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Abstract

In this article, a buckling analysis of rectangular microplates under various boundary conditions is studied.
The microplate is made of functionally graded material (FGM) reinforced with graphene nanoplatelets (GPLs).
The FGM matrix is assumed to vary with the power-law distribution, while the GPLs are evenly distributed
along the thickness. The modified Halpin-Tsai model and the rule of mixture are used to estimate the material
properties of the GPL-reinforced FGM. The governing equation for the buckling problem of the microplate
is developed using the modified couple stress theory (MCST), four-variable refined plate theory (RPT-4), and
the pb-2 Ritz method. The solution is validated with those in existing literature, and the effects of different
parameters (material characteristics, boundary conditions, size dependency, and geometric dimensions) on the
critical buckling load of the microplate are given.
Keywords: buckling analysis; GPL-reinforced FGM; microplates; four-variable refined plate theory; modified
couple stress theory (MCST); pb-2 Ritz method.
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1. Introduction
Nowadays, nano/microstructures are widely utilized in different fields such as electronics, au-

tomation, micro-electromechanical systems (MEMS), and nano-electromechanical systems (NEMS)
[1, 2]. Among them, microbeam and microplate structures are crucial components of many micro-
devices. Therefore, studying the mechanical behaviors of microstructures is essential. Over the past
decade, functionally graded materials (FGMs) composed of two constituent materials—ceramic and
metal—have been a dominant research trend [3–6] due to their outstanding properties, such as high
strength, high-temperature resistance, and corrosion resistance. Besides, the GPL-reinforced material
model has also been widely used in recent years due to its superior mechanical, thermal, and elec-
trical properties compared to conventional materials [7]. In the literature, most studies employ GPL
reinforcement for isotropic or porous materials [7]. Recently, a FGM model reinforced by graphene
platelets (GPLs) (i.e., GPL-FGM) was proposed [8], promising a potential research direction in recent
years [9–12]. Thus, the present study will focus on analyzing a GPL-FGM microplate model.

In microstructure studies, two continuum theory models—the modified strain gradient theory
(MSGT) and the modified couple stress theory (MCST) [13]—are commonly used in simulations.
Among them, the MCST model, proposed by Yang et al. [14], is a simple and convenient theory
as it requires only a single length-scale parameter to capture the size effects of microstructures. To
solve small-scale issues, various size-dependent continuum models using the MCST are presented.
For instance, utilizing the classical plate theory (CPT) and MCST, Yin et al. [15] and Jomehzadeh
et al. [16] analyzed the free vibration behavior of isotropic microplates. Also, using classical plate
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theory (CPT)/first-order shear deformation (FSDT) and the MCST, Reddy and Berry [17] studied
the axisymmetric bending behaviors of FGM microplates. Based on the Mindlin plate model and
MCST, the mechanical behaviors of microplates were reported by Ke et al. [18] and Zhou and Gao
[19]. Similarly, He et al. [20] presented buckling, bending, and free vibration analyses of the FGM
microplate model using a four-unknown refined theory and the MCST. Also, utilizing the RPT-4
model, MCST, and Navier-type solution, Nguyen et al. [21] investigated the free vibration of FGM
microplates placed on the Winkler-Pasternak elastic foundation. Recently, Nguyen and Chu [11]
studied free vibration of GPL-FGM microplates on elastic foundations adopting the RPT-4 model
and the MCST. It can be seen that many studies on the mechanical behavior of microplates have been
reported in the existing literature [11, 22]. However, the buckling analysis for GPL-reinforced FGM
microplates has not been explored.

Currently, higher-order shear deformation theories (HSDTs) have been widely used in the anal-
ysis of plate/shell structures [4]. According to these models, the in-plane displacement components
are expressed as higher-order functions of the thickness coordinate. Essentially, HSDTs can pro-
vide more accurate results than classical plate theory (CPT) and first-order shear deformation theory
(FSDT). Among HSDTs, the four-variable refined plate theory is a reasonable choice due to its sim-
plicity and efficiency [23]. Therefore, to analyze microplate structures, the four-variable refined plate
model (RPT-4) combined with the modified couple stress theory (MCST) is employed in the structural
analysis presented in this paper.

