achieved by optimizing the
cross-sectional areas of individual truss members. Reducing material usage is crucial for economic
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viability and minimizing environmental impact. The objective function is mathematically represented
as:

Minimize F1 (X) = ρ
∑

Ai jLi j (1)

where ρ is the material density, Ai j is the cross-sectional area of the j-th member in the i-th member
group, Li j is the length of the j-th member in the i-th member group, i indexes the member groups,
and j indexes the members within each group. This objective directly encourages the selection of
smaller cross-sections, however, it’s crucial to note that this can potentially compromise structural
performance if not properly constrained.

2.2. Minimization of maximum displacement
The second objective focuses on ensuring structural integrity and safety by minimizing the maxi-

mum displacement under specified loading conditions. Excessive displacement can lead to structural
failure, loss of functionality, or unacceptable levels of vibration. This objective is expressed mathe-
matically as:

Minimize F2 (X) = max (|δk|) (2)

where δk represents the displacement of node k, and k indexes the nodes in the structure. This ob-
jective implicitly promotes the use of larger cross-sections and a more robust structural design to
withstand loading and maintain acceptable deformation limits.

2.3. Constraint handling
The optimization process must incorporate several constraints to ensure structural feasibility and

adherence to design standards. These constraints include:
Strength Constraints: These constraints ensure that the structural load-carrying capacity R is

greater than applied loading S . These constraints are typically evaluated through nonlinear finite
element analysis, accounting for material inelasticity and geometric nonlinearities in the form:

Cstr = 1 −
R
S
= 1 − ULF ≤ 0 (3)

where ULF =
R
S

is the ultimate load factor.
Geometric Constraints: These constraints limit the displacement of the nodes as:

Cser =
|∆|

∆u − 1 ≤ 0 (4)

where ∆ and ∆u are a nodal displacement and its allowable value, respectively.
The constraints are incorporated using a penalty function approach. This method adds penalty

terms to the objective functions proportional to the violation of the constraints. The penalty terms
increase as the constraint violation increases, guiding the optimization algorithm towards feasible
solutions as follows:

Fun
1 (X) = F1(X) ×

1 + Nstr∑
m=1

αstr,m max
(
Cstr

m , 0
)
+

Nser∑
l=1

αser,l

Nnode∑
k=1

max
(
Cser

l,k , 0
) (5)

Fun
2 (X) = F2(X) ×

1 + Nstr∑
m=1

αstr,m max
(
Cstr

m , 0
)
+

Nser∑
l=1

αser,l

Nnode∑
k=1

max
(
Cser

l,k , 0
) (6)

where αstr,m and αser,l are penalty parameters. A sufficiently large value of α ensures that infeasible
solutions are penalized heavily, favoring feasible alternatives. In this work, α is defined as 10,000.
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2.4. Direct analysis model for steel trusses

This paper employs a direct analysis model for steel truss structures to accurately predict structural
response under various loading conditions. This approach is necessary because both strength and
serviceability requirements necessitate a detailed consideration of the structural behavior. Unlike
simplified linear elastic models, this direct analysis incorporates nonlinear inelastic material behavior
and geometric nonlinearities, particularly crucial for assessing strength under significant loads. For
serviceability limit states, where deformations are generally smaller and remain within the elastic
range, a nonlinear elastic analysis is sufficient.

The core of the direct analysis hinges on the Blandford [18] stress-strain constitutive model
(shown in Fig. 1). This model meticulously captures the complex behavior of steel, including elas-
tic and inelastic post-buckling, as well as unloading characteristics. The model utilizes parameters
(X1, X2) dependent on the element’s slenderness ratio (L/r) to define the transition between elastic
and inelastic regions. These parameters, along with the yield stress σγ) and yield strain εγ), and Euler
buckling stress and strain (σcr, εcr), fully characterize the material’s response under various loading
scenarios.

Figure 1. Blandford’s stress-strain constitutive model for nonlinear truss elements

To solve the nonlinear equilibrium equations resulting from this constitutive model, the gener-
alized displacement control (GDC) method [19] is implemented. The GDC method offers several
advantages: automatic step size adjustment, self-adaptation to loading direction changes, and en-
hanced stability near critical points. This robust method ensures accurate and efficient solution of
the nonlinear system. The direct analysis incorporating the Blandford model and the GDC method is
performed using the Practical Advanced Analysis Program (PAAP) [20], a well-established software
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package suitable for this type of advanced analysis. The results from this detailed analysis inform the
optimization process and ensure the reliability of the final design.

