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Abstract

Steel structures are widely used in construction, and the stability conditions for these structures are of greater
concern due to their long and slender characteristics. When a plate element is subjected to axial compression,
bending, shear, or a combination of these forces in its plane, the plate may buckle locally before the member
as a whole becomes unstable or before the yield stress of the material is reached. This local buckling behavior
causes the plates in the cross-section of the steel member to interact with each other. Therefore, it is necessary
to consider this interaction when calculating or checking for stability conditions. In this research, the proposed
formulas determine the buckling coefficient as well as the local critical stress for I-shaped steel beams, account-
ing for the flange-web interaction when the flange-thickness to web-thickness ratio changes. Additionally, the
buckling analysis results indicate that local buckling stress does not depend on the length-to-height ratio but is
impacted by the height-to-width and thickness-to-width ratios. Comparisons between the proposed formulas
and numerical results show that the suggested formulas have high reliability when the coefficient of variation
is small and the coefficient of determination is very high.
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1. Introduction

I-shaped steel members are widely used in construction, such as beams and columns. These
members are composed of steel plates, and when subjected to bending or compression, they can
become unstable due to the formation of compression regions in the cross-section. To ensure the load-
bearing capacity of the I-section steel beams, the stability conditions must be checked. Recently, many
authors have researched the local buckling of thin-walled steel members. Bhowmick and Grondin
[1] investigated the local buckling of I-shaped members bent about their weak axis. Han and Lee
[2] studied the effect of web slenderness on the elastic flange local buckling of I-beams. Shi et
al. [3] examined the local buckling behavior of I-section beams fabricated from high-strength steel.
Kuwamura [4] estimated the local buckling behavior of thin-walled stainless steel stub columns. Shi
et al. [5, 6] conducted several experimental investigations on the local buckling behavior of high-
strength steel welded-section stub columns. Cao et al. [7] investigated local buckling behavior of
high-strength welded I-section columns under axial compression. Shi and Xu [8] experimented on
I-beams under different loading conditions to study the local buckling behavior. Zhang et al. [9]
studied local buckling behavior of steel faceplates and their influence on the compressive strength of
steel-plate composite walls. Deepak and Anathi [10] evaluated the local buckling behavior of built-up
cold-formed steel homogeneous and hybrid double I-box column sections under axial compression
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through experimental testing. Some authors [11, 12] researched the local buckling of high-strength
steel plates at elevated temperatures. It can be observed that when the steel structures experience
local buckling, the component plates of the cross-section interact with each other. In Eurocode 3, part
1-3 [13] and part 1-5 [14], with the Effective Width Method, the interaction between the flange and
the web is neglected, and the connection between them is treated as simply supported. This leads
to the conservative calculation and material consuming of local buckling for cold-formed structures;
therefore, it is necessary to consider the interaction between the plates in the cross-section. Trahair
[15] presented expressions for calculating the elastic buckling stress of rectangular hollow and I-
section steel members under compression and bending, taking into account the interaction between
the flange and web. Seif and Schafer [16] used the semi-analytical finite strip method to propose
formulas for determining the plate buckling coefficient for thin-walled members, considering the
interaction between plates in the cross-section subjected to axial force, major axis bending, and minor
axis bending. Vieira et al. [17] carried out a parametric study concerning the evaluation of the local
buckling coefficient for rectangular hollow section members under combined axial compression and
biaxial bending, accounting for web-flange interaction. Ragheb [18] researched the influence of the
interaction between the flange and web on the local buckling of welded steel I-sections subjected to
bending. Bedair [19] considered the influence of the flange/web geometric proportions on the stability
of web plates in W-shaped columns under uniform compression. Zhang et al. [20] investigated the
local buckling of I-section columns, accounting for the interaction between the web and flanges.
Szymczak and Kujawa [21] addressed the local buckling of the compressed flanges of cold-formed
channel beams subjected to pure bending or axial compression, taking into account the web-flange
interactions. Mitsui et al. [22] presented a novel formula for the local buckling coefficient of cold-
formed open sections under uniform compression, taking into account the plate elements interaction
of the cross-section. Gardner et al. [23] developed expressions for determining the elastic local
buckling stress of structural steel profiles under comprehensive loading conditions, accounting for
the interaction between individual plate elements via an interaction coefficient based on the local
buckling stress of the isolated plate. Lapira et al. [24] provided formulas for calculating the elastic
local buckling stresses of doubly-symmetric thin-walled I-section girders subjected to shear stress,
accounting for the interaction between the plate elements.