In terms of computational methodology, although the pb-2 Ritz method has certain limitations,
including dependence on the choice of trial functions and difficulty in application to problems with
complex geometries or discontinuous boundary conditions, it is employed for the current problem
due to several advantages, including high accuracy, applicability to various boundary conditions, and
it does not require meshing like the finite element method (FEM).

Based on the above review, the present work focuses on the buckling analysis of an FGM mi-
croplate reinforced with GPLs (i.e., a GPL-FGM microplate). The governing equations for the buck-
ling analysis are developed using the four-variable refined plate theory (RPT-4), the modified couple
stress theory (MCST), as well as the pb-2 Ritz method. In the numerical results, the present findings
are first verified with those in the existing literature. Then, the effects of material characteristics,
boundary conditions, size dependency, and geometric dimensions on the critical buckling load of the
microplates are analyzed.

2. Theoretical formulations
2.1. GPL-FGM microplate

Consider a rectangular microplate with a width of a, a length of b, and a thickness of h, in x-, y-
and z-directions of the coordinate system, as indicated in Fig. 1. The microplate is made of new FGM
reinforced by graphene platelets (GPLs). Note that the lower surface of the microplate is metal-rich,
whereas the upper surface is ceramic-rich.

For the FGM matrix, material properties (i.e., elastic Young’s modulus EM, Poisson’s ratio νM

and mass density ρM) are assumed to vary following the power-law distribution along the thickness
as follows [8]:

PM (z) = (Pc − Pm)
(

z
h
+

1
2

)n

+ Pm (1)

where n is the power-law index, Pc and Pm represent the material properties of the ceramic and
metal constituents, respectively. The elastic Young’s modulus of the composite (i.e., GPL-FGM) is
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Figure 1. A GPL-reinforced FGM microplate

estimated using the modified Halpin-Tsai model as follows [7]:

Ec (z) =

3
8

1 + ξ11η11Vgpl (z)
1 − η11Vgpl (z)

+
5
8

1 + ξ22η22Vgpl (z)
1 − η22Vgpl (z)

 EM (2)

Parameters η11, η22, ξ11, and ξ22 is computed by

η11 =
Egpl − EM

Egpl + ξ11EM
; η22 =

Egpl − EM

Egpl + ξ22EM
(3)

ξ11 = 2
(
lgpl/tgpl

)
; ξ22 = 2

(
bgpl/tgpl

)
(4)

where Egpl, lgpl, bgpl, and tgpl are the elastic Young’s modulus, average length, average width, and
average thickness of the GPLs. The Poisson’s ratio of the novel composite can be determined by [8]:

νc (z) = νgplVgpl (z) + νM (z)
[
1 − Vgpl (z)

]
(5)

in which νgpl are the Poisson’s ratio of the GPL. In the present study, the GPLs are assumed to be
uniformly dispersed along the thickness, and the GPL volume fraction is determined as follows [8]:

Vgpl (z) =
Wgpl

Wgpl +
(
1 −Wgpl

)
ρgpl/ρ̂M

(6)

where ρ̂M =
1
h

∫ h
2

− h
2

ρM (z) dz, and
(
ρgpl,Wgpl

)
are mass density and the total weight fraction of the

GPL.

