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Abstract

Earned Value Management (EVM) traditionally provides single-value forecasts of project cost and schedule
that often underestimate real-world complexities—particularly the correlation between delays and cost over-
runs, as well as the evolution of risk over time. This paper introduces an augmented EVM approach that
incorporates (i) a monthly correlation factor linking extended task durations to higher expenditures, and (ii)
interval-based risk factors driving probability distributions of final cost and schedule. By merging Monte Carlo
simulation with traditional EVM metrics (planned value, earned value, actual cost), this method produces
robust forecast bands instead of single-value estimates, enabling proactive contingency planning. Two ac-
tual construction projects—one with 10-month planned vs. 12-month actual duration, another with 18 vs.
22 months—demonstrate how the augmented EVM captures worst-case scenarios significantly better than
traditional EVM, while clarifying the likelihood of potential overruns. Though sometimes conservative, the
distribution-based outputs give project managers a fuller picture of uncertainty, improving resource allocation
and stakeholder communication in high-volatility construction environments.
Keywords: EVM; risk-based; forecasts; construction management; cost; schedule.
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1. Introduction
Large-scale engineering and construction projects are significantly influenced by cost and sched-

ule dynamics, which are often monitored through Earned Value Management (EVM) [1, 2]. EVM
integrates scope, schedule, and budget data to produce performance indices such as the Cost Perfor-
mance Index (CPI) and Schedule Performance Index (SPI), which are critical for forecasting final
costs and completion times [3–6]. Nevertheless, traditional EVM simultaneously fails to account for
(i) the ongoing evolution of each project’s risk profile and (ii) the correlation between cost and sched-
ule deviations. It is not difficult to envision the later disadvantage, such as the rise in overhead costs,
equipment rentals, and labor when delays happen [7–9]. Whereas, risk profile often changes con-
tinuously, for example, supply chain disruptions may intensify during certain periods while reducing
in others [10]; high-risk events such as extreme weather or labor disputes may be intensive in some
phases while diminished during other time in a project lifecycle [11]. Failing to consider these natural
phenomena, traditional EVM with single-value extrapolations usually deviates its own forecasts from
actual project outcomes [12, 13].

This research presents an augmented EVM measure that integrates two fundamental components:
time-cost correlation and evolving risk profiles. The time-cost correlation component entails a cor-
relation factor that modifies the influence of schedule delays on cost projections at each reporting

∗Corresponding author. E-mail address: ducna@huce.edu.vn (Duc, N. A.)

62

https://orcid.org/0000-0001-5886-8310
https://doi.org/10.31814/stce.huce2025-19(2)-05
mailto:ducna@huce.edu.vn


Duc, N. A. / Journal of Science and Technology in Civil Engineering

period. The evolving risk profiles component monitors a numerical risk factor for each interval,
facilitating the creation of probabilistic projections for final project costs and durations instead of
depending on single-value estimations. This methodology generates distributions of potential out-
comes for each monthly or milestone review, which effectively represent the interaction between cost
and schedule uncertainty. Based on the fundamental principles of traditional EVM, the method is
designed to be relatively straightforward to implement and to enhance risk management by utilizing
a simulation-based inflation mechanism [14].

Sections 2 summarize the principles of EVM, advanced modeling efforts, and the current research
gap concerning correlation and risk-based expansions. Section 3 delineates the mathematical frame-
work that synthesizes correlation and interval risk, the augmented EVM algorithm, encompassing
pseudo-code and partial proofs pertaining to its viability and convergence predictions. Section 4
examines the employed data structures, concluding in a partial demonstration, with comprehensive
validation on two project case studies allocated for later sections. The proposed methodology seeks
scalability for extensive, multi-year construction endeavors while concurrently producing traditional
EVM indices to adhere to organizational protocols. The method addresses major shortcomings of tra-
ditional EVM in complex and unpredictable task settings by stressing correlation and dynamic risk.
Section 5 provides an analysis of the results and discusses the construction management implications
of the suggested methodology.