In Ref. [16], expressions for determining the buckling coefficient were developed to apply to the
sections in the AISC shape database. Therefore, it is necessary to establish calculation formulas for
the local buckling coefficient of the cross-sections beyond the scope of this source data. This paper
suggests approximate formulas for determining the elastic buckling stress of I-shaped sections under
pure bending, accounting for the interaction between the component plates of the cross-section when
the ratio of flange thickness to web thickness changes. These equations are based on the parametric
study analyzed by the semi-analytical finite strip method in the CUFSM program. This method was
pioneered by Cheung [25] using classical plate theory to establish the finite strip. Unlike the finite
element method, the semi-analytical finite strip method uses trigonometric functions in the longitudi-
nal direction and simple polynomial functions in the transverse direction. This method is very useful
for analyzing members with constant thickness along the axis. A number of researchers have applied
the semi-analytical finite strip method to analyze thin-walled structures. Bui [26] used this method
to examine the buckling behavior of thin-walled circular hollow sections under pure bending. Bui
[27] analyzed cold-formed sections with curved corners using the finite strip method based on Mar-
guerre’s shallow shell theory. Uy and Bradford [28] employed a finite strip model for elastic buckling
to study the behavior of steel plates in composite steel-concrete members. Several authors developed
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the CUFSM [29] and THIN-WALL [30] programs to calculate geometric characteristics and analyze
the buckling of thin-walled structures.

2. Formulas for determining the critical buckling stress of I-shaped steel beams
2.1. Formula for determining elastic buckling stress

The local buckling of the I-beams bent about their major axis can be approximated by assuming
that the plate elements are hinged along their common edges. However, to accurately reflect the
behavior of I-section steel members, it is necessary to consider the simultaneous buckling of the flange
and web elements in [-beams under bending. Trahair [15] used the classical formula to calculate the
local critical stress for I-shaped members subjected to bending, which is given by
n’E ( ty )2

12(1 =)\ by M)

Oe¢rl = k
where k, is the elastic buckling coeflicient, E is Young’s modulus, v is Poisson’s ratio, by is the
flange width and ¢ is its thickness. It is clear that the local buckling stress depends on the variation
of the buckling coefficient and the thickness-to-width ratio. Although Trahair provided this formula
for determining the critical buckling stress, the method for calculating the buckling coefficient relied
on graphical techniques.

These days, there are many tools available to easily calculate critical buckling stress, such as
software using the finite element method (ABAQUS, ANSYS, SAP2000, ...), and the finite strip
method (CUFSM, THIN-WALL, ...). However, determining the elastic buckling stress using these
methods is significantly complex and inconvenient for design engineers, especially when multiple
iterations are needed to achieve a suitable cross-section. Therefore, proposing approximate formulas
to manually calculate the local buckling coefficient in Eq. (1) to simplify the determination of local
buckling stress for steel structures. This approach allows engineers to shorten the time required to
determine the input data for calculating the local buckling strength of steel structures.

2.2. Relationship between length-to-height ratio and buckling stress

When the I-shaped steel beams experience local buckling, the flange and web plates exhibit waves
along their length. Therefore, when the beams are sufficiently long (in practical cases), their length
does not impact the value of the local critical buckling stress. The relationship between local critical
stress and the length-to-height ratio is presented in this section. Stability analyses for three groups are
performed using the CUFSM program. The geometry of the specimens is illustrated in Table 1, and
the analysis results are shown in Fig. 1.

