
Journal of Science and Technology in Civil Engineering, HUCE, 2024, 18 (4): 98–108

ENSEMBLE LEARNING METHODS FOR THE MECHANICAL
BEHAVIOR PREDICTION OF TRI-DIRECTIONAL

FUNCTIONALLY GRADED PLATES
Dieu T. T. Doa,∗

aFaculty of Information Technology, Ho Chi Minh City University of Foreign Languages - Information
Technology, 828 Su Van Hanh road, District 10, Ho Chi Minh City, Vietnam

Article history:
Received 06/9/2024, Revised 21/10/2024, Accepted 05/12/2024

Abstract

This paper aims to enhance computational performance for behavior prediction of tri-directional functionally
graded plates using ensemble learning methods such as random forest, extreme gradient boosting, and light
gradient boosting machine. Furthermore, the effectiveness of these methods is verified by comparing their
results with those of artificial neural networks. The present investigation focuses on the buckling problem of tri-
directional functionally graded plates. In this study, data pairs consisting of input and output data are generated
using a combination of isogeometric analysis and generalized shear deformation theory to ensure the accuracy
of the dataset. The input data in this case are eighteen control points used to characterize material distribution;
the output data are total ceramic volume fraction and non-dimensional buckling load. Based on this dataset,
the effect of hyperparameters in machine learning models on accuracy and computational cost is investigated
to determine models with optimal hyperparameters, referred to as optimal models. The performance of the
optimal models in predicting plate behavior is compared to each other. Furthermore, in terms of computational
time and accuracy, the light gradient boosting machine model gives the best results compared to the others.
Keywords: tri-directional functionally graded plates; buckling; artificial neural network; ensemble learning;
random forest; extreme gradient boosting; light gradient boosting machine.
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1. Introduction
Functionally graded materials (FGMs) are novel composite materials with locally customized

properties that show gradual compositional and structural variations throughout their volume. Numer-
ous FGMs are frequently observed in nature; for example, FGMs are found in plants and seashells, as
well as in bone structures. Since the initial proposal by Niino et al. [1] to produce a thermally graded
metal-to-ceramic phase, FGMs have already been the subject of extensive research. FGMs’ structures
and compositions can be precisely designed for specialized multifunctional characteristics. For this
reason, FGMs are highly desirable for a wide range of applications, such as biomedical implants,
sensors, aerospace engineering, civil engineering, and so on [2–5].

Many research investigations have been conducted on unidirectional FGMs because this type of
FGMs has been utilized the most widely [6–9]. Despite their widespread use, unidirectional FGMs
may not always be the most effective method for designing structures that withstand harsh environ-
ments. Thus, it stands to reason that bi- or tri-directional FGMs might be more successful in harsh
environments, and numerous studies about bi- or tri-directional FGMs have been suggested [10–14].
For example, Tang Ye et al. [14] used the generalized differential quadrature method to predict dy-
namic behaviors of tri-directional functionally graded beams by solving the governing equation. The
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results showed that, in contrast to uni- or bi-directional FGMs structures, the tri-directional FGMs
indexes can offer a much larger range for tuning/tailing mechanical behaviors. Tao et al. [10] utilized
isogeometric analysis (IGA) to investigate thermal postbuckling and thermally induced postbuckled
flutter of the tri-directional FGMs. In comparison to uni-directional FGMs, tri-directional FGMs
showed a greater variety of postbukling paths and more complex deformations. This paper thus goes
into further detail on the significance of tri-directional FGMs.

