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Abstract

This study investigates the free vibration behavior of porous metal foam plates using the Quasi-3D refined
plate theory. We consider three types of pores across the plate thickness: uniform, symmetric, and asymmetric
distributions. Besides, the metal foam plate is reinforced by a Winkler-Pasternak foundation. By employing
the variational principle and Quasi-3D refined theory, we derive the weak form for free vibration analysis.
The Quasi-3D theory is essential for analyzing plates, as it accurately captures transverse shear and normal
deformations, which are vital for understanding the behavior of thick and moderately thick plates. Unlike sim-
pler models, it provides a detailed representation of stress and strain distributions across the plate’s thickness,
enabling precise modeling of complex structural behaviors. The natural frequency of the porous metal foam
plates is determined by solving the explicit governing equation using the isogeometric approach. Additionally,
we examine how the porous coeflicient, porous distribution, and geometry impact the vibrational frequency of
the porous metal foam plate.
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1. Introduction

Porous structures have been the focus of intensive research in recent years due to their excep-
tional mechanical properties. Chen et al. [1] presented the nonlinear vibration of sandwich beams
with a functionally graded (FG) porous metal foam core according to the Timoshenko beam theory.
Jabbari et al. [2, 3] used the classical plate theory (CPT) and analytical methods to investigate porous
metal foam plates’ mechanical and thermal buckling. Besides, Barati and colleagues [4] conducted
analytical free vibration and buckling behaviors of the FG piezoelectric porous plates. Keddouri [5]
employed the refined plate theory (RPT) and analytical method to examine the impact of porous coef-
ficient and porous distribution on the deflection and stresses of FG sandwich plates with porosities. In
the study [6], the free vibration of the metal foam cylindrical shell was investigated using the analyt-
ical approach and FSDT. Rezaei et al. [7] determined the vibrational frequency of the FG plate made
of porous materials based on the first-order shear deformation plate theory (FSDT) and analytical ap-
proach. The analytical nonlinear vibration of the metal foam circular cylindrical shells with graphene
platelets (GPL) reinforcement was examined by Wang et al. [8] using Donnell nonlinear shell theory.
Ebrahimi et al. [9] used the analytical method combined with the RPT to introduce the free vibration
of the porous metal foam plate supported in an elastic foundation. Li et al. [10] employed the FSDT
and generalized differential quadrature (GDQ) method to explore the free vibration behavior of the
porous metal foam truncated conical shell. In addition, using the quasi-3D theory, Zenkour et al.
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[11, 12] analytically solved the bending of FG and FG sandwich porous plates. Nguyen et al. [13]
utilized the polygonal finite element formulation to study the active vibration control of FG porous
metal foam plates with GPL reinforcement.

From the literature reviews above, it is evident that numerous studies have focused on the behav-
iors of metal foam structures using analytical methods. Nonetheless, these techniques are limited to
addressing straightforward problems with uncomplicated boundaries. For practical real-world struc-
tures, numerical methods like FEM, isogeometric analysis, and meshfree methods are preferred. In
addition, Hung et al. [14] studied the buckling and dynamic of the porous metal foam plates according
to the higher-order shear deformation theory (HSDT) with seven variables and moving Kriging mesh-
free method. Hughes et al. [15] pioneered the introduction of isogeometric analysis (IGA) utilizing
NURBS functions. Throughout this decade, numerous researchers have effectively employed IGA
for both plates and microplates. Phung-Van et al. [16] studied the nonlinear transient of the porous
FGM plates using IGA. Besides, the free vibration, bending and dynamic control of the piezoelectric
plates using the combination of HSDT and IGA were presented in ref. [17]. Lieu et al. [18] em-
ployed IGA to examine the free vibration of the FG porous plate with GPL reinforcement. The free
vibration of the mutidirectional FG plates using IGA was investigated by Son et al. [19, 20]. Based
on the Quasi-3D theory and modified couple stress theory, Thai et al. [21] investigated the buckling
and free vibration of the multilayer FG plates reinforced with graphene platelets (GPLRC). Thai et
al. [22] used the MSGT, HSDT and IGA to study the free vibration of the multilayer FG GPLRC
microplates. Currently, there is a lack of research utilizing IGA based on Quasi-3D refined theory
to investigate the effects of porosity properties on the frequency of porous metal foam plates resting
on a Winkler-Pasternak foundation. This article address this gap by constructing a numerical model
for metal foam plates characterized by symmetric, asymmetric and uniform porous distributions. The
impact of the porous coefficient, porous distribution and geometry on the behavior of the metal foam
plate presented.

