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Abstract

This paper is dedicated to the study of geometrically nonlinear behaviour of variable thickness functionally-
graded plates subjected to uniaxial compressive forces. The plate’s geometry in this study could have either
uniform thickness or symmetrical parabolic-form thickness. To develop the theoretical formulation of the prob-
lem, the kinematics of the plates are described by the third-order shear deformation theory for plate structures
with thin and moderate thickness. The geometrical nonlinearity is accounted for by von Karman’s assumptions,
while the rule of mixture is used to evaluate the effective material properties of functionally graded materials
whose constituent phases vary across the plate’s thickness. The governing equation is derived via the prin-
ciple of virtual work with assumptions of small-strain problems. The Isogeometric Analysis is then used to
discretize the governing equations. Arc-length iterative technique with imperfection is used to trace the equi-
librium paths of the problem. Various numerical examples are also performed to validate the accuracy of the
proposed numerical model and investigate the nonlinear response of the variable thickness functionally graded
plates.
Keywords: functionally graded materials; geometric nonlinearity; post-buckling analysis; variable thickness;
isogeometric analysis.
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1. Introduction
Variable-thickness plates are extensively utilized in numerous practical applications in the field

of structural engineering, e.g. marine structures [1], aircraft [2], civil engineering [3], mechanical
engineering [4], etc. There are various profiles of variable thickness plates that have been extensively
investigated for practical applications in the literature, namely taped plates [5–7], quadratic-thickness
variation plates [8, 9], and other profiles of thickness variations [10, 11]. Thanks to the preferable
structural performances of variable thickness plates, there is no doubt that a large number of publi-
cations have been devoted to the analyses of the mechanical responses of variable thickness plates
under different loading scenarios, e.g. static bending, free vibration, buckling and stability, etc. A
recent literature review of such studies was addressed by Thai et al. [12]. Overall, the studies on
mechanical behaviour of variable thickness plates conducted previously are based on analytical solu-
tions, numerical approach, and experimental programs. Amongst those methodologies, the numerical
modelling approach has been exensively adopted to the study the structural performance of variable
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thickness plates [12]. This fact could be attributed the complications of the problems regarding geo-
metrical aspects and boundary conditions that are not easily treated within the framework of analytical
studies.

In real-life applications, the plate-like structures are prone to extreme loading circumstances and
the structures would experience large deflections. This unfavourable situation in practice necessi-
tates the design process to account for the geometric nonlinearity of the structures to ensure a safe
design. Up until now, various studies have been conducted to analyse the geometrically nonlinear
response of variable thickness plates in the literature. One of the earliest studies on the nonlinear
behaviour of variable thickness was carried out by Reddy and Huang [13], in which the authors em-
ployed the finite element method to study the nonlinear static bending of annular plates. By using a
general finite element method, Raju and Rao [14] examined the post-buckling response of linearly ta-
pered isotropic circular plates under thermal conditions. By using the differential quadrature method,
Malekzadeh and Karami [15] studied the nonlinear flexural vibration with large amplitudes of ta-
pered plates having elastically restrained edges. By adopting the finite element approach, Ganesan
and Liu [16] present a study on the nonlinear analyses of the first-ply failure load and stability con-
ditions of tapered laminated plates subjected to uniaxial compression. A nonlinear stability analysis
of tapered curved composite plates was also conducted by Akhlaque-E-Rasul and Ganesan [17]. In
this study, the authors adopted the first-ply failure analysis and the simplified non-linear buckling
analysis to seek the critical properties of the tapered curved plates so that the structures would not
fail before global buckling. The study of nonlinear bending and post-buckling of variable thickness
plates made from isotropic and laminated composite material was presented by Le-Manh et al. [18].
In this study, the authors employed the Mindlin theory to model the kinematics of the plates and
the isogeometric analysis was used to solve the problems. The nonlinear vibration and dynamic in-
stability of internally-thickness-tapered composite plates were addressed in the study of Darabi and
Ganesan [19], in which Navier’s double Fourier series was employed as solution techniques and the
taped plates were subjected to parametric excitation. The nonlinear bending behaviour of rectangular
magnetoelectroelastic plates with linearly varying thickness was studied by Wang et al. [20], in which
the differential Galerkin method was used to develop the numerical models. In the study of Dastjerdi
and Tadi Beni [21], the nonlinear bending of small-scaled plates with irregular variable thickness
was investigated. The plates in this study were subjected to nonuniform loading in a thermal envi-
ronment, while the semi-analytical polynomial method was adopted to yield numerical solutions. A
unified wavelet algorithm was proposed by Yu [22] to analyse the nonlinear static bending response
of variable thickness plates, which lay on nonlinear triparametric elastic foundations. This study was
also extended later to investigate the large deflection behaviour of tapered plates subjected to three-
dimensionally hygrothermal stresses [23]. Recently, Thai et al. [12] studied the nonlinear bending
of variable thickness plates made from multi-directional functionally graded materials based on the
isogeometric analysis approach and the third-order shear deformation theory.