As mentioned in the above studies, numerical methods such as the finite element method and IGA
have been used to analyze the behavior of tri-directional FGM structures. Nevertheless, applying such
analytical techniques will take a lot of computational cost, particularly when dealing with structural
optimization problems. As a result, machine learning algorithms have been suggested as an alternative
to analytical methods for quickly predicting the behavior of functionally graded structures as in the
studies [8, 13, 15–19]. For instance, Vaishali et al. [18] used support vector machine model to
investigate stochastic dynamic characterization of functionally graded shells. Such approach reduces
significant computational costs while ensuring the accuracy of results. Do et al. [19] utilized artificial
neural networks (ANN) and extreme gradient boosting (XGBoost) for predicting dynamic behaviors
of functionally graded plates. These methods not only ensure the accuracy of obtained results but also
reduce computational time. Moreover, Do et al. [13] employed ANN to predict free vibration and
buckling problems of tri-directional functionally graded plates. By using this method, the material
optimization process to determine an optimal material distribution in the plate can be carried out
much faster. From the above discussions, it can be seen that the number of studies related to applying
machine learning methods to the tri-directional FG plate problems is still very limited. In particular,
to the author’s knowledge, ensemble learning methods have not been used for tri-directional FG plate
problems.

In machine learning, ensemble learning is an effective technique that provides a reliable means
of enhancing model performance and predictive accuracy. Ensemble learning methods are useful
in the machine learning toolbox because they combine the strengths of several individual models to
produce results that frequently outperform any single model. Therefore, ensemble learning methods
such as random forest, extreme gradient boosting (XGBoost), and light gradient boosting machine
(LightGBM) have been applied to various fields [20–27]. For example, Qui [20] used XGBoost for
damage diagnosis for trusses based on incomplete free vibration properties. Kulkarni et al. [26]
used White Shark-assisted Extreme Gradient Boost (WS ExGB) model to diagnose microvascular
diseases. Wherein XGBoost was utilized as a classification model, and White Shark was used to
optimize classification parameters. From the above discussions, it can be seen that ensemble learning
methods have not been used to predict behaviors of the tri-directional FG plates under compression.

In this paper, behavior prediction of tri-directional FG plates under uni-axial compression will
be investigated using ANN and ensemble learning methods including random forest, XGBoost, and
LightGBM. Data pairs will be created by using IGA to ensure the accuracy of the data. The accuracy
and effectiveness of the analysis method were verified in the study [13]. Eighteen control points used
to control material distribution in the plate are considered inputs while total ceramic volume fraction
and non-dimensional buckling load are outputs. The effect of hyperparameters of each model on the
accuracy and computational time are also investigated to select optimal machine learning models.
Finally, results obtained by these optimal models are compared to each other in terms of accuracy and
computational costs.
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2. Ensemble learning methods
In machine learning, ensemble learning is the process of training multiple models to solve a

common problem and combining their predictions to improve overall performance. In other words, an
ensemble model makes predictions that are more accurate than those of a single model by combining
several different models. Ensemble learning methods can be used to handle various tasks such as
classification, clustering, and regression. Ensemble learning methods can be divided into three major
categories: bagging, boosting, and stacking.

2.1. Random forest

Random forest proposed by Breiman [28] is an extension of the bagging method. This method
combines feature randomness and bagging to generate an uncorrelated forest of decision trees. This
is one of the main distinctions between random forest and decision trees. Random forest only chooses
part of the features, whereas decision trees take into account all potential feature splits. The random
forest algorithm works as follows:

- Step 1: From the given dataset, the algorithm chooses random samples.
- Step 2: For every sample chosen, the algorithm will produce a decision tree. After that, it will

receive a prediction from every decision tree that was built.
- Step 3: Following that, each predicted result will be put to a vote. It will use mean for a

regression problem and mode for a classification problem.
- Step 4: The algorithm will then decide which prediction result received the most votes to become

the final prediction.
Random forest has the following advantages and disadvantages:
- Advantages: high accuracy, robustness to noise, non-parametric nature, estimating feature im-

portance, handling missing data and outliers, and handling numerical and categorical data.
- Disadvantages: computational complexity, memory usage, longer prediction time, lack of inter-

pretability, and overfitting.

2.2. Extreme gradient boosting (XGBoost)

XGBoost, which is proposed by Chen et al. [29], is one of ensemble learning algorithms known
as a boosting algorithm that is used for regression and classification problems. XGBoost is renowned
for its accuracy, speed, and efficiency. A stronger model in XGBoost is created by combining several
weak models. It is employed based on decision trees, where a random selection of features and a
subset of the data are used to train each tree. XGBoost begins with a single decision tree, which is
then utilized to generate predictions using the training set. After that, the second model uses the first
model’s residuals as its target to train the model based on these residuals. Every subsequent model is
trained using the residuals from the preceding model during a predetermined number of iterations of
this process.

