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Abstract

The Program Evaluation and Review Technique (PERT) is a popular scheduling technique that takes advantage
of the Beta distribution to present uncertainty in activity durations. This study presents an advanced PERT
method with an improved Bayesian updating and improved assumed prior distributions, which better represent
real-world projects. The method is backed with detailed mathematical proofs and derivations for a solid theo-
retical foundation. A numerical case study involving a 30-floor building construction project is used to com-
pare the performance of traditional PERT, the Beta-improved Bayesian PERT, and the Log-Normal Bayesian
PERT methods. In the example, the activities considered are Formwork, Rebar and Construction, Masonry,
Mechanical-Electrical-Plumbing (MEP), and Finishing, which are the main activities in a construction project.
The results show that the Beta-improved and the Log-Normal distributions are constructed successfully in the
models with converging variance — an observation that delineates the uncertainty reduced along a real project’s
course. With enhanced functions, the PERT method can be utilized to support project decision-makers in
scheduling and managing complex projects in reality.
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1. Introduction

The Program Evaluation and Review Technique (PERT) is a popular scheduling technique that
can take into account the uncertainty in project activities’ duration estimation. Developed by the U.S.
Navy in the late 1950s, PERT rather uses a probabilistic approach but not a deterministic approach
to estimate task durations [1, 2]. Used together with the Critical Path Method (CPM) this method
allows project managers to visualize the interdependencies of tasks and assess the overall project
timeline, which is crucial in construction where delays can lead to significant cost overruns [3, 4].
However, PERT has obvious limitations. The first limitation is that it relies on the beta distribution
to model activity durations — a technique that has been criticized for its oversimplified feature that
fails to capture the real-world activities [5, 6]. Secondly, the original PERT often underestimates the
average project duration but overestimates the variance and the result is that the outcomes are often not
precise enough [6, 7]. This underestimation is even exacerbated in the context of real long and volatile
projects [4, 8]. Thirdly, PERT assumes a three-point estimation for every activity. This assumption
is too simplified and often fails to represent actual risks that usually occur in a right-skewed manner
[9]. This study introduces an advanced PERT method, in which the Bayesian approach is used to
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update the activities as new information arrives, and the assumed distributions are enhanced with
the Beta improved and the introduction of the Log-Normal distribution. The paper is structured
as follows: a literature review of PERT’s basics, limitations, and related studies to overcome its
limitations; next, mathematical proofs and derivations to substantiate the theoretical advantages of
the proposed methods; a numerical example with a simplified 30-floor building project is analyzed
to validate the proposed methods; finally, a discussion of implication on construction scheduling and
the conclusion finish the study.

2. Literature review on PERT
2.1. Limitations of traditional PERT

Although PERT has been used in many complex projects since its debut decades ago, it has
obvious limitations. It is crucial to enhance the method first with a comprehensive review of PERT’s
limitations and previous efforts to address these limitations.

The first limitation is the assumption of the Beta distribution when PERT deals with activities’
durations. The Beta distribution means that an activity duration has an optimistic (a), a most likely
(m), and a pessimistic (b) time estimates to calculate expected durations and variances. These three
estimates often fail to represent actual activity durations, especially when the data are skewed or
have heavy and asymmetric tails [10]. As a result, this mismatch can lead to inaccurate total project
duration and inadequate risk assessment [2].

Secondly, the estimates of activities’ durations of PERT from the planning phase, stay static
during the project’s course, ignoring the arrival of new information. This lack of adaptability means
that PERT cannot incorporate real-time performance data or respond to changes in project conditions,
reducing its relevance and accuracy over time [11].

The next shortcoming is that the method uses simplified statistical elements such as expected
durations and variances, which are not enough to represent the complexity of real-world projects
[9]. A realistic statistical model must include many more factors so that it reflects real construction
projects.

One of the most famous limitations of PERT is that it assumes that activity durations are indepen-
dent, but not dependents on one another because of shared resources, environmental conditions, or
other dependencies [12]. This limitation arguably prevents the successful management of the overall
project risk, especially in complex and long ones [13].