3. Enhancing MOEA/D-EpDE with XGBoost
3.1. MOEA/D-EpDE

MOEA/D-EpDE, presented by Cao et al. [6], offers a novel approach to multi-objective opti-
mization (MOO), particularly effective for complex problems. This algorithm cleverly integrates two
powerful techniques: MOEA/D DRA [13] and EpDE [3]. MOEA/D DRA provides a decomposition
framework, transforming the initial multi-objective problem into a set of simpler, single-objective
subproblems. Each subproblem is then independently optimized using the robust EpDE algorithm.

A significant advantage of MOEA/D-DRA is its dynamic resource allocation. Unlike traditional
MOEA/D, which distributes resources evenly, MOEA/D-DRA adapts resource allocation based on a
complexity coefficient (πi) that reflects each subproblem’s convergence rate. This adaptive strategy
focuses computational power on the most promising areas of the search space, leading to increased
efficiency

The EpDE algorithm employs a ‘DE/pbest/1’ mutation strategy, dynamically balancing explo-
ration and exploitation. A dynamically adjusted parameter ‘p’ controls the selection of the best in-
dividuals (pbest) used for mutation, allowing EpDE to adapt to the evolving search landscape. This,
combined with controlled crossover rates and scaling factors, enables efficient navigation of complex
search spaces. Furthermore, a dynamically updated external archive stores promising Pareto optimal
solutions, preventing premature convergence and ensuring a diverse and high-quality final solution
set. This combination of features makes MOEA/D-EpDE a highly effective algorithm for challenging
MOO problems.

The MOEA/D-EpDE algorithm proceeds as follows:
- Initialization: Randomly generate initial population and weight vectors; initialize external

archive.
- Subproblem Selection: Based on πi, select subproblems for optimization
- EpDE Optimization: Apply EpDE to each selected subproblem, generating trial vectors.
- Update: Replace inferior solutions with superior trial vectors; update external archive.
- Update πi: Adjust πi periodically to adapt resource allocation.
- Termination: Continue until termination criteria are met.
MOEA/D-EpDE’s integration of dynamic resource allocation and the ‘DE/pbest/1’ mutation strat-

egy enhances exploration and exploitation, leading to improved convergence, diversity, and superior
performance compared to other MOO algorithms [6]. The details of this algorithm can be found in
Ref. [6].

3.2. XGBoost-based surrogate for predicting the ultimate load factor of truss structures

This paper utilizes XGBoost, a gradient boosting algorithm, to create a surrogate model for ef-
ficiently predicting the ultimate load factor (ULF) of truss structures. XGBoost, pioneered by Chen
and Guestrin [12], has demonstrated exceptional performance in various machine learning challenges,
including the Higgs Boson competition. Its underlying principle is similar to gradient tree boost-
ing (GTB) [21], iteratively combining weak learning models (decision trees) into a strong ensemble
model.

The XGBoost algorithm operates sequentially. Initially, a base learner (a decision tree) is trained
to predict the ULF. The difference between the predicted values and the actual ULF values, termed
the residual, represents the model’s error. To improve accuracy, a second decision tree is trained to
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predict this residual, effectively correcting the initial model’s errors. This iterative process continues,
creating a sequence of trees, where each subsequent tree aims to reduce the residual error of the
preceding ensemble. The final prediction is the sum of the predictions from each individual tree in
the ensemble.

To enhance the GTB framework, XGBoost incorporates a regularization term into its loss func-
tion. This regularization term penalizes model complexity, preventing overfitting. The regularization
term includes parameters such as the number of leaves, the score vector, and the complexity of leaves
to control the model’s complexity. Taylor expansion is used to optimize the loss function, and the
final estimated ULF is calculated. The choice of hyperparameters, such as the tree type (‘gbtree’ in
this case), the number of trees (n estimators), maximum tree depth (max depth), learning rate (learn-
ing rate), subsample ratio (subsample), L1 regularization (alpha), and L2 regularization (lambda),
significantly impacts the model’s performance and requires careful consideration. In this study, spe-
cific values for these hyperparameters were selected to achieve an optimal balance between accuracy
and computational efficiency using Bayesian Optimization [22].