As highlighted in the previous literature review, previous research on the nonlinear response of
variable thickness plates has not been extensively explored, especially for the geometrically nonlinear
static analyses of the plate under the effects of in-plane compressive stress, i.e. post-buckling analysis
[18]. Consequently, the primary objective of this study is to develop a numerical model to analyze the
geometrically nonlinear response of the variable thickness plates under uniaxial compressive forces.
The numerical model developed in this study could be considered as an extension of the previous
work [12]. In addition, the plates addressed in this study are assumed to be made from Functionally
Graded Materials (FGMs) [24] with the inhomogeneous material being graded along the thickness of
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the plates. It is noted that FGMs are widely known as advanced composite materials having preferable
mechanical properties compared to traditional laminated composites [25] and the investigations for
the structural characteristics of plate-like structures have been extensively investigated in the literature
[25–31]. To develop the governing equations of the geometrical nonlinear problems, the principle of
virtual work and the third-order shear deformation theory are employed, while geometric nonlinearity
is addressed using von Karman’s assumptions. The Isogeometric Analysis (IGA) approach, recog-
nized as an advanced finite element method [32, 33], is used to discretize the governing equation to
establish the system equation of the problems. To deal with the nonlinear algebraic system equation,
the acr-length iterative technique with imperfection is adopted. Various numerical examples are also
presented to validate the accuracy of the proposed numerical model and analyse the geometrically
nonlinear behaviour of the variable thickness functionally graded (FG) plates.

2. Mathematical formulation
2.1. Profile of variable thickness plates and material homogenisation

In this study, rectangular plates having a uniform thickness (denoted UT plates) and symmetrical
parabolic-form thickness (denoted as PT plates) are investigated. The geometrical profiles and origin
or Cartesian coordinates are depicted in Fig. 1. It is assumed that the PT plates only have variable
thickness along the x-direction and the thickness profile is symmetrical to the middle plane of the
plates.

Figure 1. Geometrical profiles of uniform-thickness plate (left) and
symmetrical parabolic-form thickness plate (right)

Mathematical expression of the thickness profile of the plates is given by:

zt(x, y) = −zb(x, y) =
hmin

2
+ 2 (hmax − hmin)

{
x
a
−

( x
a

)2
}

(1)

where zt and zb are the coordinates along the z-axis of the top surface and bottom surface, respectively,
hmin and hmax are the smallest and largest thickness of the plate along the x-direction. The planar sizes
of the rectangular plates are a and b as shown in Fig. 1. As the coordinate origin is located in the
middle plane of the plate, the uniform-thickness profile can be obtained by setting hmin = hmax and
the thickness of the plate is given by: h (x, y) = zt(x, y) − zb(x, y).