XGBoost has the following advantages and disadvantages:
- Advantages: high accuracy, speed and scalability, performance, flexibility, interpretability, and

regularization.
- Disadvantages: complexity, computational resources, overfitting, and hyperparameter tuning.

2.3. Light gradient boosting machine (LightGBM)

LightGBM, proposed by Ke et al. [30], is an gradient boosting algorithm that builds a stronger
learner by gradually adding weak learners in a gradient descent approach. LightGBM optimizes train-
ing time and memory usage with techniques such as gradient-based one-side sampling. LightGBM

100



Do, D. T. T. / Journal of Science and Technology in Civil Engineering

builds decision trees that expand leaf-wise, meaning that, depending on the gain, only one leaf is split
for each condition. Sometimes, particularly with smaller datasets, leaf-wise trees can overfit. Overfit-
ting can be prevented in part by restricting the depth of tree. LightGBM employs a histogram-based
approach in which data is grouped into bins using a distribution histogram. The data is split, the gain
is calculated, and iterations are performed using the bins rather than individual data points. Addi-
tionally, this method can be optimized for a sparse dataset. Besides, exclusive feature bundling is a
feature of LightGBM that reduces dimensionality and increases speed and efficiency by combining
exclusive features.

LightGBM has the following advantages and disadvantages:
- Advantages: higher efficiency, faster training speed, lower memory usage, compatibility with

large datasets, and better accuracy.
- Disadvantages: overfitting, and hyperparameter tuning.

3. Numerical examples
This study investigates the buckling behaviors of tri-directional SUS304/Si3N4 square plate, as

shown in Fig. 1, with length-to-thickness ratio a/h set to be 10, boundary condition CCCC, under
uni-axial compression. The properties of the plate are estimated by Mori-Tanaka scheme. Material
properties of the FG plate are given as

Ceramic Si3N4: Ec = 348.43 GPa, vc = 0.24, ρc = 2370 kg/m3

Metal SUS304: Em = 201.04 GPa, vm = 0.3262, ρm = 8166 kg/m3 (1)

Figure 1. The functionally graded plate model

A combination of IGA and GSDT is employed to analyze the behaviors of the FG plate under
uni-axial compression. The NURBS function describes material distribution in the plate in all three
directions. Control points in the NURBS function control the material distribution and 18 control
points are considered inputs in dataset for the training process in machine learning algorithms. The
accuracy of the method was verified in the study [13]. Dataset consisting of 20000 data pairs used for
the training process in machine learning methods is created by this analysis tool. In which the output
data are total ceramic volume fraction and non-dimensional buckling load. In this study, the train/test
ratio is set at 90/10 for all algorithms. The influence of hyperparameters in machine learning models
on accuracy and computational cost is investigated to find models with optimal hyperparameters,
referred to as optimal models. After that, a comparative analysis is done between the optimal models’
predictions of plate behavior.

The training process is carried out using Python 3.7 on a laptop running Windows 11, 64-bit with
an Intel® CoreTM i7-8550U CPU @1.80 GHz 2.00 GHz, 12.0 GB RAM.
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3.1. Applying ANN for predicting the behavior of tri-directional FG plates under uni-axial compres-
sion

Firstly, an ANN architecture with one hidden layer, 100 nodes in each hidden layer, batch size
100, and 1000 epochs is considered in the first example to find an optimal combination of activation
functions and optimizers. Specifically, five activation functions consisting of linear, sigmoid, tanh,
softplus, and ReLU, as well as four optimizers consisting of SGD, Adagrad, RMSpop, and Adam
are investigated. The accuracy and computational time obtained by such combinations are shown
in Table 1. In which, MSE and MAPE symbolize mean square error and mean absolute percentage
error, respectively. The table indicates that the optimizers SGD and Adam produce the best results,
with MAPE less than 1%, indicating an accuracy of over 99%. A combination of Adam optimizer
and ReLU function gives the best result with MSE of 1.85E-07 for both training and test sets, MAPE
for training and test of 0.0738% and 0.0739%, respectively. Therefore, ANN architecture with the
combination of Adam and ReLU is used in subsequent investigations.