2.2. Displacement, strain, stress components, and energy expressions

Based on the RPT-4 theory, the displacement components of the microplate are defined by [23]:
û (x, y, z) = u0 − zwb,x − f (z) ws,x

v̂ (x, y, z) = v0 − zwb,y − f (z) ws,y

ŵ (x, y, z) = wb + ws

(7)

where û, v̂ and ŵ are the displacement components of a specific point in the microplate along the
x, y, and z directions. Letters u0, v0 are the displacement components on the midplane along the x-
and y-directions, respectively. wb and ws are the bending and shear components of the deflection
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w. In this research, shear function f (z) =
3
2

(
z3

h2

)
−

z
8

is selected for buckling analysis. The linear

strain-displacement relationships for the microplate are given by [23]:
εxx

εyy

γxy

 =

ε0

xx
ε0

yy
γ0

xy

 + z


kb

xx
kb

yy
kb

xy

 + f (z)


ks

xx
ks

yy
ks

xy

 (8)

{
γyz

γxz

}
= g (z)

{
γs

yz
γs

xz

}
(9)

where 
ε0

xx
ε0

yy
γ0

xy

 =


u0,x
v0,y

u0,y + v0,x

 ;


kb

xx
kb

yy
kb

xy

 =

−wb,xx

−wb,yy

−2wb,xy

 ;


ks

xx
ks

yy
ks

xy

 =

−ws,xx

−ws,yy

−2ws,xy

 (10)

{
γs

yz
γs

xz

}
=

{
ws,y

ws,x

}
; g (z) = 1 − f ′ (z) (11)

Based upon the MCST model, the components of the curvature tensor of the plate are as follows
[11]:

χxx = χ
0
xx +

(
1 + f,z

)
χ1

xx; χyy = χ
0
yy +

(
1 + f,z

)
χ1

yy; χzz = 0 (12)

χxy = χ
0
xy +

(
1 + f,z

)
χ1

xy; χyz = χ
0
yz + f,zzχ

1
yz; χxz = χ

0
xz + f,zzχ

1
xz (13)

in which

χ0
xx = wb,xy; χ1

xx =
1
2

ws,xy; χ0
yy = −wb,xy; χ1

yy = −
1
2

ws,xy (14)

χ0
xy =

1
2

(
wb,yy − wb,xx

)
; χ1

xy =
1
4

(
ws,yy − ws,xx

)
(15)

χ0
yz =

1
4

(
v0,xy − u0,yy

)
; χ1

yz = −
1
4

ws,x (16)

χ0
xz =

1
4

(
v0,xx − u0,xy

)
; χ1

xz =
1
4

ws,y (17)

The stress-strain relationships in the microplate are defined by [24]:

σxx

σyy

σxy

σyz

σxz


=


Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55





εxx

εyy

γxy

γyz

γxz


(18)



txx

tyy

txy

tyz

txz


= 2Gcl20


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1





χxx

χyy

χxy

χyz

χxz


(19)
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in which l0 is material length scale parameter, and non-zero coefficients Qi j are provided as follows:

Q11 = Q22 =
Ec (z)

1 − ν2c (z)
; Q12 =

νc (z) Ec (z)
1 − ν2c (z)

; Q66 = Q44 = Q55 = Gc =
Ec (z)

2 [1 + νc (z)]
(20)

The stress resultants in the microplate are defined by [20]:

(
N j,Mb

j ,M
s
j

)
=

∫ h/2

−h/2
σ j (1, z, f ) dz; j = xx, yy, xy (21)

Q j =

∫ h/2

−h/2
gσ jdz; j = yz, xz (22)

P j =

∫ h/2

−h/2
t jdz; j = xx, yy, xy, yz, xz (23)

R j =

∫ h/2

−h/2

(
1 + f,z

)
t jdz; j = xx, yy, xy (24)

S j =

∫ h/2

−h/2
f,zzt jdz; j = yz, xz (25)

The strain energy of the microplate model is determined by [20]:

U =
1
2

∫
S

(Nxxε
0
xx + Nyyε

0
yy + Nxyγ

0
xy + Mb

xxkb
xx + Mb

yykb
yy + Mb

xykb
xy + Ms

xxks
xx + Ms

yyks
yy

+ Ms
xyks

xy + Qyzγ
s
yz + Qxzγ

s
xz + Pxxχ

0
xx + Pyyχ

0
yy + 2Pxyχ

0
xy + 2Pyzχ

0
yz + 2Pxzχ

0
xz

+ Rxxχ
1
xx + Ryyχ

1
yy + 2Rxyχ

1
xy + 2S yzχ

1
yz + 2S xzχ

1
xz)dS

(26)