3.3. Integrating XGBoost surrogate model into MOEA/D-EpDE
The MOEA/D-EpDE XGBoost algorithm, hereafter referred to as MEX, integrates the XGBoost

surrogate model into the MOEA/D-EpDE framework to enhance computational efficiency while
maintaining solution quality. The MEX algorithm can be structured into these main steps:

Phase 1: Initialization and Problem Decomposition
Initialization: Generate initial population (Pº), weight vectors (λi), and initialize the external

archive (Ex)
Decomposition: Decompose the multi-objective problem into single-objective subproblems using

the Tchebycheff method and weight vectors [13]. Define the neighborhood for each subproblem.
Data Initialization: For each subproblem, store initial individuals and their corresponding out-

puts (from load combinations) in a data matrix (Datai).

Phase 2: Iterative Optimization
Subproblem Selection: Select a subset of subproblems for optimization based on the dynamic

complexity coefficient (πi)
Solution Generation (EpDE): Generate a potential solution (U) for each selected subproblem

using the EpDE algorithm’s ‘DE/pbest/1’ mutation strategy.
Objective Function Evaluation: If sufficient data exists (Datai ≥ Nminsize), use the XGBoost sur-

rogate model to evaluate the objective function for U. Otherwise, perform nonlinear inelastic analysis.
Update: Update the population, external archive (Ex), and the reference point (Z) based on the

evaluated objective functions of U. Update the neighboring set (Bi) if necessary.
Update πi: Update the complexity coefficient πi) periodically to adjust resource allocation.

Phase 3: Termination
Termination: Repeat steps 4-8 until a stopping criterion is met (e.g., maximum number of gen-

erations or convergence). Select the final Pareto-optimal solution set from the final population or the
external archive.

In Step 6, The XGBoost surrogate model for subproblem i is initially built when Datai reaches
a minimum sample size (Nminsize = 1000), ensuring acceptable accuracy. This model is rebuilt when
Datai increases by Ns = 50 samples. A small Ns increases training frequency but may consume
excessive computation time. Conversely, a large Ns risks false predictions and local optima. Finally,
a safety factor τ, from Truong et al. [9]) is used to reduce XGBoost model error. The term of
neighboring set can be found in Ref. [7].
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4. Numerical example

Figure 2. 47-bar powerline truss

This section evaluates the performance of
six MOO algorithms—NSGA2, GDE3, SPEA2,
MOEA/D, MOEA/D-EpDE (ME), and MOEA/D-
EpDE XGBoost (MEX)—on one planar steel
truss structure (47-bar power line) using A992
steel. Member cross-sectional areas, ranging from
645.16 mm2 to 6451.6 mm2, served as design
variables. All algorithms were implemented in
Python, using a population size of 100 and 300
iterations with archive sizes for ME and MEX of
200. A maximum of 300 iterations was selected
based on preliminary convergence studies, which
indicated that performance metrics (e.g., IGD+
and HV) stabilized within 5% of their final val-
ues after approximately 250 iterations across all
tested algorithms, ensuring sufficient exploration
while managing computational cost. Structural
analysis was conducted using the PAAP program
[20]. Performance was assessed using genera-
tional distance (GD), GD+, IGD+, and hypervol-
ume (HV) [6], and evaluated on a computer with a
Core i7-8700 3.2GHz processor and 32GB RAM.
The robustness of XGBoost, previously validated
in [9, 10, 22, 23], is not further explored in this
work. Its hyperparameters are selected as: booster
= ‘gbtree’, n estimators = 500, learning rate =
0.05, and subsample = 0.5. The hyperparameters
of XGBoost were determined using Bayesian Op-
timization, which iteratively balances exploration and exploitation to minimize the mean squared
error over a predefined hyperparameter search space. This probabilistic approach efficiently identifies
optimal settings by modeling the objective function with a surrogate (Gaussian Process) and updating
it based on prior evaluations, as detailed in Ref. [22].

Fig. 2 illustrates a 47-bar powerline truss model, incorporating 27 distinct member cross-sections.
Three loading scenarios were analyzed: 1.2D + 1.6L + 0.5W, 1.2D + 1.6L, and 1.0D + 0.5L + 0.7W,
where D is the dead load (70 kN at all nodes), L is the live load (50 kN at all nodes), and W is the
wind load (30 kN at nodes 17 and 22 along the X-axis). Optimization targeted minimum structural
mass (objective function 1) and minimized lateral drift (objective function 2). Objective function 2
was defined as the root-sum-square of horizontal deflections (xi) at nodes i = 3, 5, 7, 9, 11, 13, 15,
and 17, constrained by a maximum allowable drift of h/400 (where h is the truss story height). Each
optimization algorithm was executed independently for 20 runs.

Since the true Pareto front for this MOO problem is unknown, an approximation was generated
using the results from all optimization runs. Fig. 3 displays this approximate Pareto front.