Finally, even if practitioners want to update activity estimates when new information arrives, they
do not have a tool backing them [1, 14]. When new information is unused, project managers cannot
effectively adjust schedules and resourse in response to actual performance or emerging issues.

2.2. Attempts to address PERT’s limitations

Of course the limitations of the traditional PERT have not been ignored completely: researchers
and practitioners have proposed some changes to enhance the method’s accuracy and effectiveness in
project scheduling. One common direction has been to introduce other statistical distributions that
better capture the characteristics of activity durations [15-17]. For example, the Triangular distribu-
tion has been suggested as a simpler alternative to the Beta distribution due to its ease of parameter
estimation and its ability to model skewness. However, the Triangular distribution cannot represent
the heavy-tailed behaviors often seen in project activities [18].

This heavy-tailed characteristics, when activities are influenced by multiplicative factors, is in-
deed solvable by the Log-Normal distribution because the function’s graphs are right-skewed in their
nature [19]. Some delays, such as waiting for construction permit or a lack in financial budget, can
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be as long as multiple times their expected values but they can be modeled by the Log-Normal distri-
bution [7].

Another research direction has been to focus on taking advantage of Bayesian statistics to dynam-
ically update activity durations to PERT as new information recognized [20, 21], so called Bayesian
PERT. Bayesian statistics have been introduced in the management of construction projects in various
fields, such as risk [22], quality [23], safety [24], decision-making [25], and scheduling management
[26]. Bayesian PERT is initially based on prior knowledge (or assumptions) obtained from historical
data or experts, then keeps on refining itself in light of new evidence [27]. This approach is aligned
with the last limitation mentioned above: providing practitioners a mechanism to update beliefs.
Specifically with the Beta distribution, researchers have proposed some Bayesian models to adjust
the parameters of the distribution [20]. For example, hierarchical Bayesian models can treat uncer-
tainty as multiple levels of variability, such as individual activities and overall project performance
[27]. Another proposed distribution is Bayesian synthetic likelihood [28], a method for approximating
likelihood functions in complex models, which can be used when traditional likelihood calculation
are computationally infeasible. But this method relies heavily on the assumption that the synthetic
likelihood accurately represents the true likelihood, which may not always be the case. Muller et al.
explore Bayesian nonparametric methods, which allow for flexible modeling of data without assum-
ing a fixed parametric form [29], but require more effort to implement and interpret than traditional
parametric methods.

Regarding the inadequate risk assessment limitation in traditional PERT, some scholars have
brought Monte Carlo simulation into the calculation to model the uncertainty and variability in activ-
ity durations [16]. When models are run many times (e.g., ten thousand or a million times), results
form certain probabilistic distributions of the total project duration, from which practitioners can man-
age risk and plan for contingency better. This technique allows different scenarios, including extreme
cases to be considered with quantified risks [30].

Another research direction is to combine PERT with other popular project management tech-
niques (e.g., Critical Chain Method or Earned Value Management) to form hybrid models that can
theoretically enhance scheduling accuracy and resource allocation [31-33]. As computational power
increases exponentially, the development of more sophisticated algorithms (e.g., [34]) has been ben-
efited as well. With advanced functions and user-friendly interfaces, these tools have been usable to
most of project management practitioners in the industry.

Despite these advancements, literature also shows some research gaps. For example, the Beta
distribution stills dominates the popularity over other more realistic but sophisticated distributions
like Log-Normal, just because of its simplicity. The potential of Bayesian frameworks to dynami-
cally adjust activity duration estimates from updated data is also underdeveloped. Furthermore, some
studies (e.g., [1, 18]) have tried to address these gaps but mathematical proofs to theoretically prove
the soundness and reliability in practical applications of the methods have not been presented in de-
tailed. Finally, few studies have compared the performance of traditional PERT and that of proposed
methods with examples to help readers visualize the efficiency of new methods.