2. Literature review
2.1. EVM fundamentals

Traditional EVM tracks Planned Value (PV), Actual Cost (AC), and Earned Value (EV), which
are essential for deriving performance metrics such as CPI and SPI [1]. The formulas for these in-
dices are critical for project managers to assess performance: traditional EVM often assumes relative
independence in the cost and time performance of tasks, which can lead to oversimplified forecasts.
While some researchers have proposed range-based EAC estimates, these remain rudimentary ap-
proximations [15]. The following are the main indices that are used in traditional EVM:

CPI =
EV
AC

; SPI =
EV
PV

; EAC (cost) ≈ AC +
BAC − EV

CPI
(1)

where BAC is the total Budget at Completion; CPI and SPI are cost/schedule performance index
respectively; EAC is Estimate at Completion [16].

2.2. The Cost-Schedule correlation in construction projects

The interdependence of cost and schedule in construction is well-established, with delays fre-
quently driving cost overruns and vice versa. Sambasivan and Soon [8] note that ensuring completion
“within the budgeted time and cost” is a central role of project managers, reflecting how slippages in
time almost inevitably translate to inflated budgets. Roumeissa [9] agrees with this, remarking that
when delays occur, projects are either expedited—requiring additional funds—or extended—raising
overhead expenses. Ramanathan et al. [17] emphasize how only “30% of construction projects” meet
their scheduled completion dates, indicating the breadth of time-cost misalignment in practice. Larsen
et al. [18] argue that a project’s outcome hinges on proper owner engagement in timely procedures,
while Koushki et al. [19] identify change orders and financial constraints as dual triggers for schedule
delays and concurrent cost overruns.

This time-cost synergy similarly appears in the work of Jung and Woo [20], who advocate inte-
grating cost and schedule controls to enhance monitoring; Afzal et al. [21] emphasize the nonlinear
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characteristics of project complexity that can intensify costs when timelines are delayed. EVM, an
established method for monitoring project performance, is predicated on the integration of cost and
schedule metrics [22]. Collectively, these studies highlight the essential significance of considering
cost and time as interconnected variables, as neglecting to manage one aspect frequently compromises
the other, hence increasing project risk.

2.3. Updating risk profiles in Earned Value Management

The necessity of integrating updated risk profiles into EVM is becoming more widely acknowl-
edged as a critical component of effective project control in the construction industry. Anbari [16]
emphasizes the ability of EVM to predict the cost and schedule at completion, suggesting that the
integration of continuous risk updates can enhance its precision and encourage proactive corrective
actions. This perspective is further supported by Hazır [23], who suggests that without changing risk
assessments, EVM could not be able to identify significant uncertainty. In a similar vein, Babar et al.
[24] show that adding risk variables to EVM improves the reliability of performance reviews. Acebes
et al. [25] indicate that the combination of risk analysis with EVM yields more thorough insights by
using Monte Carlo simulations to capture a more comprehensive spectrum of project behavior under
uncertainty.

This risk-centered approach is also shared by Kim and Pinto [26], who stress the need for reliable
and ongoing risk assessments to reduce overruns and enhance EVM’s predictive ability. They observe
that cost overruns are frequently observed as the norm. As they assess the updating of risk profiles,
Tereso et al. [27] propose that the integration of EVM-risk automation is a research horizon for more
efficient project monitoring. Ibrahim et al. [28] stress how important it is to include different risk
factors in EVM estimates, especially when it comes to infrastructure. Highly fluctuating risks such
as weather are considered by Muller et al. [29] in irrigation projects. Interestingly, Roghabadi and
Moselhi [30] developed an “Earned Duration Management” - EDM (a derive of EVM) - especially
for the project duration forecast. When looked at as a whole, these studies show that regular updates
to the risk model are needed to keep it useful and accurate in the face of the inherent uncertainty of
building projects.

3. Methodology
3.1. Proposed framework

a. Traditional EVM notation

Let PV (t) - planned value at month t; EV (t) - earned value at month t; AC (t) - actual cost at

month t; BAC - budget at completion (total planned cost); CPI (t) =
EV (t)
AC (t)

; SPI (t) =
EV (t)
PV (t)

.