Table 1. The accuracy and computational cost obtained by ANN with different combinations
of activation functions and optimizers

Activation
functions

Error types and
computational

time

Optimizers

SGD Adagrad RMSprop Adam

Training Test Training Test Training Test Training Test

Linear MSE 2.03E-06 2.05E-06 7.43E-06 7.65E-06 1.00E-05 1.02E-05 2.26E-06 2.28E-06
MAPE 0.1483 0.1473 0.4160 0.4211 0.6168 0.6209 0.2108 0.2096

Time (second) 268.77 273.53 273.53 279.52

Sigmoid MSE 2.75E-06 2.77E-06 5.53E-04 5.42E-04 3.52E-05 3.35E-05 3.46E-06 3.46E-06
MAPE 0.2042 0.2028 3.9426 3.8728 0.8752 0.8510 0.3245 0.3219

Time (second) 274.08 278.66 280.00 289.38

Tanh MSE 5.95E-06 5.87E-06 3.49E-05 3.50E-05 3.23E-05 3.18E-05 5.00E-07 5.03E-07
MAPE 0.3718 0.3673 0.9485 0.9561 1.0581 1.0445 0.1135 0.1132

Time (second) 275.06 272.93 276.79 285.11

Softplus MSE 2.90E-06 3.04E-06 5.15E-05 5.05E-05 1.96E-05 1.86E-05 4.96E-06 4.99E-06
MAPE 0.2432 0.2486 1.1726 1.1590 0.7215 0.7045 0.3885 0.3888

Time (second) 298.73 300.62 303.07 307.97

ReLU MSE 3.82E-06 3.82E-06 1.17E-04 1.17E-04 1.13E-05 1.13E-05 1.85E-07 1.85E-07
MAPE 0.2496 0.2472 1.7079 1.7252 0.6485 0.6474 0.0738 0.0739

Time (second) 269.83 274.01 275.46 273.56

Next, the impact of the number of hidden layers and nodes in each hidden layer in ANN archi-
tecture on accuracy and computational time is investigated. Gained results are tabulated in Table 2.
According to the table, the computational time of ANN increases as the number of hidden layers or
nodes increases. ANN ensures the accuracy of predicting behaviors of the FG plate when MAPE is
less than 0.3% in all examined cases. ANN architecture with 2 hidden layers and 200 nodes in each
hidden layer creates the lowest error in all investigated cases; therefore, this architecture is used for
the next investigation to identify an optimal ANN architecture.

Finally, the effect of the number of epochs chosen in the set 100, 300, 500, 1000, 2000 on the
accuracy and computational time is investigated and obtained results are presented in Table 3. As
shown in the table, as the number of epochs increases, accuracy increases but so does computational
time. Therefore, a value for epoch will be selected based on usage requirements in order to maintain
a balance between the algorithm’s computational cost and accuracy. The convergence history of the

102



Do, D. T. T. / Journal of Science and Technology in Civil Engineering

Table 2. The accuracy and computational cost obtained by ANN with various configurations
of the number of hidden layers and nodes in each hidden layer