Both UT plates and PT plates addressed in this study are assumed to be made from FGMs whose
material constituents are graded long thickness direction. By adopting the rule of mixture [34], effec-
tive elastic modulus Ee and effective Poisson’s ration νe are given by

Ee = (Ec − Em) Vc + Em; νe = (νc − νm) Vc + νm (2)

where subscripts c and m denote the material properties of ceramic and metal phases, respectively. Vc

represent the volume fraction of the ceramic constituent is given by

61



Son, T. / Journal of Science and Technology in Civil Engineering

Vc =

(
z
h
+

1
2

)n

(3)

in which n is the material gradient index. As seen in Eqs. (2) and (3), the material variation profiles
at every location within the PT plate are similar as given in Eq. (3), however, the actual volumes of
material phases are different due to the variation of plate thickness h(x, y) along planar directions.

2.2. Kinematics and governing equation of the geometrically nonlinear problems
To describe the kinematics of the plates, the equivalent single-layer model based on the third-order

shear deformation plate theory proposed by Reddy [35] is employed:
u1
u2
u3

 =


u
v
w

 + f (z)


θx
θy
0

 + g (z)


−w,x
−w,y

0

 (4)

where f (z) = z − 4z3
/
3h2; g (z) = 4z3

/
3h2; u1, u2, and u3 are displacements of any material point

within the plate’s domain along x, y, and z directions, respectively; u, v, and w are corresponding
displacements of material points location on the middle plane of the plates; θx and θy are the corre-
sponding rotations along x and y directions, the comma notation denotes the partial derivative.

The nonlinear strain-displacement relations in the sense of von Karman’s assumptions are pre-
sented by

ε = ε0 + f (z) ε1 + g (z) ε2 +
1
2
εnl; γ = f ′ (z) γ1 +

(
1 − g′ (z)

)
γ2 (5)

in which the prime notation represents the derivative with respect to z, and

ε =


εxx

εyy

γxy

 ; ε0 =


u,x
v,y
u,y + v,x

 ; ε1 =


θx,x
θy,y
θx,y + θy,x

 ; ε2 =


−w,xx

−w,yy

−2w,xy

 ; εnl =


(
w,x

)2(
w,y

)2

2w,xw,y

 (6)

γ =

{
γxz

γyz

}
; γ1 =

{
θx
θy

}
; γ2 =

{
w,x
w,y

}
(7)

According to the von Karman’s assumptions [36, 37], nonlinear strains and stress resultants are
derived by assuming that the rotational in terms of transverse displacement can be moderate and their
squares and products can not be neglected. This means that all the nonlinear components in the Green
Largrange strains can be neglected except those related to the derivatives of transverse displacements
in the plate problems. The von Karman’s assumption has been extensively used in the literature to
analyse the geometrical nonlinear response of plate structures and physically accurate results can be
obtained for the plates that undergo large displacements yet moderate rotations [38].

For plate problems, the constitutive equation is given in Eq. (8), in which the stretching of the
plates along the thickness direction and corresponding stress component is neglected.

σxx

σyy

σxy

 = Qb


εxx

εyy

γxy

 ;
{
σxz

σyz

}
= Qs

{
γxz

γyz

}
(8)

Qb =
Ee

1 − ν2e

 1 νe 0
νe 1 0
0 0 (1 − νe)/2

 ; Qs =
Ee

(1 + νe)

[
1 0
0 1

]
(9)
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The governing equation of the geometrically nonlinear problems of the plates under uniaxial com-
pression is derived by using the principle of virtual. In addition, small-strain assumptions, especially
for plate problems, are adopted such that there could be no differences between stress and strain
measures [37]. Therefore, the governing equation can be presented in accordance with the initial
undeformed geometry as follows ∫

V
σi jδεi jdV =

∫
S

tiδuidS (10)

where V denotes the volume of the plates, S presents the boundaries where the compressive forces
are applied, ti is the compressive force and ui is the associated degree of freedom to which the load is
applied.