A deterministic forecast for final cost—EAC—at each t is [16]:

EACtraditional (t) = AC (t) +
BAC − EV (t)

CPI (t)
(2)

b. Correlation and risk variables

The study introduces two additional inputs, updated at each month or milestone:
- RiskFactor(t) ∈ [0, 1] reflects the magnitude of uncertainty for the upcoming interval(s). Higher

values indicate broader cost/time deviations.
- CorrFactor(t) ∈ [0, 1] expresses the time-cost synergy. When tasks slip, cost overruns are am-

plified more strongly for higher correlation.
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c. Distribution-based forecast

Instead of returning a single EAC, a distribution for final cost is defined:

Ĉn (t) = EACtraditional (t) × (1 + CorrFactor (t) · α) × Zn (t) , n = 1, . . . ,N (3)

where α is a user-chosen constant weighting correlation strength (e.g., α = 0.5); Zn (t) is the n-th
random draw from a distributionD (RiskFactor (t)). For instance, if risk is high (RiskFactor(t) ≈ 0.8),
a distribution might be assumed: Zn (t) ∼ N

(
1.0, (β · 0.8)2

)
, with β as a base standard deviation (e.g.,

β = 0.2).
A similar equation is used for schedule forecast:

Ŝ n (t) = DaysEACtrad (t) × (1 + CorrFactor (t) · αs) × Yn (t) , n = 1, . . . ,N (4)

where αs can differ from α if time-cost correlation is asymmetric, and Yn (t) is drawn from a risk-based
distribution for schedule.

d. Probability outputs

Once the set of Ĉ1 (t) , Ĉ2 (t) , . . . , ĈN (t) is calculated (and similarly for Ŝ n (t)), we can summarize:

mean C (t) ≈
1
N

N∑
n=1

Ĉn (t); confidence intervals, e.g.,
[
Ĉ5%, Ĉ95%

]
, which capture ranges of outputs

based on levels of confidence.
Thus, each month yields a distribution-based final cost/time forecast, reflecting both the correla-

tion factor and the evolving risk environment.

3.2. Theoretical formulations

a. Stochastic model setup

Let Ω denote the sample space of random outcomes for upcoming intervals. A stochastic process
{Rt} capturing risk multipliers over time is defined, where each RiskFactor(t) modifies the distribution
of Rt. Then the final cost forecast is:

Ĉ (t, ω) = EACtraditional (t) × (1 + CorrFactor (t) · α) × Rt (ω) , ω ∈ Ω (5)

If Rt (ω) ∼ Lognormal
(
µ, σ2

)
orNormal

(
1, σ2

)
, heavier-tailed distributions can be incorporated if

the project is prone to extreme events. The correlation factor enters multiplicatively so that an inflated
duration leads to a proportionally inflated cost outcome.

b. Handling endogenous time-cost correlation

A joint distribution for Ĉ and Ŝ and via correlation matrices is integrated:(
Ĉn (t)
Ŝ n (t)

)
∼ N

(
µ,

∑
(CorrFactor (t) ,RiskFactor (t))

)
(6)

where Σ encodes correlation, and µ is derived from EACtraditional (t) and DaysEACtrad (t). Although
more complex, this technique ensures cost/time expansions happen together in high-correlation in-
tervals. For simplicity, the study adopts separate draws for cost and schedule in most references, but
note that a full correlated approach is feasible.
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c. Partial proof: convergence of forecast distributions
By standard law of large numbers, if each Ĉn (t) is an i.i.d. draw from the cost distribution, then:

lim
N→∞

1
N

N∑
n=1

Ĉn (t) = E
[
Ĉn (t)

]
almost surely (7)

hence, the sample mean converges to the expected final cost under the current risk factor and cor-
relation. Similarly, for large enough N, the sample distribution approximates the true underlying
distribution, letting us estimate confidence intervals accurately.