2.3. Addressing the research gaps

To address PERT’s incapability of updating its activity durations and its weakness in present-
ing right-skewed activities and risks in construction projects, the author proposes an advanced PERT
method integrated with Bayesian statistics which can use the Log-Normal distribution or improved
Beta parameters if practitioners decide to keep using this distribution. Mechanisms to dynamically
update activity durations during the project course as new observations arrive are examined as well.
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Throughout the development process, detailed mathematical proofs and derivations are provided to
theoretically validate the robustness of proposed models. An example involving a 30-floor build-
ing under construction is used to: (i) depict the steps to use new methods, showing their practical
application, and (ii) compare the results of traditional PERT with new methods to highlight their pos-
sible improvements over that of traditional PERT. The results of this study are expected to contribute
to the body of knowledge in the project scheduling field, showing the flexibility, effectiveness, and
applicability of these advanced Bayesian PERT methods.

3. Advanced Bayesian PERT method
3.1. Proposed approaches

To summarize the approach, the author incorporates Bayesian statistics in PERT for an updat-
ing mechanism while improving underlying distributions with the Log-Normal distribution and im-
proved Beta parameters. The rationale for alternating distribution to Log-Normal is that it can model
right-skewed events, which are most common in construction projects. The reason to enhance Beta
parameters without urging to removal of the distribution in PERT is because of the simplicity of the
estimates, and the Beta distribution can still model short and less complex projects efficiently. Upon
successfully integrating appropriate distributions and the nature of Bayesian updating into PERT, new
models can be used extensively by practitioners because they can obtain posterior distributions from
continuously observed data hence making decisions with more confidence.

3.2. Beta distribution approach

a. Parameter estimation

Given the optimistic (a), most likely (m), and pessimistic (b) time estimates for an activity, the
traditional PERT expected duration E and variance V are:

_at+4m+b

E
6

2
b—a) 0

d V=
wi vt

To fit a Beta distribution Beta(a,8) to the activity duration, the duration 7T is standardized to
X e[0,1]:

T —-a
X = 2
- (2)
The mean y and variance o> of X are:
= and o2 = b 3)
a+f (@+p)* (@+B+1)
Using the method of moments, the author sets these parameters:
E—-a ) \%
= ;0= 4)
v (b - a)?
Solving for @ and 8:
1—
PP amuE B=(-pF )

where F is a useful common factor.
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b. Bayesian updating

After observing n activity durations xi, x2, .. ., X,, the posterior Beta parameters are:
n
a =a+ Z X (6)
i=1
n
B =B+n-> x (7)
i=1
The posterior mean and variance are also updated as:
a/
W= g (8)
a/ﬁl
o = > Q)
(@ +p)y (@+p+1)

e Proof of variance reduction
- Theorem: In the Beta-improved Bayesian PERT method, the posterior variance decreases as the
number of observations increases.
- Proof:
It is helpful to show that o'? < 0% as n increases.
Consider the ratio of the posterior variance to the prior variance:

o? B X( (@+p)*(@+B+1) )
@ +BY @+ +1)

2

2 of (10)

Asn — oo:

+ Numerator Increase: Both o’ and B increase due to added observations, but their product o’
increases at a rate slower than the increase in their sum o’ + .

+ Denominator Increase: The term (o’ +8)* (& + B’ + 1) increases faster than o’8 due to the

squared and cubic terms.
72

Therefore, the overall ratio —- decreases as n increases, showing that the posterior variance o’
2

2

is less than the prior variance o
more observations.

. We can conclude that the uncertainty in the estimate decreases with

e Proof of convergence of posterior mean

’

- Theorem: The posterior mean u’ = converges to the sample mean x as n — oo.

a +p

- Proof:
The posterior mean estimated as:

, o a+S,

u:o/+,8’=a+,8+n 1D

Let us divide the numerator and denominator by n:

a —
—+X
ﬂ,:n—

a+
ﬁ+1

(12)

n
As n — oo, it is obvious that u° — X, implying that with a large number of observations, the
influence of the prior diminishes, and the estimate is dominated by the observed data.
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3.3. Log-Normal distribution approach
a. Parameter estimation

For the Log-Normal distribution, T ~ LogNormal (,u, 0'2), the mean and variance are:

gy = b 7) (13)
VIT] = (¢ = 1)) (14)