By substituting Eqs. (5) and (8) into Eq. (10), and take integration over the thickness h, the
governing equation can be rewritten as follows∫

Ω

δ

(
ε̄ +

1
2
ε̄nl

)T

C̄
(
ε̄ +

1
2
ε̄nl

)
dΩ =

∫
S
δūT t̄dS (11)

where Ω designates the middle plane of the plate as an equivalent single-layer model. Other compo-
nents in Eq. (11) can be presented by:

ε̄ =



ε0
ε1
ε2
γ1
γ2


; ε̄nl =



εnl

0
0
0
0


(12)

C̄ =


Cb11 Cb12 Cb13 0 0
Cb12 Cb22 Cb23 0 0
Cb13 Cb23 Cb33 0 0

0 0 0 Cs11 Cs12
0 0 0 Cs12 Cs22


(13)

(Cb11,Cb12,Cb13) =

zt∫
zb

(1, f (z) , g (z)) Qbdz

(Cb22,Cb23,Cb33) =

zt∫
zb

(
( f (z))2 , f (z) g (z) , (g (z))2

)
Qbdz

(Cs11,Cs12,Cs22) =

zt∫
zb

((
f ′ (z)

)2 ,
(
f ′ (z)

) (
1 − g′ (z)

)
,
(
1 − g′ (z)

)2
)

Qsdz

(14)

It is noted that Cb12 and Cb13 are zero matrices once the plates are homogeneous, i.e. the neutral
surface and the mid-plane are identical. For the plates with nonhomogeneous material in the thickness
direction like FG plates in this study, these matrices include non-zero components due to the differ-
ences between the neutral surface and middle plane. The appearance of such components leads to a
coupling relation between membrane stress resultants and bending stress resultants in the governing
equation. For problems with only inplane forces being considered, the components of ū and t̄ are
given by: {

u v
}T

; t̄ =
{

tx ty
}T

(15)
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2.3. NURBS-based discretization and solution methodology
In this section, the governing equation obtained previously is discretized by using the IGA ap-

proach, whereby NURBS basis functions are used to present the geometry of the plates and serve as
interpolation functions of displacement variables:

S1D (ξ) =
n∑

i=1

PiN
p
i (ξ) (16)

Ω2D =

n∑
i=1

m∑
j=1

Rp,q
i, j (ξ, η)Bi, j (17)

u =
ncp∑
i=1

Ri(ξ, µ)di (18)

u =
{

u v θx θy w
}T

; di =
{

ui vi θxi θyi wi
}T

(19)

where P and B are the set of control nets used to define the geometry of the plates’ boundaries and the
middle plane of the plates, d is the displacement-variable vector associated with a control point, n and
m denote the indices of control points within the control net, while ncp is the total number of control
points used to define an element. N(ξ) and R(ξ, η) are 1D and 2D NURBS basic functions. Detailed
expressions about NURBS functions and IGA are skipped in this section since the approach has been
employed extensively for beams, plates, shells, and other structural mechanics problems [39]. The
fundamentals of NURBS and IGA can be found in the monograph book [33] and the original study
[32].

Based on the IGA approach with NURBS being used as interpolation functions, the following
system equation is obtained from the governing equation given in Eq. (11):

Kd = F (20)

in which

K =
∫
Ω

(
B̄T

lT C̄B̄l +
1
2

B̄T
lT C̄B̄nl + B̄T

nlT C̄B̄l +
1
2

B̄T
nlT C̄B̄nl

)
dΩ (21)

F =
∫
S

NT
S t̂dS (22)

B̄l =



Bε0
Bε1
Bε2
Bγ1
Bγ2


; B̄lT =



BT
ε0

BT
ε1

BT
ε2

BT
γ1

BT
γ2


; B̄nl =



Bεnl

0
0
0
0


; B̄nlT =



BT
εnl
0
0
0
0


(23)

NS =
{

Ns (ξ) Ns (ξ) 0 0 0
}

; t̂ =
{

tx ty 0 0 0
}

(24)

where Bε0, Bε1, Bε2, Bγ1, Bγ2, and Bεnl are strain-displacement matrices, whose details are given as
follows:

ε0 = Bε0d; ε1 = Bε1d; ε2 = Bε2d; γ1 = Bγ1d; γ2 = Bγ2d; εnl = Bεnld (25)
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Bε0 =