Table 1. Dimension of specimens

Specimens by (mm) h,, (mm) ty (mm) t,, (mm)
Group 1 S1-1 100 200 6.0 6.0
S1-2 200 400 12 12
Group 2 S2-1 200 300 8.0 6.0
S2-2 400 600 16 12
Group 3 S3-1 200 200 10 6.0
S3-2 400 400 20 12
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Figure 1. Relationship between buckling stress and length-to-height ratio

As shown in Fig. 1, it can be observed that when the flange-thickness to web-thickness ratio
and height-to-width ratio remain unchanged, the local buckling stresses are the same if the length-
to-height ratio is identical. This means that the critical buckling stress (the minimum point of the
curves shown in Fig. 1) does not depend on the length-to-height ratio but rather on the thickness-to-
width ratio, flange-thickness to web-thickness ratio, and height-to-width ratio, as shown in Eq. (1)
and Fig. 1.

2.3. Proposed formula for determining the buckling coefficient of I-shaped beams with equal flange
and web thickness

For I-section beams subjected to bending, the suggested expression for calculating the elastic
buckling coefficient, based on Ref. [16], is as follows:

1 1.5

- - +0.015 (2)
Ko (1) (21105
2 2
e

where k,, denotes the buckling coeflicient of the web and & is the buckling coefficient of the flange,
h,, and t,, are the height and thickness of the web, respectively.

In this section, the CUFSM software is used to calculate the elastic buckling stress for I-shaped
members subjected to pure bending. The analysis results shown in Fig. 1 indicate that the value
of local buckling stress may be influenced by the height-to-width ratio. Thus, the elastic buckling
analyses are performed for I-shaped steel beams with height-to-width ratios ranging from 1.0 to 5.0,
with a corresponding increment step of 0.1. Based on the obtained results, parameter study and
statistical probability processing are used to give a predictive curve for determining the local buckling
coeflicient. Therefore, the proposed equation for calculating the buckling coefficient of I-beams under
pure bending is as follows:

hy\’ h
kO':_al(_W) + by (—w)+c1 it 1.0<h,/br<3.0
b by @
ky = ax(h /) it 3.0 <hy/by <50
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The coeflicients ay, by, c1,az, by in Eq. (4) are determined using the regression method, with a; =
0.12,b; = 0.08,c; =3.2,a> = 13, and b, = 1.55, corresponding to a coefficient of variation (CoV) of
0.015 and a coefficient of determination (Rz) of 0.9982. Then, the formula for calculation the local
buckling coefficient of the beam flange subjected to bending is as follows:

2
ky = —0.12(@) +0.08 (h—w) +3.2 if 1.0 < hy/by < 3.0
by by

ko = 13(hutbg)

(&)
if 3.0<h,/by<5.0

The results shown in Fig. 2 point out that the predicted curve from the proposed formula and the
simulation solution in the CUFSM program provides a comparable prediction for the elastic buck-
ling coefficient, while the predicted curve from Ref. [16] is not consistent with the results from the
numerical method.
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Figure 2. Influence of height-to-width ratio on buckling coefficient with equal flange and web thickness

As shown in Table 2, it is evident that the predictive results from Eq. (5) give good predictions
with a mean value (u) of 0.998 and a coefficient of variation (CoV) of 0.015. Meanwhile, Ref. [16]
provides predictions for determining the local buckling coefficient with an average value of 0.933 and
a CoV of 0.162. Furthermore, the coefficient of determination for the proposed formula is 0.9982,
which is better than that in Ref. [16] with 0.6646.

Table 2. Comparisons between calculation results and simulation results

Calculating methods u CoV R?
Ref. [16] 0.933 0.162 0.6646
Eq. (5) 0.998 0.015 0.9982

2.4. Proposed formulas for determining buckling coefficient of I-shaped beam with unequal flange
and web thickness

The proposed formulas for determining the local buckling coefficient for I-section beams with

the flange-thickness to web-thickness ratios ranging from 1.25 to 3.0 are established similarly to the

case of equal flange and web thickness. This section presents only the obtained results, such as the

relationship between the buckling stress and height-to-width ratio (as shown in Fig. 4), the proposed
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formulas (as shown in Table 3), and comparisons of the elastic buckling coefficients based on the
proposed formulas with the results from the CUFSM program (as shown in Fig. 5 and Table 5).
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Figure 3. Analysis result in CUFSM program