No. nodes in
each hidden layer

Error types and
computational time

1 hidden layer 2 hidden layers 3 hidden layers

Training Test Training Test Training Test

10 MSE 2.61E-06 2.58E-06 2.62E-06 2.66E-06 6.95E-07 7.14E-07
MAPE 0.2071 0.2028 0.2643 0.2644 0.1440 0.1452

Time (second) 268.59 284.31 290.91

50 MSE 1.59E-06 1.59E-06 1.07E-06 1.10E-06 2.08E-07 2.06E-07
MAPE 0.2294 0.2295 0.1913 0.1921 0.0792 0.0785

Time (second) 270.65 300.65 317.42

100 MSE 1.85E-07 1.85E-07 7.58E-07 7.63E-07 5.49E-07 5.50E-07
MAPE 0.0738 0.0739 0.1525 0.1524 0.1245 0.1243

Time (second) 273.56 334.81 359.71

150 MSE 1.91E-07 1.94E-07 4.03E-07 4.06E-07 1.02E-06 1.03E-06
MAPE 0.0647 0.0647 0.1186 0.1188 0.1947 0.1950

Time (second) 281.70 345.44 408.88

200 MSE 1.59E-07 1.57E-07 8.63E-08 9.01E-08 1.45E-07 1.47E-07
MAPE 0.0654 0.0647 0.0447 0.0450 0.0704 0.0707

Time (second) 286.04 386.67 479.41

ANN model with epochs of 1000 is shown in Fig. 2. The figure illustrates that there is no overfitting
and that test and training losses converge to zero.

Table 3. The accuracy and computational cost obtained by ANN with different epochs

Error types and
computational

time

Epochs

100 300 500 1000 2000

Training Test Training Test Training Test Training Test Training Test

MSE 4.69E-06 4.73E-06 1.76E-06 1.77E-06 9.39E-07 9.50E-07 8.63E-08 9.01E-08 5.44E-08 5.58E-08
MAPE 0.3855 0.3867 0.2358 0.2357 0.1782 0.1781 0.0447 0.0450 0.0364 0.0367

Time (second) 43.05 121.01 197.85 386.67 777.38

Figure 2. The convergence history of ANN model
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3.2. Applying random forest for predicting the behavior of tri-directional FG plates under uni-axial
compression

In this section, an optimal random forest model is selected by examining the influence of hyper-
parameters such as the number of trees (n estimators), and maximum tree depth (max depth) on the
efficiency of the method. In particular, values of n estimators are selected in the set {10, 100, 1000,
2000, 5000, 10000}, and values of max depth are selected in the set {1, 10, 20, 25}. Accuracy and
computational time obtained by the method are presented in Table 4. From the table, it can be seen
that max depth of 20 and 25 give the best results with MAPE less than 1%, and these cases with
n estimators of 10 take around 4 seconds to train data. It takes less time to compute results from
random forest with max depth between 20 and 25 and n estimators between 10 and 100 than from
the optimal ANN architectures shown in Table 3. However, test errors obtained by random forest
are always larger than corresponding training errors. While training and test errors obtained by ANN
are nearly the same, optimal ANN architectures with epochs of 1000 and 10000 provide superior
accuracy when compared to random forest.

Table 4. The accuracy and computational cost obtained by random forest with different combinations
of n estimators and max depth

n estimators
Error types and
computational

time

max depth

1 10 20 25

Training Test Training Test Training Test Training Test

10 MSE 2.86E-03 2.85E-03 1.23E-04 1.82E-04 9.19E-06 4.34E-05 8.46E-06 4.30E-05
MAPE 8.9197 8.8506 1.7586 2.1139 0.2131 0.5657 0.2101 0.5622

Time (second) 0.44 2.81 3.66 3.52

100 MSE 2.85E-03 2.84E-03 1.01E-04 1.59E-04 3.55E-06 2.65E-05 3.48E-06 2.77E-05
MAPE 8.9089 8.8391 1.6158 1.9733 0.1725 0.4522 0.1696 0.4485

Time (second) 3.20 23.41 28.67 28.53

1000 MSE 2.86E-03 2.85E-03 9.92E-05 1.57E-04 2.98E-06 2.59E-05 2.94E-06 2.61E-05
MAPE 8.9152 8.8422 1.6048 1.9591 0.1500 0.4213 0.1503 0.4256

Time (second) 32.11 183.29 224.55 225.86

2000 MSE 2.86E-03 2.85E-03 9.89E-05 1.56E-04 2.95E-06 2.60E-05 2.90E-06 2.61E-05
MAPE 8.9147 8.8403 1.6006 1.9580 0.1492 0.4225 0.1480 0.4210