2. The fundamental equations

2.1. The effective material properties

Let’s contemplate porous metal foam plates with pores distributed throughout thickness of the
plate in three manners: uniform (P-I), symmetric (P-II), and asymmetric (P-III). The porous metal
foam plate and porosity distributions are shown in Fig. 1. The material properties of these microplates
are outlined as follows [23]
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in which

em=1-—141—-¢ 2)
where e, and e are respectively denote the density porosity and porous coefficients. It is important
to note that this study does not consider the local effects of pores. The description of e, and ey is

provided bellow
Ey G
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where E1,G1, p1 and E», G, py are respectively represent the maximum and minimum values of elas-
tic modulus, shear modulus, and mass density of the plate.
Besides, based on [23], the Poisson’s ratio v is considered constant throughout the plate thickness.

P-1I

y

P11

Figure 1. The porous metal foam plate

2.2. The effective material properties
Based on the Quasi-3D refined plate theory [24], the displacement fields are described as follows

U=uy—Iwpy+ f(Z) W x ZS
V=V —ZIWpy t f@ Wi,y with  f(z) =z - PYEE

3h
w=wp + ¢ (2) wy

1
¢@=cf "(2) 4)

where ug and vy denote displacement of the middle surface, while wb and ws are respectively repre-
sent bending and shear deflection; the index “,” denotes a differential operator.
The variational principle for free vibration of the porous plate resting on an elastic foundation is

defined as follows
oU—-6K-6W=0 5)

121



Hung, P. T., et al. / Journal of Science and Technology in Civil Engineering

where U, W and K represent the strain energy, work and kinetic energies, respectively.
The strain energy of the metal foam plate is described by

U= f elodv (6)

Vv

where € and o represent the strain and Cauchy stress tensors, respectively.
The linear strain tensor of the porous plate is presented as follow

1 oo d o0 0
S—E[Vu+(Vu)] with V—{a % (9_z} (7)

where

u
u={ v }=u1+zuz+f(z)u3+<b(z)u4

w
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uo Wh,x Ws x 0
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Wb O O WS
After the substitution Eq. (8) into Eq. (7), the linear strain tensor is reformed as follows
Ex
& &y ,
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&y Yxy 9
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The stress-train relation based on the Hook law is presented by
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Substituting 0, and o in Eq. (9), into Eq. (6), the virtual strain energy is reformed by following

6U = f 58] Dp&pdQ + f 5y Dyy dQ (13)
Q Q
where
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The expression for virtual kinetic energy can be expressed as follow

0K = f su’ L,udQ (15)
Q
in which
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The virtual work performed by an elastic foundation can be represented as follows
SW = — f (kuw — ks V2w) SwdQ (17)
Q

in which k,, and k; are respectively represent the spring and shear coefficients of the foundation.
Substituting Egs. (13), (15) and (17) into Eq. (5), the weak form of the porous metal foam plates
is reformed by

f 6&; Dp&pdQ + f 5y Dy dQ + f s’ 1, 1dQ

(18)
- f [kww - ksvzw] owdQ = 0
Q

2.3. NURBSs approximation

In two dimensions (2D), NURBS basis functions [15] are defined using two knot vectors, U =
{m, M2y es nn+p+1} and V = {{1, Oynn, {m+q+1}. Here, n and m represent the number of control points
in the respective directions, while p and g correspond to the polynomial orders. The computation of
the basis functions for 2D B-splines includes:

Nij,0)=Nipy My Q) (19)
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The B-spline basis functions N and M are generated using the Cox-de Boor algorithm, as outlined
as follows

- 1 if "
Mio©) = { 0 otrerive T @=0) 20
) (20)
- Vit i< <nin B
Nio () _{ 0 otherwise (p=0)
and [-¢ L1 =<
M. LR B Y B LI RY y R >1
]q(g) §]+z_§] Jq 1)+ §j+q+1 _§j+1 jtlg 1) (q ) e