 R,x 0 0 0 0
0 R,y 0 0 0

R,y R,x 0 0 0

 ; Bε1 =

 0 0 R,x 0 0
0 0 0 R,y 0
0 0 R,y R,x 0

 (26)

Bε2 =

 0 0 0 0 −R,xx

0 0 0 0 −R,yy

0 0 0 0 −2R,xy

 ; Bγ1 =
[

0 0 Rc 0 0
0 0 0 Rc 0

]
; Bγ2 =

[
0 0 0 0 R,x
0 0 0 0 R,y

]
(27)

It is noted that the C1-continuity requirement in developing those matrices is satisfied naturally
based on the inherent features of the IGA approach.

To solve the nonlinear equation presented in Eq. (20) for plate structures subjected to in-plane
compressive forces, the arc-length technique is used in this study. It is worth noting that the adoption
of the arc-length technique in this study aims to generalize the numerical model, enabling it to trace
potential stability paths of the plates under in-plane compressive forces, such as snap-through and
snap-back paths. Detailed procedure of the arc-length technique could be found in the well-known
textbooks of Crisfield [40] and Reddy [37]. The iterative numerical technique requires the develop-
ment of a tangent stiffness matrix, which is given as follows [12]:

KT =
∂K
∂d

d +K =
∫
Ω

(
B̄T

lT C̄B̄l + B̄T
lT C̄B̄nl + B̄T

nlT C̄B̄l + B̄T
nlT C̄B̄nl + B̄T

g N̄B̄g
)

dΩ (28)

in which

Bg =

[
0 0 0 0 R,x
0 0 0 0 R,y

]
(29)

N̄ =
[

Nx Nxy

Nxy Ny

]
(30)


Nx

Ny

Nxy

 = Cb11

(
ε0 +

1
2
εnl

)
+ Cb11ε1 + Cb13ε2 (31)

To alleviate the numerical difficulties in solving the nonlinear problems of plate structures sub-
jected to in-plane compressive forces, a relatively small imperfection is imposed on the initial geom-
etry of the plates [41]. In this study, the imperfection profile of rectangular plates is assumed to have
a sinusoidal shape, and only transverse deflections are considered as given by

wim f = w0 sin
(
πx
a

)
sin

(
πy
b

)
(32)

where w0 is the magnitude of the imperfection and it is taken as 0.001hmin. After conducting nu-
merical tests, this imperfection value is shown to be sufficient for yielding stable equilibrium paths
without affecting the overall response of the structures.

3. Numerical examples
3.1. Verification examples

In this section, the accuracy of the proposed numerical model is assessed by revisiting the pre-
vious post-buckling problems studied previously in the literature. The first verification example is
dedicated to the post-buckling problem of a rectangular FG plate having a uniform thickness, which
was investigated by Sitli et al. [42]. The FG plate in this example has planar dimensions of a =
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0.25 m, b = 0.5 m, and the thickness ratio is h/b = 0.01. The plate is subjected to a uniformly dis-
tributed compressive force Nx at x = 0 and x = a. The ceramic and metal constituents of the plates are
Al2O3 and Al, respectively, with Ec = 380 GPa, Em = 70 GPa, νc = vm = 0.3, and n = 1. Two types
of boundary conditions are investigated in this example, namely simply supported SSSS and clamped
CCCC. Details of those boundary conditions are given as follows:

SSSS :
{

w = θy = 0 at x = 0, a
w = θx = 0 at y = 0, b

; CCCC :
{

w = θx = θy = w,x = 0 at x = 0, a
w = θx = θy = w,y = 0 at y = 0, b

(33)

In Fig. 2, comparisons between the post-buckling paths obtained from Sitli et al. [42] and those
obtained from the present study are illustrated. In general, a good agreement between numerical re-
sults presented from the proposed numerical model and those from the referenced results is archived.
However, the numerical results obtained from the present study are slightly different from referenced
results for the CCCC plates. Such differences could be attributed to the fact that Sitli et al. [42] only
used the classical plate theory to describe the kinematics of the plates. Therefore, the shear defor-
mation effect, which is expected to be considerable in clamped plates rather than simply supported
plates, is dismissed. Regarding the mesh size, it is noted that a mesh size of 14×14 with cubic NURBS
basis functions is used to produce all numerical results of this study. This mesh size is shown to be
fine enough to get the converged results in the convergence study, which is not presented herein for
the sake of brief.