3.3. Algorithmic Implementation
a. Preliminaries, definitions, and algorithmic procedure

- Traditional EVM

CPI (t) =
EV (t)
AC (t)

if AC (t) > 0, else set CPI (t) = 1 to avoid division by zero (8)

EACCostTrad (t) = AC (t) +
BAC − EV (t)

CPI (t)
(9)

- Schedule
SPI (t) =

EVdays (t)
AD (t)

(10)

where AD(t) is the actual days so far, and EVdays(t) is a schedule-based EV measure (e.g.,
min

(
PlannedDays (t) , 0.9 × ActualDays (t)

)
)

EACDaysTrad (t) = AD (t) +
PlanDaysTotal − EVdays (t)

SPI (t)
(11)

- Risk and correlation
Let RiskFactor(t) be a scalar in [0, 1], representing how volatile or uncertain the project in month t.

RiskFactor is derived from a structured review of incident logs, change-order records, and interviews
with the project managers (for example, 0.0 - negligible uncertainty (routine work, no disruptions),
0.3–0.6 ≈ moderate uncertainty (weather delays, minor design clarifications, modest resource shifts),
0.7–1.0 ≈ high uncertainty (major scope changes, critical-path interference, supply shocks, labor
unrest).

Let CorrFactor(t) be a scalar in [0, 1], indicating how strongly a slip in schedule drives a propor-
tional cost overrun (and vice versa) at month t.

Sampling distribution: a multiplier Zn (t) from a normal distribution N
(
1, (β · RiskFactor (t))2

)
,

or another suitable distribution - which corresponds to the project nature (for example, if certain
delays can create large deviations in cost, then a heavy-tailed distribution might be used).

- Augmented cost/schedule
The final cost distribution for each drawn n at month t is

Ĉn (t) = CostTrad (t) × (1 + CorrFactor (t) · α) ×Zn (t) (12)

Similarly, for schedule

Ŝ n (t) = DaysTrad (t) × (1 + CorrFactor (t) · αs) × Yn (t) (13)

where Yn (t) is sampled from a similar or correlated distribution for days.
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b. Integration into project controls

Augmented EVM is easily integrated into standard project management:
- EVM data input (PV, EV, AC) remains unchanged.
- Two extra indices “RiskFactor(t)” and “CorrFactor(t)” are updated monthly based on project

conditions.
- The model implementing algorithm 1 yields final cost/time distributions, from which managers

can interpret both best guess and high/low risk outcomes.

c. Data structures

For each interval t, the algorithm stores:
- PlannedCost(t), ActualCost(t): standard EVM cost data.
- PlannedDays(t), ActualDays(t): schedule aggregates in tracking EVM-like day counts.
- RiskFactor(t), CorrFactor(t): new indices to reflect environment.
Implementation can be in spreadsheets, by programming language, or commercial EVM tools

that allow user-defined macros or scripts. In this study, the algorithm is implemented using Python
3.13.1 in macOS Sequoia 15.3 platform; the Monte Carlo simulation is performed by functions from
the package SciPy v1.15.2 [31].

4. Results and analysis
4.1. Descriptive overview of projects and input data

The proposed methods are demonstrated and validated through the use of two completed construc-
tion projects, each of which possesses its own distinctive characteristics. A facility named project A
is situated in an industrial zone in the province of Hung Yen, Vietnam. It is a practical example
of the industrial sector, which is distinguished by its straightforward layouts and compressed time-
lines. Project B, by contrast, is a high-rise residential building in Hanoi city (Vietnam), illustrating
the longer durations and more complex designs common in urban developments. Analyzing these
two projects side by side enables the observation how EVM—both the traditional and augmented
methods—handles varying risk profiles, sector-specific constraints, and evolving cost-time dynam-
ics. Both projects’ EVM data were carefully recorded and validated by project managers, who could
also recall their changing risk conditions in monthly intervals. Although the owners permitted the
use of these records for academic purposes, they required that cost figures remain confidential. As
a result, all monetary values are scaled and expressed in currency units (c.u.) rather than explicit
denominations.

Project A was planned for a 12-month horizon, with a final planned cost of 120,000 and a planned
schedule of 300 days. Actual outcomes, however, show that the project ultimately reached a cost of
158,000 and 365 days—surpassing the original baseline in both dimensions. Table 1 shows a portion
of data of the project. Early intervals (months 1–2) incurred relatively modest planned vs. actual
differences (5,000 vs. 5,500 in cost, 30 vs. 34 days), but by mid-project (months 5-8), the gap
widened substantially. For instance, at month 5, the planned cost of 55,000 compares to an actual
of 65,000, and the schedule extends from the planned 150 days to 205. These discrepancies signal
ongoing risk influences and schedule challenges.