Similarly, E[T] and V[T] are expected and variance of the duration T correspondingly.
Using the PERT estimates E and V, the author solves for y and

2
%
o?=In(1+CV?); p=In(E)- % whereby CV = % (15)

b. Bayesian updating

Assuming conjugate priors for x4 and o

- Prior for u: Normal distribution N (,uo, T%);

- Prior for o%: Inverse-Gamma distribution I'™! (@0, Bo)-
After observing n log-transformed durations y; = In #;:

- Posterior for o

2, G- )

* 2(1 +nT(2))

n
2 el n 1 =
o ~T C¥o+§,ﬁo+§;(yz D) (16)

- Posterior for u:
ny
Ho

W=~ (17)

7P —— (18)

e Proof of variance reduction
- Theorem: In the Log-Normal Bayesian PERT method, the posterior variance decreases as the num-
ber of observations increases.
- Proof:
. : n : 1 n _0r
Consider Eq. (18): as n increases, the term — dominates —,80T" & —. This indicates that
(o T n
0

the posterior variance decreases inversely with n, implying increased precision in the estimate of u as
more data is collected.

e Proof of convergence of posterior mean
- Theorem: The posterior mean y’ converges to the sample mean y as n — oo,
- Proof:
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The posterior mean is given by:

"
u = (,u_g + —)2)) x 172 (19)
T, O
Substituting 772
Ho 1y
— 2 2
, _|#o  my 1 o 9
==+ = 2
K (Tg 0-2] 1 n 1 n (20)
2T 2 27 2
T, O T, O
ny
n : 1 ;o2 - :
Asn — oo — dominates — and ¢© — == = y. Thus, the posterior mean converges to
o T
0 -
2
o

the sample mean y of the log-transformed data, demonstrating that with sufficient data, the prior’s
influence diminishes.

e Proof of reduction in posterior variance of activity duration

Consider V[T] in Eq. (14): As the posterior estimates of o decrease with more observations
(since o has an Inverse-Gamma posterior that becomes more concentrated), the term ¢” — 1 de-
creases. Additionally, as i becomes more precise (variance 7' decreases), the overall variance V[T]
decreases.

4. Numerical case study
4.1. Numerical example description

Let us consider the construction of a 30-floor building with the following sequential activities on
each floor: Activity A: Formwork; Activity B: Rebar and Concrete; Activity C: Masonry; Activity D:
Mechanical, Electrical, and Plumbing (MEP); Activity E: Finishing.

4.2. Activity time estimates
Prior estimates of typical activities are given in Table 1, for instance, by experts or history data.

Table 1. Time estimates (days) of typical activities

Activity Time Estimates A B C D E
Optimistic (a) 3 4 5 6 4
Most likely (m) 5 6 7 8 6
Pessimistic (b) 8 10 12 14 9
4.3. Traditional PERT calculations
For each activity, the expected duration E and variance V are calculated (Table 2):
Total Expected Duration and Variance per Floor:
EFlor)r:EA+EB+EC+ED+EE =345 days (21)
VEiwor = Va + Vg + VC +Vp+ Vg = 5.52 days (22)
Total Project Duration for 30 Floors:
Etorar,pERT = 30 X EFj00r = 1035 days (23)
Viowal,peRT = 30 X Vigor = 165.6 days® (24)
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Table 2. Duration and Variance of activities (traditional PERT)

Expected Duration E and Variance V A B C D E
dm+ b
E-= % (day) 517 667 783 867 617
b— 2
V= (T“) (day?) 0.69 1 1.36 178 0.69

4.4. Beta-Improved Bayesian PERT method

a. Prior parameters
Using the method described above, the author calculates @ and S for each activity.
Example for Activity A:
- Standardized mean:

E4— 5.17 -3
AZdA = 0.433 (days)

HA

- bA —da 5
- Standardized variance:
o2 = Va 5= 0-89 _ 0.0276 (days?)
(ba — an) 25

- Common factor F4:
a1 = pa) 1= 0.433 x 0.567 B

F =
A o 0.0276

1~89
- Beta parameters:
ap = ﬂAFA ~ 3.86,ﬂA = (1 —/JA) FA ~ 5.04
b. Bayesian updating
For each observed duration #; of Activity A:

- Standardize:
ti—ap

X =
" ba—aa

a =a+ Z X;
B =B+n- Z X
- Compute posterior mean and variance.
4.5. Log-Normal Bayesian PERT method
a. Prior parameters
Using the method described above, the author estimates u and o> for each activity.