Ni+p+1 =1 =
+———Nuip1 () (p21)
Ni+p — Ni Ni+p+1 — Ni+1
NURBS basis functions are derived by combining the B-spline basis functions with their respec-
tive weights, as demonstrated below

Nip () Mg (D wi,
Nij0.0) = N (k) = —2—— 21> (22)
% XN, (M5, (Dw;;
i=1j=1
The displacement fields according to the NURBS basic functions in Eq. (22) are approximated by
Ne (x,y) 0 0 0
mxn
. 0 N (x,y) 0 0
h _ _ e
u (x,y>—;Ne (rny)de with Ne(ey)=| 0" Nxy 0 (23)
0 0 0 Ne (x,y)
where N, (x,y) is NURBs basic function.
The strain tensor after the substituting Eq. (23) into Eq. (10), is reformed as follows
mXn T mXn mxXn
& = Z{ Bllje Bge Bge Bfle } d, = ZBbede; Vs = ZBsede (24)
e=1 e=1 e=1
in which
Nex 0 00 0 0 —Neyx O 0 0 0 Neyx
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0 0 00 00 0 0 000 0
(25)
000 O
Bb:OOOO B:OOONe,x
de 000 0} 5 0 0 0 Ny
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In addition, the displacement vector i can be reformed as follows
mXn T mXn
a= { Nie Noo Nz N } d. = ZNede (26)
e=1 e=1
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where
T
d, = { Ude V0e Wbe Wse }
N 0O 0 O 0 0 -Nx O
Nie=| 0 No. 0 O |; Nop=|0 0 -N,, O
0 0 N O 00 0 O (27)
0 0 0 Ny 000 O
N3g=[{0 0 O Ngy |5 Nge=| 0 0 0 O
000 O 0 0 0 N,
The weak form for vibration behavior of the metal foam plate is presented by
(K+Ky-w’™)d=0 (28)
where K and M respectively denote the global stiffness and mass matrices, as expressed below
K= f BID,B,dQ + f B'DB,dQ; K/ f B/ (kyBs — k,VBy) dQ
Q Q Q (29)

M:fNTImNdQ; B;={0 0 N, AN./9 }; d=de
Q

where w, d respectively represent natural frequency and mode shapes.

3. Numerical results

Let’s examine rectangular plates made of porous metal foam, with length a, width b and thick-
ness h. The material properties are obtained from [25] as follows: E; = 200GPa, v, = 0.33,p; =
7850 kg/m>. For numerical examples, the plate is modeled using an 11x11 meshes grid. The bound-
ary conditions (BCs) are applied as follows

- Fully simply supported (SSSS): (vo, wp, Wy)lx=04 = 0; (10, wp, Wy)ly=04 = 0.

- Fully clamped (CCCC): (ug, vo, Wi, Ws, W, Ws,")|x:o,a;y:0,b =0.

- Simply supported at y = 0,0 and clamped at x = 0,a (SCSC): (uo, wp, wy)ly=0p, = 0;
(uo, V0, Wh, Ws, Wh s Ws,n)xzo,g =0.

The following dimensionless natural frequency and spring and shear coefficients of the FG plates
are presented as follows

_ _ Enh?
W = Wh\pm/En; K, = a4kw/Dm; Ky = azks/Dm; Dy, = — (30)
12(1-v3)
For the metal foam plate, the dimensionless natural frequency and spring and shear coefficients
are taken by

E\W3

Q =100wh+pi/E1; K, =d*k,/D; K,=d’ks/D; D= ——
12(1-12)

€19

Firstly, the free vibration of the FG plate made of Al/ZrO, with the material properties are taken
from [26], is examined. The first dimensioless natural frequency @ of the FG plate resting on elastic
foundation is tabulated in Table 1. The results are compared with those given by Alazwari et al.
[26] using the Quasi-3D theory and analytical method. According to the data in Table 1, the present
results are in good agreement with the reference’s results. Next, the first normalized vibrational
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frequencies Q of the SSSS porous rectangular plates with different values of the parameters ey and
b/a are examined and tabulated in Table 2. The results of the present study are compared with the
reference solution provided by Hung et al. [25] using the refined plate theory and IGA. We can see
from Table 2, that the results are matched very well with the published results. The comparison results
in Table 1 and Table 2 demonstrate that the proposed method is accurate and consistent to investigate
the free vibration of the porous metal foam plates.