Fig. 1 presents the evolution of planned and actual cost and schedule of project A. Within each
month, the RiskFactor rises from 0.3-0.35 in the opening intervals to a peak around 0.72 in month 8
and then tapers back down to 0.45 by month 12. The CorrelationFactor generally follows a similar
upward trend, moving from 0.3-0.4 in the first few months to 0.65 around mid-project before set-
tling near 0.35. Such patterns suggest a highly volatile middle period (months 6-9), where both risk
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Table 1. A portion of managerial data of project A

Month Index
Planned Cost

(c.u.)
Actual Cost

(c.u.)
Planned Days Actual Days Risk Factor Correlation Factor

1 5100 5500 30 34 0.3 0.3
2 10150 11500 60 70 0.35 0.35

. . . . . . . . . . . . . . . . . . . . .
11 120000 153000 300 355 0.5 0.4
12 120000 158000 300 365 0.45 0.35

Figure 1. Planned and actual cost and schedule of project A

and time-cost coupling were more pronounced, contributing to higher actual cost and schedule than
planned.

Project B is a larger effort spanning 22 months of recorded data, with a baseline that plateaus
at c.u.450,000 in planned cost and 540 planned days—but the actual final cost reached c.u.591,000
and 660 days, clearly exceeding both targets. A portion of the project data is shown in Table 2. In
the earliest stages (months 1–2), the gap between planned and actual was modest (e.g., c.u.5,000 vs.
c.u.5,500 cost, 30 vs. 27 days in month 1), but from around month 5 onward, actual figures outpaced
planning assumptions more drastically. By month 10, for example, the planned cost was c.u.300,000
while actual soared to c.u.350,000, and similarly for schedule (300 vs. 315 days).

Table 2. A portion of managerial data of project B

Month Index
Planned Cost

(c.u.)
Actual Cost

(c.u.)
Planned Days Actual Days Risk Factor Correlation Factor

1 5050 5500 30 27 0.3 0.3
2 15100 17000 60 61 0.35 0.35

. . . . . . . . . . . . . . . . . . . . .
21 450000 575000 540 640 0.3 0.25
22 450000 591000 540 660 0.3 0.2

The RiskFactor for project B starts at 0.3 and escalates to 0.85 by month 12, indicating a high-
intensity risk environment in mid-project that persists through roughly month 14. Even after that
point, risk remains non-trivial (0.7–0.8) until eventually declining to 0.3 by month 20–22. The Cor-
relationFactor similarly rises from 0.3 to as high as 0.85 in months 11–12, then decreases in the final
intervals. This signals that, during the central to late phases, cost overruns and schedule slippages
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were strongly interlinked, and managers had to contend with both rising uncertainty and major cost-
time synergy. Fig. 2 depicts planned and actual cost and schedule of the project.

Figure 2. Planned and actual cost and schedule of project B

Both projects therefore provide complementary test cases for the assessment of the augmented
EVM that incorporate interval-based risk monitoring and time-cost correlation and whose results will
be compared with those from the traditional EVM.

4.2. Analysis of the two projects’ actual data
a. Project A

As shown in Fig. 3, the actual cost progresses from a modest figure in month 1 to a final value of
c.u.158,000 by month 12, exceeding the original baseline of c.u.120,000. Traditional EVM initially
projects a considerably higher cost (around c.u.133,000 in the earliest stage), then gradually locks in
on the actual final, ending at c.u.158,000. In contrast, the augmented cost forecast provides a range of
outcomes each month. Early intervals see moderately wide intervals, while mid-project months (e.g.,
5–8) yield significantly broader bounds, reflecting the rising RiskFactor and CorrelationFactor. By
month 12, the augmented method still anticipates possible overruns above c.u.180,000, overshooting
reality but ensuring those scenarios are not ignored.