Example for Activity A:
- Coefficient of variation:

- Update parameters:

vV V0.6
cvy = VA _ % ~0.16
Ex ~ 517
- Estimate o7
o =In(1+CV3) ~ In(l +0.0256) = 0.0253
- Estimate u:
0.0253
pa =1In(5.17) - ~ 1.641
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b. Bayesian updating

For each observed duration ¢;:
- Compute:
yi =Ing; (35)

- Update y and o using the formulas in Section 3.3.

4.6. Implementation

The author simulates durations for each activity on each floor, incorporating variability to re-
flect real-world conditions. Python 3.11.3 on the macOS Sonoma 14.5 operating system is used to
implement the computation.

a. Simulating observed data

The observed durations are generated using the true underlying distributions.
Example for Activity A (similar for other activities):
- True Beta distribution parameters: @ ye = 4, Btrue = 6.
- Simulate x; ~ Beta (@ryes Brrue)-
- Convert to actual duration:
ti =ap + (ba —aa) x; (36)

b. Bayesian updating procedures and total project duration calculating

In each method, the parameters after each observation and compute the posterior estimates of
activity durations are updated. Specifically, calculations for the Beta approach follow Eq. (1) to
Eq. (12) and those for the Log-Normal approach follow Eq. (13) to Eq. (18).

After that, the cumulative expected total duration after each floor for all methods are computed.

4.7. Results
a. Comparison of methods

Before looking at the results, the following are expected based on previous mathematical proofs:

- Traditional PERT provides a static estimate of project duration.

- Beta-Improved Method dynamically updates estimates based on observed data, adjusting for
variability.

- Log-Normal Method captures skewness in activity durations, offering potentially more accurate
estimates for right-skewed data.

b. Graphical analysis

e Expected total project duration over floors

Fig. 1 depicts the expected total duration yielded by the three methods. Not surprisingly, tradi-
tional PERT would not change its estimate of the project duration at 1,020 days, due to its inability to
update new data as the project progresses.

The Beta-improved model’s estimates fluctuate around 1,020 days and converge to 1,030 days at
the end of the project. This indicates the model’s capability to incorporate observed data to refine its
prediction of the project duration. The value of 1,030 days is exactly what the Log-Normal model
produces at the end of the project. The difference is that the Log-Normal model starts conservatively
at 1,260 days since it emphasizes the higher uncertainty present at the beginning of the project. The
convergence of the results from the Beta-improved and the Log-Normal models is expected because
both models have Bayesian updating mechanisms, and when uncertainty drops to minimum at the end
of the project, their estimates must agree.
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1250 A —e— Beta-Improved Method
! —m— Log-Normal Method

—==~ Traditional PERT

1200 A

1150 A

1100 +

Total Project Duration (days)

1050 +

1000 T T T
0 5 10 15 20 25 30
Number of Floors Completed

Figure 1. Expected total project duration over floors

The robustness of the proposed methods is threefold: their dynamic updating capabilities, the
convergence to a reliable estimate, and uncertainty handling. The Log-Normal model shows its ability
to start conservatively (due to the common right-skewed distribution of construction activities) but
decrease quickly due to Bayesian prior-posterior transition.

e Variance reduction over floors

The variance reduction behaviors of the methods’ estimates are depicted in Fig. 2. The traditional
PERT’s variance remains constant at 110 days®, which again, is not surprising because it lacks an
updating capability. The Beta-improved method, sharing the same Beta distribution with traditional
PERT, reduces its variance to a barely positive value (around 40 days?, similar to the variance of a
single floor) after starting with the same values as traditional PERT. The Log-Normal method starts
out very high-approximately 5,550 days? at the first floor — due to its consideration of the right-
skewness of all 30 floors ahead. However, variance drops down to 1,500 dalys2 and get stabilized
around 1,400 days? thereafter.