Note: The signature curve of a steel beam with large flange thickness and web thickness is shown
in Fig. 3. In this curve, there is no minimum point in the local buckling region; nevertheless, it appears
in the distortional buckling region. This deduces that this cross-section does not have a local buckling
stress. Therefore, this work does not consider this case but focuses only on members that exhibit a
minimum point in the local buckling zone and have an elastic buckling stress value.
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Figure 4. Effect of height/width ratio on buckling stress with unequal flange and web thickness

As shown in Fig. 4, the flange-thickness to web-thickness ratios ranging from 1.25 to 2.0 have
similar curves to the height-to-width ratio equal to 1.0. Thus, the proposed equations for these ratios
are have the same shape as in Eq. (5). The remaining ratios (from 2.25 to 3.0) have proposed formulas
in the form of exponential expressions as follows:
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kr = a(hulbs)

Table 3. The proposed formulas for determining local buckling coefficient

(6)

Proposed formulas

Ratios
tr/ty, = 1.25
tr/t, = 1.5
tr/t, = 1.75
tr/tw = 2.0
tr/ty =2.25
tr/ty = 2.5
tr/ty =275
tr/ty = 3.0

ke = 0. 12(

ko

@‘

k‘

2 h
) + 0.04(—W) +2.8
by

12(J/br)

2 h
) +0.12 (—W) +25
by

ko = 12.2(h /)

if 1.0 < hy/bs <3.0
if 3.0 <hy/b; <50
if 1.0 <hy/bs <3.0

if 3.0<h,/by<5.0

ko :—02( ) 034( )+2.1 it 1.0<h,/by<3.0
f

ke = 11.1(hy/by)

moff ol

ke =9.3(h W/bf

3‘

if 3.0<h,/by<50
)+1.9 it 1.0<h,/by<3.0

if 3.0 < hy/by <5.0

if 2.0 < hy/b; <5.0

if 1.7 < hy/bs <5.0

if 1.3 <hy,/b; <50

if 1.2<h,/br <50

(7)

)

(©))

(10)

(11)
(12)
(13)
(14)

Note: to determine the local buckling coeflicients for the I-section steel beams when the #//t,,

ratios are not listed in Table 3, interpolation can be used.

The results shown in Fig. 5 indicate that the predicted curves from the proposed formulas are
close to those from the numerical method for all ratios. In contrast, the predicted curve from Ref. [16]
is not consistent with the results from the CUFSM software for the ratios shown in Fig. 5.

-
2

2

(a) t;/t, =125
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Figure 5. Influence of height-to-width ratio on buckling coefficient of I-shaped beams
with unequal flange and web thickness

As shown in Table 3, Eq. (10) differs from Eq. (11) when the 74/t,, ratio is between 2.0 and 2.25.
Therefore, to demonstrate the use of interpolation, a study is conducted on three cases within the #/z,,
ratio ranging from 2.0 to 2.25.

The local buckling coefficients shown in Fig. 6 and Table 4 indicate that the predicted curve for
the buckling coefficient using the interpolation method is very close to the results of the CUFSM
program. The coefficients in Table 4, such as the average value (u), coefficient of variation (CoV),
and the coefficient of determination (Rz), are highly accurate, with the u approximately equal to 1.0,

the CoV less than 0.020, and the R* greater than 0.9970 for all ratios. These results show that the
interpolation method can be applied to #/t,, ratios not listed in Table 3.
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Figure 6. Buckling coefficient of CUFSM and interpolation

Table 4. Comparisons between interpolation results and numerical solution

. Interpolation
Ratios
u CoV R?
tr/tw = 2.075 1.006 0.020 0.9972
tr/ty = 2.125 1.005 0.017 0.9979
tr/tw =22 1.002 0.009 0.9994

As shown in Table 5, it can be seen that the results from the proposed formulas give good predic-
tions with a mean value of around 1.0 and coefficient of variation less than 0.03. Whereas, Ref. [16]
provides prediction results that clearly deviate from the simulation results in the CUFSM software,
especially the coeflicients of variation for all results in the Table 5, which are greater than 0.150.
In addition, the coefficients of determination from the proposed equations for all ratios is very high,
exceeding 0.998.