The potential energy of pre-buckling loads can be obtained as follows [25]

V = −
1
2

∫
S

Nx0

(
∂ŵ
∂x

)2

+ Ny0

(
∂ŵ
∂y

)2

+ 2Nxy0
∂ŵ
∂x
∂ŵ
∂y

 dS (27)

in which Nx0,Ny0 and Nxy0 are prebuckling in-plane normal and shear loadings. The total energy
functional Π∗ for buckling analysis can be determined by:

Π∗ = U + V (28)

3. Solution procedure

Figure 2. The GPL-FGM microplate model
under a bi-axial compression

The GPL-FGM microplate is assumed to be
subjected to in-plane loadings in two directions
(bi-axial buckling), i.e., Nx0 = γ1N0,Ny0 = γ2N0,

Nxy0 = 0, as shown in Fig. 2.
For convenience, the following coordinate

transformation is utilized:

ξ =
2x
a
− 1; η =

2y
b
− 1 (29)
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Using the pb-2 Ritz functions, the displacement components (u0, v0,wb,ws) of the microplate are
assumed in the series as follows [26, 27]:

u0 (x, y) =
N∗∑
p=0

p∑
r=0

Xprupr (ξ, η) =
M∑

i=1

Xiui (ξ, η)

v0 (x, y) =
N∗∑
p=0

p∑
r=0

Yprvpr (ξ, η) =
M∑

i=1

Yivi (ξ, η)

wb (x, y) =
N∗∑
p=0

p∑
r=0

Zprwbpr (ξ, η) =
M∑

i=1

Ziwbi (ξ, η)

ws (x, y) =
N∗∑
p=0

p∑
r=0

Hprwspr (ξ, η) =
M∑

i=1

Hiwsi (ξ, η)

(30)

where N∗ is the order of the two-dimensional polynomial. Letters (Xi,Yi,Zi,Hi) are unknown coef-
ficients of the series. For these coefficients, note that the number of terms M and their indexes i are
computed by:

M =
(N∗ + 1) (N∗ + 2)

2
; i =

(p + 1) (p + 2)
2

− (p − r) (31)

Also, note that components (ui, vi,wbi,wsi) are the pb2-Ritz functions as defined similarly in [27].
The governing equation of the buckling analysis of the microplate can be obtained by substituting
Eq. (30) into the displacement form of Eq. (28) and then minimizing the total energy functional with
respect to the coefficients, as follows [25]:

∂Π∗

∂Xi
=
∂Π∗

∂Yi
=
∂Π∗

∂Zi
=
∂Π∗

∂Hi
= 0; i = (1, 2, . . . ,M) (32)

The governing equation for the buckling problem of the GPL-FGM microplate can be written in
the following form:

(K − N0V) q = 0 (33)

where K and V are the elastic stiffness and geometric stiffness matrices, respectively, and q =
{X1 X2 . . . XM . . . HM}

T is the unknown coefficient vector. By solving Eq. (33), the buckling load
(N0) of the GPL-FGM microplate model can be easily obtained. Note that the critical buckling load
is the minimum among all buckling loads, i.e., Ncr = min (N0).

4. Verification examples
Unless otherwise stated, in the next verifications and investigations, the FGM microplates made

from metal/ceramic (Al/ZrO2), with metal and ceramic material properties as Em = 70 GPa, νm =
0.3, ρm = 2702 kg/m3 and Ec = 151 GPa, νc = 0.3, ρc = 3000 kg/m3, respectively. The GPL material
parameters are used as Egpl = 1010 GPa, ρgpl = 1062.5 kg/m3, νgpl = 0.186, lgpl = 3 nm, bgpl = 1.8
nm, and tgpl = 0.7 nm [28]. In the present study, note that the GPLs are assumed to be uniformly
dispersed along the thickness of the microplate. The material length scale parameter is assumed to be
l0 = 17.6 µm. The rectangular plate model with four edges, and boundary conditions of the plate are
named following a counterclockwise sequence starting at the edge y = 0. For instance, the microplate
with the CSSF boundary condition means that we have clamped (C) at y = 0, simply supported (S) at
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x = a, simply supported (S) at y = b, and free (F) at x = 0. Besides, the following critical buckling
load and buckling load parameters are utilized in the numerical analysis:

Ncr =
Ncra2

Emh3 ; N0 =
N0a2

Emh3 (34)

The computational accuracy and stability of numerical solutions are considered first in this sec-
tion. Some special cases of the microplate model are then compared with similar models in existing
literature.

4.1. Convergence study

The convergence of the critical buckling load Ncr of the GPL-FGM (Al/ZnO2) microplate is
presented in Table 1, where the degree of the polynomial (N∗) of the series is increased from 3
to 8. The GPL-FGM microplate with the SSSS boundary condition and input parameters n = 1,
Wgpl = 1.5%, b/a = 1, and a/h = 20 are considered. The findings show that when increasing the N∗,
the normalized critical buckling load Ncr of the microplate converges as N∗ ≥ 6, in both the uni-axial
(γ1 = 0, γ2 = 1) and bi-axial (γ1 = 1, γ2 = 1) compression cases. Thus, to ensure the convergence,
N∗ = 8 will be chosen to conduct the numerical investigations.

Table 1. Convergence study of critical buckling load Ncr of GPL-FGM microplate

(γ1, γ2) l0/h
N∗

3 4 5 6 7 8

(0, 1)
0 6.2090 6.2060 6.2059 6.2059 6.2059 6.2059

0.5 13.1113 13.1047 13.1046 13.1046 13.1046 13.1046
1 33.8137 33.7964 33.7963 33.7963 33.7963 33.7963

(1, 1)
0 3.1045 3.1030 3.1029 3.1029 3.1029 3.1029

0.5 6.5557 6.5524 6.5523 6.5523 6.5523 6.5523
1 16.9069 16.8982 16.8982 16.8981 16.8981 16.8981

4.2. Buckling of FGM microplate

Table 2. The critical buckling load Ncr of the FGM microplate under a bi-axial compression (γ1 = 1, γ2 = 1)

n Source
l0/h

0 0.2 0.4 0.6 0.8 1

0 He et al. [20] 18.9243 21.7771 30.3324 44.5855 64.5348 90.1804
Present 18.9243 21.7771 30.3324 44.5855 64.5348 90.1804

1 He et al. [20] 8.1142 9.6815 14.3832 22.2188 33.1882 47.2914
Present 8.1142 9.6819 14.3846 22.2220 33.1938 47.3002

10 He et al. [20] 3.7450 4.2752 5.8505 8.4589 12.1011 16.7793
Present 3.7450 4.2755 5.8514 8.4609 12.1047 16.7849

In this example, to validate the FGM microplate model, the normalized critical buckling loads,
Ncr = Ncra2/

(
Emh3

)
, of the FGM microplate under bi-axial compression (γ1 = 1, γ2 = 1) are

compared with those of He et al. [20]. The FGM microplate model is composed of two constituent

125



Binh, C. T. / Journal of Science and Technology in Civil Engineering

materials (metal/ceramic) with Ec = 14.4 GPa, Em = 1.44 GPa , and νc = νm = 0.38. The microplate
has geometric dimensions of a/b = 1 and a/h = 20, while the ratio l0/h and the power-law index n
vary. The comparison between the two models are listed in Table 2. We can see that the discrepancy
between the results of the present model and those of He et al. [20] using the Navier solution, the

four-variable refined plate theory
(

f = −
z
4
+

5
3

z3

h2

)
, and MCST model is insignificant.