Figure 3. Project A final cost forecasts updated by months of two EVM methods

A similar pattern appears for Project A’s schedule (Fig. 4). The traditional approach quickly set-
tles near 300–365 days but ends up exactly at the final 365 in month 12. The augmented approach,
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however, produces distributions that sometimes stretch dozens of days above actual figures, partic-
ularly in intervals with a heightened correlation. While these higher estimates do not materialize,
they reflect the possibility that extended labor or overheads could have pushed the final duration be-
yond 365. Managers thus see a buffer for worst-case schedule slippages—helpful for contingency
decisions, even if events ultimately prove less severe.

Figure 4. Project A final schedule forecasts updated by months of two EVM methods

Fig. 5 shows a violin plot of the monthly cost distributions, underscoring how often the range
surpasses the real actual cost. Each violin/box illustrates the full Monte-Carlo cost distribution gener-
ated by the Augmented EVM for that month—its width shows the relative probability density, the box
marks the inter-quartile range, and the central line indicates the simulated mean forecast at comple-
tion. It is observed that in the middle intervals (Months 5–8), the range surpassing the real actual cost
widely. Specifically, the upper tails can approach or exceed c.u.200,000, while actual cost lingers
around c.u.65,000–120,000 in the same window. This “over-coverage” may appear conservative,
yet it accurately mirrors the synergy between cost inflation and schedule delays if certain risks had
compounded. Meanwhile, the traditional EVM single-line forecast does not illustrate that risk expo-
sure—sometimes appearing close to actual cost, other times drifting above or below in a narrower
band.

Figure 5. Project A’s cost distributions by augmented EVM
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Fig. 6 depicts the errors of forecast of both methods. From an error viewpoint, traditional EVM
starts with a large gap relative to final cost in early months but narrows to near zero as the project
closes. The augmented method typically yields a smaller early error—since the actual cost is ex-
tremely low at month 1—but preserves a positive offset throughout the project, sometimes by tens of
thousands. By month 12, the traditional approach is perfectly aligned with the actual, whereas the
robust approach remains above it. From a construction management stance, this overestimation is
essentially the price of ensuring that potential adverse outcomes (amplified by moderate-high corre-
lation factors) remain within the forecast domain, giving managers a richerbasis for proactive control
decisions.

Figure 6. Final forecast error of cost and schedule of project A

b. Project B
Fig. 7 shows the cost forecasts of project B. The actual cost grows slowly in the early intervals

but ultimately reaches c.u.591,000 by month 22, well above its original budgeted plan of c.u.450,000.
The traditional EVM line quickly settles around the c.u.500,000-600,000 range, then glides up to
c.u.591,000 near the project’s close. Meanwhile, the augmented forecast produces a broad cost dis-
tribution in many intervals, particularly from around month 8 onward, where mid- to upper-range
estimates may soar above c.u.800,000 or even approach a million. Although these upper bounds
never become reality - in this project, they demonstrate how the robust method accounts for worse-
case risks, including the high correlation factor (up to 0.85) that can amplify cost if schedule slips
intensify.

Schedule forecasts of project B are depicted in Fig. 8. A similar trend emerges for the schedule
dimension. Throughout the majority of the project, the traditional EVM’s single line hovers around
600 days, eventually converging to the actual outcome of 660 at month 22. The Augmented approach,
however, yields intervals spanning several hundred days—some distributions going as high as 1,000+
days at peak risk points. While such extremes do not materialize, their presence underscores that if
correlated disruptions had escalated, the schedule might have extended far beyond 660 days.