Table 1. The first dimensionless frequency of the SSSS FG square plate with various power indexes (a/h = 5)

n
K, K 2 3 5
Present Ref. [26] Present Ref. [26] Present Ref. [26]

0 0 0.2285 0.22848 0.2292 0.22901 0.2299 0.22952
10 0 0.2307 0.23062 0.2315 0.23130 0.2323 0.23199
10 10 0.2697 0.26937 0.2730 0.27256 0.2766 0.27610

Table 2. The first non-dimensional frequencies of the SSSS porous rectangular plates with various
thickness-to-width ratios (a/h = 10,¢9 = 0.2, K,, = 0, K, = 0)

bla
Porosity distribution e 1 2 3
Present Ref. [25] Present Ref. [25] Present Ref. [25]

P-I 0.1 5.7395 5.7276 3.6317 3.6268 3.2357 3.2318
0.2 5.6361 5.6244 3.5663 3.5615 3.1774 3.1736
0.3  5.5239 5.5125 3.4953 3.4906 3.1142 3.1104

P-11 0.1 5.8157 5.8052 3.6820 3.6777 3.2809 3.2774
02 5.7999 5.7905 3.6743 3.6704 3.2744 3.2713
0.3 5.7898 5.7806 3.6704 3.6667 3.2714 3.2684

P-111 0.1 5.7544 5.7422 3.6415 3.6363 3.2445 3.2404
0.2 5.6668 5.6527 3.5864 3.5800 3.1955 3.1902
0.3 55711 5.5529 3.5262 3.5169 3.1419 3.1340

Table 3. The first six non-dimensional natural frequencies of the porous square plate with various porosity
coeflicients (a/h = 10, K,, = 20, K, = 2)

BCs Mode €0
0.1 0.2 0.3 04 0.5 0.6
SSSS 1 6.2076 6.1290 6.0457 5.9568 5.8612 5.7575
2 14.0963 13.8707 13.6277 13.3632 13.0719 12.7452
3 14.0963 13.8707 13.6277 13.3632 13.0719 12.7452
4 18.9451 18.6038 18.2334 17.8268 17.3739 16.8588
5 21.4240 21.0653 20.6778 20.2548 19.7867 19.2589
6 26.0387 25.5966 25.1186 24.5963 24.0176 23.3639
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BCs Mode 0
0.1 0.2 0.3 0.4 0.5 0.6
CCCC 1 11.1434 10.9642 10.7711 10.5609 10.3291 10.0691
2 20.6769 20.3262 19.9470 19.5327 19.0736 18.5552
3 20.6769 20.3262 19.9470 19.5327 19.0736 18.5552
4 28.6271 28.1340 27.6003 27.0164 26.3686 25.6357
5 33.6431 33.0598 32.4283 31.7372 30.9699 30.1012
6 33.7792 33.1931 32.5583 31.8637 31.0924 30.2190

Table 4. The effect of the various porosity distribution and parameter a/h on the first six non-dimensional
frequencies of the porous square plate (¢p = 0.2, K,, = 20, K, = 2)

SSSS CCCC
Mode alh
10 20 30 10 20 30
P-1
1 6.1290 1.5676 0.6998 10.9642 2.8387 1.2625
2 13.8707 3.6674 1.6487 20.3262 5.5598 2.5050
3 13.8707 3.6674 1.6487 20.3262 5.5598 2.5050
4 21.0653 5.7316 2.5939 28.1340 7.9827 3.6346
5 25.5966 7.0853 3.2202 33.0598 9.5821 4.3899
6 25.5966 7.0853 3.2202 33.1931 9.6428 4.4153
P-1I
1 6.2798 1.6097 0.7189 11.2649 2.9211 1.2998
2 14.1978 3.7725 1.6979 20.8226 5.7218 2.5806
3 14.1978 3.7725 1.6979 20.8226 5.7218 2.5806
4 21.5103 5.8928 2.6714 28.7304 8.2098 3.7438
5 26.0984 7.2807 3.3160 33.7012 9.8497 4.5211
6 26.0984 7.2807 3.3160 33.8470 99123 4.5472
P-III
1 6.1572 1.5754 0.7033 11.0192 2.8535 1.2692
2 13.9330 3.6870 1.6578 20.4200 5.5893 2.5187
3 13.9330 3.6870 1.6578 20.4200 5.5893 2.5187
4 21.1518 5.7618 2.6083 28.2505 8.0245 3.6545
5 25.6956 7.1220 3.2380 33.1875 9.6315 4.4139
6 25.6956 7.1220 3.2380 33.3240 9.6927 4.4394