4.3. Buckling of GPL-reinforced macroplate

To validate the GPL-reinforced plate model, the normalized critical buckling load, Ñcr =

Ncr
(
1 − ν2m

)
/ (Emh), of the GPL-reinforced plate under uni-axial compression (γ1 = 0, γ2 = 1) is

compared with the results of Nguyen and Pham [29]. The macroplate is made of an isotropic matrix
material with Em = 3 GPa, ρm = 1200 kg/m3, νm = 0.34, and reinforced by GPLs with Egpl = 1010
GPa, ρgpl = 1062.5 kg/m3, νgpl = 0.186 [29]. The plate has geometric dimensions of a/b = 1 and
a/h = 10. The comparison results between the two models are shown in Table 3. It can be observed
that the discrepancy between the results of the present model using the pb-2 Ritz method and those
of Nguyen and Pham [29] using the isogeometric analysis (IGA) and the four-variable refined plate
theory is insignificant in both SSSS and CCCC boundary conditions.

Table 3. The critical buckling load Ñcr of the GPL-reinforced plate under a uni-axial compression
(γ1 = 0, γ2 = 1)

Boundary conditions Source
Wgpl (%)

0 0.1 0.5 1

SSSS Nguyen and Pham [29] 0.0310 0.0413 0.0825 0.1340
Present 0.0310 0.0413 0.0825 0.1340

CCCC Nguyen and Pham [29] 0.0692 0.0922 0.1841 0.2989
Present 0.0692 0.0921 0.1839 0.2986

Through the above validation examples, we can observe that the present formulations and solu-
tions are highly reliable. Therefore, further numerical investigations can be conducted to study the
effects of parameters such as material properties, boundary conditions, size dependency, and geomet-
ric dimensions on the critical buckling load of the GPL-FGM microplates.

5. Parametric studies
In the next numerical investigations, the FGM model is made of Al/ZrO2 reinforced with GPLs.

It is also noted that the GPLs are assumed to be evenly distributed (uniformly dispersed) along the
thickness of the microplate.

5.1. Influence of the GPL weight fraction

In this subsection, the influence of the GPL weight fraction (Wgpl) on the normalized buckling
load N0 of the GPL-FGM microplate is investigated. Specifically, the variations of the No of the
microplate under uni-axial and bi-axial compression are listed in Table 4 (Modes 1, 2, and 3) and
shown in Fig. 3 (Mode 1). Three boundary conditions of the microplate are considered, including
CCCC, CSCS, and SSSS. The microplate with input parameters b/a = 1, a/h = 20, h/l0 = 1, and
n = 1 is investigated.

We can see that the buckling load N0 of the GPL-FGM microplate gradually increases when
the GPL weight fraction (Wgpl) rises, and this trend is quite consistent for both SSSS, CSCS, and
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Table 4. The normalized buckling load N0 of the GPL-FGM microplate with different buckling modes

Case
Boundary
condition

Wgpl (%)

0 0.5 1 1.5 2 2.5 3

Uni-axial
compresion
(Mode 1)

SSSS 29.254 30.771 32.285 33.796 35.305 36.812 38.317
CSCS 49.062 51.603 54.139 56.672 59.201 61.726 64.247
CCCC 72.769 76.540 80.306 84.065 87.819 91.567 95.309

Uni-axial
compresion
(Mode 2)

SSSS 45.327 47.676 50.021 52.363 54.701 57.036 59.367
CSCS 74.578 78.442 82.300 86.152 89.998 93.838 97.673
CCCC 83.144 87.452 91.754 96.050 100.338 104.621 108.896

Uni-axial
compresion
(Mode 3)

SSSS 79.475 83.594 87.706 91.812 95.911 100.005 104.092
CSCS 128.111 134.747 141.374 147.991 154.598 161.196 167.783
CCCC 136.907 144.000 151.083 158.155 165.216 172.267 179.308

Bi-axial
compresion
(Mode 1)

SSSS 14.627 15.385 16.142 16.898 17.653 18.406 19.158
CSCS 27.891 29.336 30.778 32.217 33.655 35.090 36.523
CCCC 38.431 40.423 42.411 44.397 46.380 48.359 50.335

Bi-axial
compresion
(Mode 2)