In a violin plot of Project B’s cost distributions (Fig. 9), managers see how each month’s aug-
mented forecast typically overshoots the actual cost—often significantly—yet remains valuable for
risk coverage. By mid-project (months 10–14), the distributions’ upper tails can approach or surpass
one million, reflecting a heightened synergy of high RiskFactor (≥ 0.7) and strong CorrelationFactor
(≥ 0.75). Meanwhile, the traditional EVM line does not communicate such a wide uncertainty; it
merely tracks a steady upward trajectory, converging with actual only in the final intervals.
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Figure 7. Project B final cost forecasts updated by months of two EVM methods

Figure 8. Project B final schedule forecasts updated by months of two EVM methods

Figure 9. Project B’s cost distributions by augmented EVM

From an error perspective (Fig. 10), traditional EVM exhibits a very large initial discrepancy—some
c.u.490,000 or more from the final actual—because it had no early sense of how the project might
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evolve. Eventually, this error shrinks to near zero as traditional EVM dials in the real final cost. By
contrast, the augmented approach starts off with an initially high but more balanced error (given that
the actual cost is minimal in month 1), then typically remains in a positive offset. Essentially, the
robust method includes a “safety buffer” against major overruns that do not occur. Although that
leads to an overestimation bias late in the project, it also highlights how the approach hedges against
correlated cost escalation during high-risk intervals.

Figure 10. Final forecast error of cost and schedule of project B

Project B’s longer timespan and higher final cost highlight the benefit of a distribution-based
perspective: managers see the possibility of reaching far larger overruns than the traditional method
suggests, especially in risk-heavy segments.

5. Discussions and construction management implications
Taken together, projects A and B continue to reveal a fundamental contrast between traditional

(deterministic) EVM and the augmented (distribution-based) approach. In both projects, the tradi-
tional EVM forecasts end up very close to—or exactly matching—the real final values in the con-
cluding intervals. This locking in leads to low final errors near project completion, but offers no
probabilistic understanding of potential overrun scenarios in earlier stages.

In contrast, the augmented forecasts deliberately inflate their intervals when the input data (i.e.,
RiskFactor and CorrelationFactor) indicate higher uncertainty or stronger synergy between schedule
and cost. This often causes the robust approach to overshoot actual outcomes in mid-to-late project
phases, giving an impression of false alarms. From a construction management perspective, however,
this distribution-based method is invaluable for proactive resource allocation and contingency plan-
ning. Even if many of the risk-laden scenarios do not materialize—leading the augmented forecasts
to overshoot—ignoring the possibility of major overruns can be far more damaging should they oc-
cur. Thus, across two real-like projects with distinct timelines (12 months vs. 22 months) and cost
escalations (c.u.158,000 vs. 591,000 final), the augmented EVM provides a more cautious but com-
prehensive view of uncertainty, whereas traditional EVM remains a precise single-point estimate that
materializes late in the project but offers little risk visibility throughout its lifecycle.

The latest results reinforce a fundamental tension between traditional EVM and the more robust,
augmented EVM approach. Traditional methods typically lock onto the real final cost and duration
in the later stages, ultimately minimizing final error—especially in projects A and B, which both saw
deterministic forecasts match their realized outcomes near project close. However, throughout the
bulk of each lifecycle, those single-point EVM lines offered limited visibility into possible budget
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or schedule escalations, providing no probabilistic range for risk-laden months. In practice, man-
agers relying solely on traditional EVM might not realize how high costs could climb under adverse
correlations until performance indices drastically shifted.

By contrast, the augmented approach deliberately inflates its monthly cost and schedule intervals
whenever RiskFactor and CorrelationFactor signal compounding hazards. As evident in the mid-
project phases of both case studies, these forecasts often overshoot actual outcomes, yielding higher
absolute errors near completion. Yet this over-coverage is precisely the mechanism by which the
robust method accommodates worst-case scenarios. From a construction management perspective,
having that broader distribution allows earlier contingency planning: if correlated tasks slipped fur-
ther, or if risk-laden conditions intensified (as at times in project B), managers could have proactively
addressed those potential overruns and schedule extensions before they threatened the critical path.

Looking across projects A and B, it is clear that false alarms—where augmented EVM over-
shoots—are generally less damaging than ignoring potential cost-time synergies altogether. A single
deterministic projection may offer a neat final convergence, but it fails to highlight the range of possi-
ble project “drift” in mid-to-late intervals. Consequently, construction managers seeking to minimize
surprises benefit from the distribution-based perspective, despite its occasional biases. In essence,
the additional risk intelligence better aligns project controls with real-world volatility, enabling more
proactive resource allocations and schedule buffers that reduce the likelihood of crisis if multiple risk
factors compound.