\ —e— Beta-Improved Method Variance
5000 1 \ —m— Log-Normal Method Variance

\ -==~ Traditional PERT Variance

4000 A

3000 +
2000 A

1000 -

Total Project Variance (days”™2)

0 5 10 15 20 25 30
Number of Floors Completed

Figure 2. Variance reduction over floors

The combined observation proves the effectiveness of the proposed methods. Both Bayesian mod-
els exhibit variance reduction, though in different behaviors. While the Beta-improved can minimize
its variance at the end to show its strength to reflect uncertainty reduction, the Log-Normal demon-
strates its ability to deal with the right-skewed nature of construction activity durations by starting
high but reducing fast.
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e Probability of meeting the deadline over floors

Fig. 3 shows the probability of the project finishing on time during its course (for the case that
all activities materialize at their expected duration). Since the deadline was set up at 1,050 days,
the Beta-improved method maintains a steady probability of 100% that the project will finish before
the deadline. However, the Log-Normal indicates a low probability of on-time completion at the
beginning because the initial uncertainty is too high. Eventually, the probability increases to 75%
at the 15" floor and maximizes to 82% during the construction of the last floor. This indicates the
growth of confidence as uncertainty decreases. It is noteworthy that even at the end of the project
of the two proposed methods converges, the probability calculated by the Log-Normal is still 82%
but not 100%. Here, the right-skewed property of data in construction projects is emphasized again,
representing the case that sudden risks might occur and change the whole plan upside down in the
last few floors.

0.8 -

0.6

0.4 A

0.2 1

Probability of Meeting Deadline

—&— Beta-Improved Method

0.0 - Log-Normal Method

0 5 10 15 20 25 30
Number of Floors Completed

Figure 3. Probability of meeting the deadline along the project schedule

e Posterior means for each activity

Fig. 4 depicts the evolution of posterior means of five activities along the progress of the project.

Though behaving differently, the posterior means of activities of the two methods converge, with
the values estimated by the Log-Normal method always greater than those of the Beta-improved
method. For example, Formwork starts at 5.19 days and slowly moves down to 4.95 days according
to the Beta-improved method. Meanwhile, the Log-Normal method moves in a steeper curve from
6.38 days to 5.05 days by the 30" floor.

Regarding uncertainty handling, the Log-Normal method’s significant early adjustments reflect
high initial uncertainty and sensitivity to new observations, highlighting its capacity to model right-
skewed activity durations and potential delays. The Beta-Improved method shows more stable esti-
mates with smaller adjustments, indicating consistent confidence in predictions and steady incorpora-
tion of observed data. This observation aligns with the comment by Schoot et al. [35], that the choice
of prior distributions can significantly influence the results of Bayesian analyses.

Because both methods are based on Bayesian methods, posterior means of the activities reduce
variance and converge as observed. This validates the theorems that were mathematically proved
above.
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Figure 4. Posterior means of activities

5. Discussion on the implications for project scheduling

The Beta-improved method, sharing the Beta distribution with traditional PERT, yields consistent
estimates during the schedule of the project, with minor fluctuations due to the nature of Bayesian
statistics. The Log-Normal, on the other hand, begins with conservative estimates, reflecting uncer-
tainty and right-skewed property of the distribution, but then adjusts itself as new data are updated.
This swift adaptation more accurately reflects potential delays in the initial stages, which is essential
for effective contingency planning.

Both methods improve risk management by decreasing variance over time, suggesting heightened
confidence in the estimates. The Beta-Improved method results in a reduced final variance, thereby
improving the accuracy of activity duration forecasts. The Log-Normal method shows a higher vari-
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ance at the beginning but decreases as the project progresses. This conservative view allows project
managers to plan for proactive mitigation strategies and may require more resources for risk man-
agement. Variance reduction translates to increased confidence in activity duration estimates as the
project progresses. Early in the project, estimates are based on prior information, which may be un-
certain. As actual activity durations are observed, these data points refine our estimates, reducing the
posterior variance.