SSSS 36.261 38.141 40.017 41.891 43.761 45.629 47.494
CSCS 42.878 45.098 47.316 49.530 51.740 53.948 56.152
CCCC 66.890 70.356 73.817 77.272 80.723 84.168 87.608

Bi-axial
compresion
(Mode 3)

SSSS 36.261 38.141 40.017 41.891 43.761 45.629 47.494
CSCS 61.906 65.113 68.316 71.513 74.706 77.894 81.077
CCCC 66.890 70.356 73.817 77.272 80.723 84.168 87.608

(a) Uni-axial compression (b) Bi-axial compression

Figure 3. Variation of the critical buckling load Ncr of the GPL-FGM microplate with respect to Wgpl (Mode 1)

CCCC boundary conditions, as indicated in Table 4 and Fig. 3. For instance, as Wgpl = 1.5%, the
buckling load N0 of the GPL-FGM microplate increases by about 15.5%. As Wgpl = 3%, the N0 of
the microplate increases by about 31% compared to the case without the GPLs. This is due to the
significantly higher stiffness of the GPLs compared to the FGM matrix, so even a small amount of
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the GPLs makes a substantial increase in the stiffness of the microplate. The N0 of the microplate in
the case of uni-axial buckling is higher than that in the case of bi-axial buckling.

5.2. Influence of the boundary conditions

In this subsection, the effect of the boundary conditions on the normalized critical buckling load
Ncr of the GPL-FGM microplate is investigated. The critical buckling load Ncr of microplate under
various boundary conditions (i.e., SSSS, CSCS, and CCCC) are illustrated for both uni-axial and bi-
axial compression cases, as shown in Fig. 4(a) and Fig. 4(b), respectively. The microplate is under
consideration with parameters b/a = 1, a/h = 20, h/l0 = 1, n = 1, and Wgpl = 1.5%.

(a) Uni-axial compression (b) Bi-axial compression

Figure 4. Variation of the critical buckling load Ncr of the GPL-reinforced FGM microplate
with various boundary conditions

We can see that as the power-law index (n) increases, the normalized critical buckling load Ncr

of the GPL-FGM microplate tends to vary in a similar manner across all boundary conditions in-
vestigated. The normalized critical buckling load Ncr of the microplate with the CCCC boundary
condition is the highest, while that with the SSSS boundary condition is the lowest among them. This
phenomenon occurs because the CCCC boundary condition significantly enhances the stiffness of
the plate compared to other cases. Similarly, as the power-law index increases, the critical buckling
load Ncr of microplates also decrease; it is significant when the power-law index is in the range of
0 < n < 3.

5.3. Influences of size dependency and power-law index

The influences of the size dependency (h/l0) and power-law index (n) on the normalized critical
buckling load Ncr of the GPL-FGM microplate is investigated here. Specifically, the microplate is
under SSSS boundary condition, and the input parameters as b/a = 1, a/h = 20, and Wgpl = 1.5% is
considered. The power-law index n and the ratio h/l0 are varied. The results for uni-axial and bi-axial
compression cases are plotted in Fig. 5(a) and 5(b), respectively.

It can be observed that when the ratio h/l0 decreases, the dimensions of the microplate become
smaller, and the size-dependency effect on the Ncr of the microplate becomes very significant and
more apparent. In contrast, when h/l0 > 10, the Ncr of the microplate reduces very small, and in-
dicating that the results of larger microplates go forward the buckling value and the behavior of the
macroplate. When the index n increases (reducing the ceramic content), the Ncr of the microplate
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decreases. This phenomenon occurs because the ceramic constituent is stiffer than the metallic con-
stituent, thus, the stiffness of the microplate decreases when the ceramic content is decreased in the
microplate.