Figure 2. Comparisons between post-buckling paths of rectangular FG plates with uniform thickness
(a/b = 0.5, a = 250 mm, h/b = 0.01, wm is the transverse displacement at the center of the plate)

The next verification example is about the post-buckling response of isotropic square plate having
sine-wave thickness along the x direction [18]. The thickness profile of the plate is given by

zt (X) = −zb (X) = αh̄ sin
(
2π

nX
a
+
π

2

)
+

h̄
2

; X = x −
a
2

(34)

where α = 0.1 and n = 2. The square plate has a side length of a = 10 m and h̄= 0.5 m. Material
properties of the plate are E = 3×106 N/m2 and ν = 0.25. The plate is simply supported (SSSS)
and is subjected to uniform axial compressive forces Ny along y direction. Comparisons between the
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referenced equilibrium path and one obtained from the present study is depicted in Fig. 3. Herein
λ = Na2/π2D̄, D̄ = Eh̄3/12

(
1 − ν2

)
, λα=0

ycr = 3.4636 is the critical buckling load of the referenced
uniform thickness plate, and wm is the transverse displacement at the center of the plate. Overall, the
numerical results obtained from this study agree well with those produced previously by Le-Manh et
al. [18].

Figure 3. Comparison of post-buckling paths of an isotropic square plate having sine-wave thickness along x
direction under compressive force along the y direction

3.2. Parametric studies
In this section, some numerical examples are presented to study the post-buckling behaviour of

FG plates with symmetrical parabolic-form thickness profile (PT) being shown in Section 2.1. The
plates examined herein are square with a side length of a = 1 m and the value of hmin is fixed with
hmin = a/20. Similar to the first verification example, the plates are assumed to be made from Al2O3
(ceramic) and Al (metal) constituents: Ec = 380 GPa, Em = 70 GPa, νc = vm = 0.3. The following
nondimensional compressive load is used subsequently

N̄x = b2Nx
/
Emh3

min (35)

The first parametric study is about the influence of material gradation on the nonlinear response
of uniform thickness plate (UT plate model, h = hmin = a/20) and variable thickness (PT plate model,
hmin = a/20, hmax = 1.1hmin). The plates are simply supported (SSSS boundary condition) and subject
to uniform compressive forces along the x direction. By changing the value of the gradient index n,
different material gradations could be obtained. As shown in Fig. 4, the increase of gradient index n
reduces the strength of the plates. It is noted that the notations Al203 and Al in the figure represent the
cases where material within the plate is homogeneous with fully ceramic and fully metal, respectively.
The reduction in the strength of the plate is understandable as the elevation of the gradient index leads
to a decrease in the stiffness of the plate as more metal constituents appear within the plate’s volume.

Another important point that should be pointed out is the trends of post-buckling paths. For
uniform thickness plate (UT plate), the nonlinear responses of homogeneous plates are bifurcation
buckling, where sudden changes in deformation pattern are observed when the compressive forces
increase to the values close to the critical buckling loads. For FG plates with uniform thickness,
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(a) Uniform-thickness plates (UT) (b) Variable thickness plate (PT hmax = 1.1hmin)