Benefiting from updating mechanisms, project managers can modify schedules based on actual
performance, thereby optimizing timelines and minimizing idle times between activities. Accurate
and updated duration estimates enhance the planning of labor, equipment, and materials, resulting in
improved resource allocation and reduced costs.

These methods show their strength in application to different cases in project scheduling: the Beta-
improved method might be helpful for short and simple projects and to verify schedule compliance,
while the Log-Normal method can be used with long and complex projects when resources need to
be monitored closely. In case sudden risks happen toward the end of a project’s course, posterior
variance may increase, triggering a defensive attitude of project managers, and that is when the Log-
Normal method better represents the schedule. To choose which method to use, practitioners might
have to make decisions based on the specific properties of each project, the experience of project
managers, and iterative refinement through trial and error. However, both methods can be used in one
construction project at the same time for different purposes by project practitioners to form a balanced
scheduling strategy.

With both methods, the ability to dynamically update information along the course of projects
is a well-known Bayesian mechanism. Continuous refinement of estimates and adjustment of plans
enhance the probability of timely project completion. The consistent probability of meeting the dead-
line provided by the Beta-Improved method enhances confidence in the project’s success. Effective
scheduling minimizes the likelihood of cost overruns linked to delays, while optimal resource al-
location aids in maintaining budgetary constraints. For practitioners who have experienced using
traditional PERT, the migration to these proposed methods can be smooth as short workshops using
synthetic data can be used to demonstrate the change in distributions and the updating mechanism of
the Bayesian philosophy.

6. Conclusions

This study introduces two improvements to current PERT scheduling techniques by proposing: (i)
alternative distributions with Beta with evolved parameter identification and Log-Normal distribution
and (ii) A Bayesian mechanism integrated to actively update project estimates based on actual project
performance.

The proposed methods are grounded in a robust mathematical foundation. The paper shows,
through comprehensive mathematical formulations and demonstrations, that Bayesian updating sig-
nificantly diminishes variance and approaches more precise estimates when additional data is ac-
quired. The author formulated equations for adjusting the parameters of the Beta distribution based
on observed data in the Beta-Improved technique, demonstrating that the posterior variance dimin-
ishes with increased observations and that the posterior mean approaches the true mean of activity
durations. The author formulated the estimation of Log-Normal distribution parameters utilizing
PERT estimations and generated Bayesian updating equations with posterior priors, demonstrating
analogous convergence features.

The numerical case study of a 30-story building project demonstrated the actual application and
advantages of the proposed methods. Visualized results confirm the theoretical proofs and derivations
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developed earlier. Improved accuracy and reliability arise from mathematically validated decreases in
variance and convergence of estimates, resulting in superior planning and execution. Enhanced risk
management is facilitated by the early detection of uncertainty, underpinned by mathematical proofs,
which permit proactive mitigation techniques. Dynamic scheduling and resource allocation are facil-
itated by mathematically modeled updating capabilities, enhancing resource usage and minimizing
costs.

By delivering precise and current duration estimates, supported by robust mathematical evidence,
project managers may make educated decisions about milestones, deadlines, and resource allocation.
The accurate modeling of project dynamics via advanced mathematics guarantees that estimates con-
sider probable delays, crucial for establishing feasible timeframes and managing stakeholder expecta-
tions. Strategic contingency planning is improved by mathematically precise estimates, streamlining
project schedules and augmenting the probability of timely completion.

One of the limitations of this study is that the models were applied in a simplified numerical
case study with only a few repetitive activities. In real projects, their application might yield some
unpredicted outcomes, whose cause might result from how practitioners obtain estimated parameters
of activities. The assumption of interdependence among activities has not been addressed in the
proposed methods. In future research, the work may be expanded so that multiple distributions are
integrated into the model to treat different activities in different timeframes and in a dependent setting,
and the switch is dynamic. Furthermore, resource limitations can be incorporated into the model,
making it more realistic and robust. Research can include a pilot study to survey how project managers
apply the models in their actual projects, thereby improving the proposed methods as a necessary
management tool.

Data and code availability

The data and code used in this study are available from the corresponding author upon reasonable
request.
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