Fig. 4 shows the performance of the considered algorithms using GD, GD+, IGD+, and HV
metrics. The ME algorithm achieved the best IGD+ and HV scores. Specifically, ME’s average IGD+
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Figure 3. Approximate pareto-front

value (2.338) significantly outperformed those of NSGA2 (12.240), SPEA2 (38.093), GDE3 (15.232),
and MOEA/D (10.241), indicating superior convergence and diversity. Similarly, ME’s average HV
score (67,381.1) exceeded those of NSGA-II (64,582.2), SPEA2 (63,431.7), GDE3 (64,318.4), and
MOEA/D (66,010.4). While ME also showed superior GD and GD+ scores compared to GDE3
and MOEA/D, it had slightly higher scores than NSGA2. It is important to note that GD and GD+
primarily assess proximity to the Pareto front, not solution diversity.

The MEX algorithm, an enhanced version of ME incorporating an XGBoost model to reduce
computational cost, aimed to maintain ME’s performance while improving efficiency. Fig. 4 shows
that the differences between MEX and ME in GD (3.033 vs. 3.021), GD+ (0.663 vs. 0.660), IGD+
(2.347 vs. 2.338), and HV (67348.1 vs. 67148.3) are deemed negligible, with relative differences
less than 1% and p-values exceeding 0.05 (via paired t-tests across 20 runs), indicating no statistically
significant distinction

(a) GD (b) GD+

Fig. 5 presents the optimal solutions obtained for both objective functions. The ME method
achieved the lowest total structural weight (1491.6 kg), SPEA2 (1612.8 kg), GDE3 (1536.8 kg),
and MOEA/D (1506.9 kg), although slightly exceeding NSGA-2’s result (1461.4 kg) (see Fig. 5(a)).
Importantly, the ME’s average minimum weight (1521.9 kg) was substantially lower than that of
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(c) IGD+ (d) HV

Figure 4. Indicators of MOO algorithms

the other algorithms. In terms of the second objective function (maximum displacement), the ME
method yielded the lowest average, best, and worst values (12.080 mm, 11.982 mm, and 12.212 mm,
respectively). These results highlight the ME algorithm’s robustness and its ability to generate a well-
distributed set of optimal solutions. The proposed method (MEX) demonstrated performance closely
matching that of the ME algorithm, achieving identical minimum values for both objective functions.
While MEX showed slightly higher average values than ME, the differences are not statistically sig-
nificant and demonstrate that MEX maintains the robust performance of the ME algorithm.

(a) First objective (b) Second objective

Figure 5. Minimum objective functions found regarding

Table 1 compares the computational demands of the various algorithms. NSGA-II, SPEA2,
GDE3, MOEA/D, and the standard ME algorithm, without any analysis reduction techniques, each
required a maximum of 120,000 nonlinear inelastic analyses, corresponding to an approximate com-
putation time of 168,000 seconds. In contrast, the MEX algorithm, leveraging XGBoost surrogate
models, performed only 52,362 structural analyses and required 1430 training times for XGBoost
model. This resulted in a significantly reduced average computation time of 77,311 seconds for
MEX—approximately 46% of the time required by the ME algorithm. Therefore, MEX achieved a
computational time savings of roughly 54% compared to the standard ME approach.
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Table 1. Time analysis of algorithms for the 47-bar powerline

Algorithm
Structural
analysis

XGBoost model
building

Time analysis
(second)

Ratio

NSGA2, SPEA2, GDE3, MOEA/D 120,000 0 168,000 100.0%
ME 120,000 0 168,000 100.0%

MEX 52,362 1430 77,311 46.02%

5. Conclusions
This research introduced MOEA/D-EpDE XGBoost, a novel algorithm that effectively combines

an advanced metaheuristic algorithm with a gradient boosting machine learning model. The algo-
rithm was evaluated against standard MOO algorithms using a benchmark truss structure problem
under nonlinear inelastic conditions. The results demonstrate that MOEA/D-EpDE XGBoost of-
fers superior convergence, diversity, and computational efficiency compared to existing algorithms.
Specifically, MOEA/D-EpDE XGBoost achieved a 54% reduction in computation time compared to
the standard ME algorithm while maintaining a comparable solution quality. The enhanced perfor-
mance highlights the algorithm’s potential as a powerful and efficient tool for multi-objective design
optimization of complex nonlinear inelastic structures, particularly within resource-constrained envi-
ronments. Future work will explore the algorithm’s applicability to even larger-scale structures and
other types of optimization problems.
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