Figure 4. Post-buckling response of simply-supported FG plates under uniform compressive forces

i.g. inhomogeneous along the thickness direction, the plates deform immediately when the loads
are applied to the structures, consequently, the deflections of the plates increase gradually. This
phenomenon can be explained by the actual difference between the neutral plane and the middle plane
of the plate, where the inplane compressive forces are imposed. Such difference induces a coupling
bending moment and makes the plate bend in the upward direction. For the plates with variable
thickness (PT plate), bifurcation post-buckling paths are also obtained in cases of homogeneous plates
(Al2O3 and Al). However, the equilibrium paths of FG plates (inhomogeneous cases) are somewhat
close to the bifurcation response, although the changes in the deformation paths are not as abrupt as
those seen in the bifurcation responses. In this case, the neutral axis of each section of the plate alters
gradually due to the change in the plate thickness. This physical aspect might lead to a non-uniform
coupling bending moment along the planar direction of the plates, and hence the effect of the coupling
moment is not as significant as those observed in uniform thickness plates.

In the second investigation in this section, the effects of plates’ thickness profiles and boundary
conditions are addressed. The post-buckling paths of the plates with different thickness profiles (by
changing the ratio of hmax/hmin) and boundary conditions are shown in Fig. 5. The planar dimen-
sions, minimum thickness (hmin), and material properties of the plates are identical to the previous
example. The plate is also subjected to uniform compressive load along the x-direction only and the
material constituents are graded along the thickness direction with n = 2. As illustrated in Fig. 5, two
noticeable observations should be pointed out. Firstly, the equilibrium paths of uniform thickness
plate (UT plate model with hmax/hmin = 1.0) are completely different for inhomogeneous plates with
simply supported boundary condition (SSSS) and clamped boundary condition (CCCC). While the
bifurcation response is observed in the case of the clamped plate with uniform thickness, the simply
supported plate deforms progressively with the increase of the imposed compressive load. As dis-
cussed earlier, the coupling bending moment induced by the difference between the neutral surface
and middle plane makes the plate deform in the transverse direction. For the uniform thickness plate
with clamped boundary conditions, the restraints of rotations along the boundaries could be the major
factor preventing the early deforms of the plates, therefore, bifurcation buckling exists.

The second interesting observation shown in Fig. 5 is the similar trends of the equilibrium paths
of variable thickness plates. It is seen that the responses of simply supported plates and clamped
plates with symmetrical parabolic-form thickness are almost identical. In addition, no bifurcation
buckling path is captured. These results indicate that the effects of clamped boundary conditions
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Figure 5. Comparisons of the post-buckling paths of FG plates (n = 2) with different thickness profiles
and boundary conditions

become insignificant for the PT thickness profile addressed in this study. As the thickness of the
plate is smaller at the boundaries (where the compressive forces are applied) and becomes larger at
the center region, the coupling bending moment at the center region is larger than those around the
boundaries and the capacity to present early deformations (transverse deflections cause rotations at
regions near the boundaries) is reduced. Therefore, those plates deform gradually with the increase
of compressive forces.

4. Conclusions
In this study, the geometrically nonlinear behaviour of variable thickness FG plates under uniaxial

compressive forces is investigated. The governing equation of the nonlinear problem is developed by
the principle of virtual work, in which the third-order shear deformation theory is used to describe
the displacement field of the plates and von Karman assumptions are used to capture the geometrical
nonlinear effects. By adopting the IGA approach, the system equation is developed and the arc-length
iterative technique with imperfection is used to solve the nonlinear system equation. After verifying
the accuracy of the proposed numerical model, parametric investigations are conducted. From the
numerical results, two noticeable conclusions are drawn: (i) The trends in the nonlinear response of
FG plates with symmetrical parabolic-form thickness are different from those observed from uniform-
thickness FG plates with inhomogeneous material along the thickness direction. The deformations of
variable thickness plates are shown to be less influenced by the coupling bending moment, however,
the deformation rate is not as pronounced as that observed in the bifurcation buckling response. (ii)
The influence of clamped boundary conditions is not considerable for plates with larger thicknesses
at their center region and the responses are almost identical the the simply supported plates. In
future work, the numerical developed in this study could be further developed to deal with the post-
buckling analysis of plates having more complicated thickness profiles. Different mechanical loading
patterns, materials, and thermal loads could be also investigated from the numerical model presented
in this study.
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