Table 5. Comparisons between calculation results and numerical solutions

) Proposed formulas Ref. [16]
Ratios
u CoV R? J7i CoV R?
tr/ty = 1.25 1.001 0.011 0.9993 1.033 0.156 0.8940
tr/t, = 1.5 0.988 0.013 0.9992 1.073 0.155 0.9380
tr/ty = 1.5 0.984 0.023 0.9976 1.095 0.166 0.9431
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) Proposed formulas Ref. [16]
Ratios
u CoV R? u CoV R?
tr/ty =2.0 1.000 0.019 0.9985 1.119 0.181 0.9389
tr/t, = 2.25 0.996 0.004 0.9999 1.219 0.169 0.8639
tr/ty = 2.5 0.998 0.003 1.0000 1.228 0.187 0.8669
tr/ty, =275 1.000 0.003 1.0000 1.214 0.227 0.7998
tr/t, = 3.0 0.997 0.002 1.0000 1.242 0.224 0.8125
3. Numerical applications T
This section illustrates calculation examples
for determining the critical buckling stress of I-
shaped members with pinned ends under pure P T
bending with variations in height-to-width ratios.
The dimensions of the segments are shown in Ta- ,
ble 6, including the width, height, flange thick- | W
ness, and web thickness. The steel material has 5
a modulus of elasticity £ = 210000 (MPa) and a g
Poisson’s ratio v = 0.3. Figure 7. Cross-section
Table 6. Dimensions of the I-beams
Specimens bs (mm) h,, (mm) ty (mm) t,, (mm)
R1-1 150 250 6.0 6.0
R1-2 150 400 6.0 6.0
R1-3 150 600 6.0 6.0
R1-4 150 750 6.0 6.0
R2-1 150 250 7.5 6.0
R2-2 150 400 7.5 6.0
R2-3 150 600 7.5 6.0
R2-4 150 750 7.5 6.0
R3-1 150 250 9.0 6.0
R3-2 150 400 9.0 6.0
R3-3 150 600 9.0 6.0
R3-4 150 750 9.0 6.0
R4-1 150 250 14 8.0
R4-2 150 400 14 8.0
R4-3 150 600 14 8.0
R4-4 150 750 14 8.0
RS5-1 150 250 16 8.0
R5-2 150 400 16 8.0
R5-3 150 600 16 8.0
R5-4 150 750 16 8.0
R6-1 150 400 18 8.0
R6-2 150 600 18 8.0
R6-3 150 750 18 8.0
R7-1 150 400 25 10
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Specimens bs (mm) h,, (mm) ty (mm) t,, (mm)
R7-2 150 600 25 10
R7-3 150 750 25 10
R8-1 150 250 27.5 10
R8-2 150 400 27.5 10
R8-3 150 600 27.5 10
R8-4 150 750 27.5 10
R9-1 150 250 30 10
R9-2 150 400 30 10
R9-3 150 600 30 10
R9-4 150 750 30 10

The I-section steel beam R1-1, having dimensions by = 150 (mm), A,, = 250 (mm), and 77 = t,, =
6.0 (mm), is calculated. Since the height-to-width ratio is less than 3.0 and 77/, ratio is 1.0, the local

buckling coefficient is determined by the following steps:
2

hw hW
Eq. (5): ko = —0.12(b— +0.08(-=)+32=30.

Then, using (1) calculates the local buckling stress:
) 2
E t
"= (L) =911.0(MPa).
12(1 =v?)\ by
The remaining specimens in Table 6 are calculated similarly. The obtained results are presented
and compared in Table 7.

Eq. (): o = ke

Table 7. Comparisons of the calculation methods

Specimens O erl,CUFSM O erl,THIN-WALL Terl O Seif & Schafer [16]
(MPa) (MPa) (MPa) (MPa)