Moving forward, the effect of the porosity coeflicient, porous distribution and geometry on the
free vibration of the porous metal foam square plates is examined. The impact of the porous co-

efficient on the lowest six frequencies of the uniform porous square plate is presented in Table 3.

According to the results in Table 3, an increase in the porous coefficient leads to a decrease in the

non-dimensional frequencies of the metal foam plates. Table 4 shows the porous plate’s first six nor-
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Table 5. The effect of the length-to-width ratio on the first six non-dimensional frequencies
of the porous rectangular plate (¢p = 0.1, K,, = 20, K, = 2)

alb
BCs Mode
1 1.5 2 2.5 3
SSSS 1 6.2780 4.4220 3.7764 3.4798 3.3195
2 14.2484 8.1376 5.9050 4.8540 42783
3 14.2484 12.5847 9.3466 7.0987 5.8538
4 21.6307 14.0239 12.0046 10.1545 8.0167
5 26.2716 15.9938 13.9491 11.7367 10.7383
6 26.2716 21.4189 13.9637 12.9894 11.5914
CCCC 1 11.2836 8.5201 7.7769 7.4954 7.3622
2 20.9078 12.5185 9.7532 8.6212 8.0760
3 20.9078 18.8806 13.2055 10.6686 9.3874
4 28.9041 18.9530 17.9622 13.6448 11.3525
5 33.9406 22.1952 18.3791 17.4716 13.9677
6 34.0827 26.9959 20.0631 18.1389 17.2200

malized vibrational frequencies with various porous distributions and length-to-thickness ratios. It
can be seen from Table 4 that with a rise in the length-to-thickness ratio, the frequencies of the porous
plates rise as well. The influence of the width-to-length ratio on the first six dimensionless natural fre-
quency of the metal foam restangular plates is also exmined and shown in Table 5. With an increase
of the width-to-length ratio, the natural frequency decreases. Moreover, the symmetric distribution
offers the highest natural frequency among the porosity distributions, followed by asymmetric and
uniform distributions. Fig. 2 and Fig. 3 respectively plot the first normalized natural frequency Q
of the asymmetric porous metal foam plate with various values of spring and shear coefficients of a
elastic foundation. As shown in Fig. 2, and Fig. 3 an increase in the spring and shear coefficients
leads to a decrease in the vibrational frequency of the porous plate. In addition, among the boundary
conditions, the CCCC boundaries provide the highest frequency, while the SSSS boundaries provide
the smallest frequency.
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Figure 2. The first dimensionless natural frequency Figure 3. The first dimensionless natural frequency
of the metal foam plate with various values of K, of the metal foam plate with various values of K
and BCs (P-1II, a/h = 10,¢p = 0.3, K; = 2) and BCs (P-1IL, a/h = 10, ¢p = 0.3, K,, = 20)
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4. Conclusions

In this study, the free vibration of porous metal foam plates with uniform, symmetric, and asym-
metric porosity distributions is studied using IGA and Quasi-3D refined theory with four variables.
The explicit governing equations of the plate are derived based on variational principles. The study
examines the influence of pore distribution, length-to-thickness ratio, and boundary conditions on the
natural frequency of the metal foam plates. The results indicate that a rise in the length-to-thickness
and width-to-length ratios leads to smaller natural frequencies of the porous plates. Additionally, the
plate’s stiffness decreases with a higher porosity coefficient. Between the porosity distribution, sym-
metric distribution provides the highest stiffness, while the uniform distribution provides the smallest.
An increse of the spring and shear coefficients of a Winkler-Pasternak foundation make the natural
frequency of the metal foam plates rise.
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