(a) Uni-axial compression (b) Bi-axial compression

Figure 5. Variation of the critical buckling load Ncr of the GPL-FGM microplates with respect to n and h/l0

5.4. Influence of geometric dimensions
In this subsection, the influences of the aspect ratio (b/a) on the normalized critical buckling load

Ncr of the GPL-FGM microplate is presented. The microplate under SSSS boundary condition, and
the input parameters as a/h = 20, h/l0 = 1 and Wgpl = 1.5% is considered. The results for uni-axial
and bi-axial compression cases are plotted in Figs. 6(a) and 6(b), respectively. It can be observed
that when the aspect ratio b/a increases, the normalized critical buckling load Ncr of the microplate
generally tends to decrease. However, in the case of uni-axial compression, the graph exhibits a rather
complex change consisting of multiple curves. This behavior is due to the mode buckling changes in
the microplate as the ratio b/a increases. In contrast, for the case of bi-axial compression, the graph
exhibits almost no mode change (resulting in a smooth curve) in the microplate occurring within the
investigated range of b/a = 0.5 to 3.5. This trend remains consistent across all three cases p = 0, 0.5,
and 1.

(a) Uni-axial compression (l0/h = 1) (b) Bi-axial compression (l0/h = 1)

Figure 6. Variation of the critical buckling load Ncr with respect to b/a
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(a) Uni-axial compression (l0/h = 0) (b) Bi-axial compression (l0/h = 0)

(c) Uni-axial compression (l0/h = 1) (d) Bi-axial compression (l0/h = 1)

Figure 7. Variation of the critical buckling load Ncr with respect to a/h

Next, the influences of the thickness ratio (a/h) on the normalized critical buckling load Ncr of
the GPL-FGM microplate is investigated. The microplate is under the SSSS boundary condition, and
the input parameters as b/a = 1, and Wgpl = 1.5% is considered. The results of microplate under uni-
axial and bi-axial compressions for the case l0/h = 0 (traditional macroplate) are plotted in Figs. 7(a)
and 7(b), and for the case l0/h = 1 (microplate) of Figs. 7(c) and 7(d). The findings reveal that
when the thickness ratio a/h increases, the normalized critical buckling load Ncr of the microplate
tends to increase in all cases investigated. For example, for a macroplate (l0/h = 0), the effect of
the ratio a/h on the normalized critical buckling load is significant (with the plate at a/h = 100
experiencing an increase of approximately 21-24% compared to the case of a/h = 5). In contrast, for
a microplate (l0/h = 1), the effect of a/h on the normalized critical buckling load is much smaller
(with the microplate at a/h = 100 increasing by only 8-9% compared to the case of a/h = 5). Clearly,
the variation patterns of microplates are quite similar to those of traditional macroplates.

6. Conclusions
The paper presents the buckling analysis of the GPL-reinforced FGM microplates using the four-

variable refined plate theory (RPT-4), the modified couple stress theory (MCST), and the pb-2 Ritz
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method. Next, the numerical solution is verified with those of existing literature. The influences of
parameters (n,Wgpl), size dependency (h/l0), boundary conditions and geometric dimensions on the
normalized critical buckling load of the microplates are investigated. Some key findings of the present
study are provided below:

- When the GPL weight fraction (Wgpl) increases, the normalized critical buckling load Ncr of the
GPL-FGM microplate significantly increases by about 31%, with Wgpl = 3%, n = 1. In contrast, when
the power-law index (n) increases, the normalized critical buckling load of the GPL-FGM microplates
decreases.

- The normalized critical buckling load of the GPL-FGM microplate with CCCC boundary con-
dition is higher than that of the microplate with SSSS, or CSCS boundary condition.

- When the ratio h/l0 decreases, the dimensions of the microplate become smaller, and the size-
dependency effect on the normalized critical buckling load Ncr of the GPL-FGM microplate becomes
significant and more apparent. In contrast, when h/l0 > 10, the Ncr of the microplate reduces very
small, and indicating the results of larger microplates go forward the buckling value and the behavior
of the macroplate.

- As anticipated, when the aspect ratio a/h is increased, or the ratio b/a is decreased, the nor-
malized critical buckling load of the GPL-FGM microplate increases generally. The influence of the
a/h ratio on the critical buckling load of the microplate is reduced compared to that of a conventional
macroplate.
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