6. Conclusions
This study addresses two critical gaps of traditional earned value management in construction

projects: (i) the lack of the consideration of the correlation between schedule slippage and cost over-
run, and (ii) the static treatment of risk, which ignores temporal variations and mid-project uncertain-
ties. By integrating a monthly (or interval-based) RiskFactor and CorrFactor, the study introduces
augmented EVM, a framework that:

- Retains traditional EVM inputs and metrics (planned value, earned value, actual cost) and the
usual derived indices (CPI, SPI).

- Generates a distribution-based forecast of final cost and final schedule—rather than a single-
point EAC—by combining Monte Carlo sampling with the time-cost correlation logic.

- Adapts each monthly update to reflect evolving risk profiles, allowing managers to see not only
a best-guess outcome but a full range of possible overruns.

Validation on two real-like construction projects demonstrated that, although the traditional EVM
approach can converge well in the late stages of a project (once most uncertainties are resolved),
it often yields large misestimates in early or mid-phases. In contrast, the augmented EVM method
systematically covered a broad spectrum of potential outcomes when RiskFactor and CorrFactor were
high—thereby enabling more proactive resource and contingency planning.

From a construction management perspective, these findings underscore the importance of track-
ing schedule-cost interactions—especially when tasks slip, resource usage expands, or market fluc-
tuations increase overhead. The risk-based distributions produced each month can help stakeholders
appreciate the degree of uncertainty more concretely, strengthening communication and contingency
budgeting. Although the approach sometimes leans conservative (overestimating final cost or sched-
ule when extreme conditions do not materialize), this false alarm is often preferable to the opposite
scenario in which an unanticipated overrun far exceeds traditional EVM forecasts.

The methodological contributions open up new areas for further study, such as incorporating
dynamic risk management into project controls to build robust data-driven strategies that can keep up
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with complicated volatile modern projects.
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[11] González, G. E. G., Casas, G. H. P., Coronado, C. A. L. (2013). Project Manager Profile Characterization
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Appendix A. Algorithm
Algorithm AugmentedEVM(T, {PV, EV, AC, RiskFactor, CorrFactor}, BAC, PlanDaysTotal,

alpha, beta, N):

1: Initialize a data structure Results to store forecast info for each t in [1..T]

2: for t in 1..T do:

3: # 2.1 Compute traditional EVM single-value (Cost)

4: if AC(t) > 0 then:

5: CPI(t) = EV(t) / AC(t)

6: else:

7: CPI(t) = 1.0

8: end if

9: CostTrad(t) = AC(t) + (BAC - EV(t)) / CPI(t)

10:
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11: # 2.2 Compute traditional EVM single-value (Schedule)

12: # e.g. SPI(t) = EVdays(t) / AD(t), if AD(t) != 0

13: # DaysTrad(t) = AD(t) + (PlanDaysTotal - EVdays(t)) / SPI(t)

14:

15: # 2.3 Generate distribution for Cost (Augmented)

16: # RiskFactor(t) in [0..1], CorrFactor(t) in [0..1]

17: sigma_t = beta * RiskFactor(t)

18: costDist = empty list

19: for n in 1..N do:

20: Z_n = sample Normal(1.0, sigma_t^2)

21: costAug_n = CostTrad(t) * (1 + CorrFactor(t)*alpha) * Z_n

22: costDist.append(costAug_n)

23: end for

24:

25: costAugMin(t) = min(costDist)

26: costAugMax(t) = max(costDist)

27: costAugMean(t) = average(costDist)

28:

29: # 2.4 Generate distribution for Schedule

30: # similar pattern, call them alpha_s, a separate correlation weight)

31: # daysDist, daysAugMin(t), daysAugMax(t), daysAugMean(t)

32: # 2.5 Store results for this month t

33: Results[t].CostTrad = CostTrad(t)

34: Results[t].CostAugMin = costAugMin(t)

35: Results[t].CostAugMax = costAugMax(t)

36: Results[t].CostAugMean = costAugMean(t)

37: Results[t].CostDistArray = costDist

38: # similarly for schedule

39: end for

40: return Results
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