R1-1 900.5 900.7 911.0 (1.2%) 728.8 (-19.1%)
R1-2 770.0 770.5 777.4 (1.0%) 630.5 (-18.1%)
R1-3 477.1 477.1 460.4 (-3.5%) 493.8 (-18.1%)
R1-4 321.3 312.3 325.8 (1.4%) 404.9 (26.0%)
R2-1 1201.7 1201.9 1202.1 (0.0%) 1078.2 (-10.2%)
R2-2 967.4 967.4 974.3 (0.7%) 876.0 (-9.4%)
R2-3 550.2 550.8 539.4 (-2.0%) 632.7 (15.0%)
R2-4 357.6 361.4 369.1 (3.2%) 493.8 (38.1%)
R3-1 1557.4 1558.0 1560.2 (0.2%) 1457.7 (-6.4%)
R3-2 1202.5 1202.6 1198.0 (-0.4%) 1111.0 (-7.6%)
R3-3 622.7 623.9 598.5 (-3.9%) 746.8 (19.9%)
R3-4 399.8 401.6 391.7 (-2.0%) 560.6 (40.2%)
R4-1 3514.0 3517.4 3490.4 (-0.7%) 3289.6 (-6.4%)
R4-2 2552.6 2548.5 2619.7 (2.6%) 2356.3 (-7.7%)
R4-3 1189.2 1192.3 1147.0 (-3.5%) 1489.5 (25.3%)
R4-4 758.4 758.7 734.1 (-3.2%) 1085.3 (43.1%)
R5-1 4365.3 4370.8 4355.0 (-0.2%) 3986.8 (-8.7%)
R5-2 2775.6 2781.7 2778.6 (0.1%) 2693.8 (-2.9%)
R5-3 1242.1 1246.6 1255.2 (1.1%) 1617.6 (30.2%)
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Specimens O erl, CUFSM O erl, THIN-WALL Oerl O Seif & Schafer [16]
(MPa) (MPa) (MPa) (MPa)

R5-4 788.2 788.6 803.3 (1.9%) 1151.7 (46.1%)
R6-1 2865.3 2868.1 2844.2 (-0.7%) 2987.0 (4.2%)
R6-2 1269.5 1274.5 1264.1 (-0.4%) 1718.9 (35.4%)
R6-3 808.6 809.0 809.0 (0.1%) 1202.2 (48.7%)
R7-1 4530.7 4537.5 4522.6 (-0.2%) 5061.3 (11.7%)
R7-2 2005.8 2014.6 2010.0 (0.2%) 2811.9 (40.2%)
R7-3 1280.6 1281.5 1286.4 (0.5%) 1939.2 (51.4%)
R8-1 11689.9 11731.0 11712.6 (0.2%) 9244.1 (-20.9%)
R8-2 4573.6 4581.7 4575.2 (0.0%) 5398.6 (18%)
R8-3 2025.2 2034.4 2033.4 (0.4%) 2913.0 (43.8%)
R8-4 1295.0 1296.1 1301.4 (0.5%) 1986.8 (53.4%)
R9-1 11762.8 11813.3 11752.4 (-0.1%) 10122.7 (-13.9%)
R9-2 4602.0 4611.5 4590.8 (-0.2%) 5686.9 (23.6%)
R9-3 2038.7 2048.4 2040.4 (0.1%) 2994.9 (46.9%)
R9-4 1303.1 1304.4 1305.8 (0.2%) 2024.5 (55.4%)

As shown in Table 7, it can be observed that the calculation results from the proposed formulas
converge with the simulation results from the CUFSM and THIN-WALL software, with the error for
all cases in Table 7 being less than 4.0%. Meanwhile, the results from Ref. [16] show a significant
error, with the maximum error being approximately 55% for the segment R9-4. This indicates that
the proposed formulas can be applied to the cases in this work.

4. Conclusion

The buckling analysis for I-beams under pure bending in the CUFSM program shows that the
elastic local critical stress does not depend on the length-to-height ratio, but only on the A,, /by and
ty/by ratios. Therefore, the proposed formulas for determining the local buckling coefficient, as well
as the local buckling stress for pure bending steel beams, must consider the interaction between the
web and flange. The suggested formulas apply to flange thickness-to-web thickness ratios ranging
from 1.0 to 3.0. Additionally, the calculation results from the proposed formulas agree well with
the results from the CUFSM and THIN-WALL software, showing coefficients of variation less than
0.03 and very high coefficients of determination greater than 0.998 for all cases. Thus, the proposed
formulas ensure reliability for application in the local buckling design of I-beams under pure bending.
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