Time (second) 48.27 364.94 489.51 456.79

5000 MSE 2.86E-03 2.85E-03 9.90E-05 1.57E-04 2.91E-06 2.57E-05 2.89E-06 2.55E-05
MAPE 8.9161 8.8411 1.6021 1.9591 0.1479 0.4197 0.1471 0.4178

Time (second) 137.19 910.64 1161.17 1178.84

10000 MSE 2.86E-03 2.85E-03 9.88E-05 1.56E-04 2.88E-06 2.55E-05 2.90E-06 2.57E-05
MAPE 8.9151 8.8399 1.6016 1.9550 0.1472 0.4199 0.1471 0.4196

Time (second) 253.39 1810.14 2321.45 2350.46

3.3. Applying XGBoost for predicting the behavior of tri-directional FG plates under uni-axial com-
pression

In the XGBoost model, the influence of two hyperparameters n estimators and max depth on
the model’s effectiveness is also investigated. MSE, MAPE, and computational time obtained by
these combinations are tabulated in Table 5. As shown in the table, XGBoost has improved both
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accuracy and computational time compared to random forest method. In comparison to the optimal
ANN architectures displayed in Table 3, combinations of max depth from 10 and n estimators from
100 in XGBoost provide better training errors and computational time. However, when max depth
increases, the error value of the test set also increases. This is one of the disadvantages of ensemble
learning methods. Therefore, to restrict overfitting, choosing the appropriate max depth parameter is
necessary.

Table 5. The accuracy and computational cost obtained by XGBoost with different combinations
of n estimators and max depth

n estimators
Error types and
computational

time

max depth

1 10 20 25

Training Test Training Test Training Test Training Test

10 MSE 1.83E-03 1.81E-03 2.83E-05 6.17E-05 1.83E-05 4.55E-05 1.83E-05 4.55E-05
MAPE 7.0768 7.0194 0.7667 1.0140 0.5782 0.7654 0.5782 0.7654

Time (second) 0.12 0.96 1.36 1.45

100 MSE 1.69E-04 1.78E-04 7.43E-08 1.71E-05 3.12E-08 1.77E-05 3.20E-08 1.78E-05
MAPE 2.0780 2.1502 0.0243 0.1460 0.0133 0.1327 0.0134 0.1329

Time (second) 0.85 6.99 7.32 7.66

1000 MSE 1.64E-05 1.83E-05 7.43E-08 1.71E-05 3.12E-08 1.77E-05 3.20E-08 1.78E-05
MAPE 0.6515 0.6893 0.0243 0.1460 0.0133 0.1327 0.0134 0.1329

Time (second) 8.95 13.69 14.20 14.09

2000 MSE 1.18E-05 1.34E-05 7.43E-08 1.71E-05 3.12E-08 1.77E-05 3.20E-08 1.78E-05
MAPE 0.5507 0.5856 0.0243 0.1460 0.0133 0.1327 0.0134 0.1329

Time (second) 17.08 22.49 21.68 22.26

5000 MSE 7.18E-06 8.47E-06 7.43E-08 1.71E-05 3.12E-08 1.77E-05 3.20E-08 1.78E-05
MAPE 0.4258 0.4590 0.0243 0.1460 0.0133 0.1327 0.0134 0.1329

Time (second) 41.65 44.48 45.26 43.69

10000 MSE 4.59E-06 5.64E-06 7.43E-08 1.71E-05 3.12E-08 1.77E-05 3.20E-08 1.78E-05
MAPE 0.3362 0.3686 0.0243 0.1460 0.0133 0.1327 0.0134 0.1329

Time (second) 81.35 82.93 82.01 82.19

3.4. Applying LightGBM for predicting the behavior of tri-directional FG plates under uni-axial
compression

The combination of n estimators and max depth is further explored in this section. In the Light-
GBM model, the number of nodes in the tree is represented as num leaves, which controls the com-
plexity of the tree model, set num leaves = 2max depth. Table 6 presents results obtained by LightGBM.
From the table, it can be seen that the LightGBM method improves the accuracy and calculation speed
significantly compared with two methods: random forest and XGBoost. In comparison with ANN,
LightGBM with n estimators of 10000 and max depth of 10 gives better results. Specifically, accu-
racy obtained by such LightGBM model reaches 99.9937% and 99.9633% for the training and testing
process, respectively. And it takes only 33.31 seconds. While optimal ANN model with epochs of
1000 gives accuracy of 99.9553% and 99.9550% for the training and testing process. ANN requires
386.67 seconds to obtain results.

From the results obtained by all methods, it can be seen that ANN gives highly accurate pre-
dictions with more complex architecture; however, ANN requires more computational effort to get
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results. In ensemble learning methods, LightGBM gives the best accuracy and computational time
results. LightGBM is superior to random forest and XGBoost. Moreover, LightGBM also surpasses
ANN in terms of accuracy and computational time. However, in ensemble learning methods, the
hyperparameter max depth needs to be chosen appropriately to limit overfitting.

Table 6. The accuracy and computational cost obtained by LightGBM with different combinations
of n estimators and max depth

n estimators
Error types and
computational

time

max depth

1 10 20 25

Training Test Training Test Training Test Training Test

10 MSE 2.81E-03 2.78E-03 1.89E-03 1.89E-03 1.47E-03 1.48E-03 1.39E-03 1.41E-03
MAPE 8.8578 8.7226 7.2181 7.1931 6.3729 6.3777 6.1978 6.2117

Time (second) 0.11 0.12 0.15 0.18

100 MSE 8.23E-04 8.26E-04 1.16E-04 1.41E-04 5.93E-01 5.64E-05 2.86E-05 4.62E-05
MAPE 4.6895 4.7073 1.6962 1.8812 0.9401 1.1664 0.8460 1.0522

Time (second) 0.32 0.51 0.75 0.91

1000 MSE 1.54E-05 1.76E-05 6.07E-06 9.93E-06 7.09E-07 4.44E-06 3.45E-07 3.94E-06
MAPE 0.6325 0.6725 0.3752 0.4790 0.1019 0.2015 0.0644 0.1467

Time (second) 1.72 3.41 5.32 6.70

2000 MSE 9.46E-06 1.07E-05 1.81E-06 4.14E-06 7.58E+00 2.91E-06 1.96E-08 3.22E-06
MAPE 0.4977 0.5259 0.1897 0.2762 0.0205 0.0818 0.0105 0.0649

Time (second) 3.40 6.52 10.62 11.67

5000 MSE 6.89E-06 7.75E-06 1.30E-07 1.32E-06 2.03E-10 2.76E-06 2.18E-11 3.17E-06
MAPE 0.4241 0.4474 0.0401 0.0877 0.0009 0.0480 0.0003 0.0474

Time (second) 8.52 15.22 26.19 29.30

10000 MSE 5.52E-06 6.27E-06 5.76E-09 1.06E-06 4.67E-14 2.76E-06 9.88E-16 3.17E-06
MAPE 0.3785 0.3994 0.0063 0.0367 1.28E-05 0.0465 2.92E-06 0.0470

Time (second) 16.49 33.31 55.03 64.15

4. Conclusions
In this paper, ANN and ensemble learning methods such as random forest, XGBoost, and Light-

GBM have been successfully applied to predict buckling behaviors of the tri-directional SUS304/
Si3N4 square plate. These models are able to predict non-dimensional buckling load and total ce-
ramic volume fraction with high accuracy for any given set of eighteen control points. The influence
of hyperparameters in the models on the accuracy and computational time has been investigated to
find the optimal models. The results showed that the LightGBM model gives better results than the
remaining models. ANN can ensure accuracy in prediction but is time-consuming. Ensemble learning
methods help to save computational time but setting the max depth hyperparameter appropriately is
necessary to restrict overfitting. In particular, with the proven effectiveness of the LightGBM model,
it can be extended to large datasets to save computational costs while still ensuring prediction ac-
curacy. The present methodology can be extended to more complex engineering problems such as
inverse problems and shells.
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