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Abstract

In this work, a reduced order isogeometric model is proposed to analyze the dynamic behavior of carbon
nanotube-reinforced composite plates. In which, the mechanical properties of the material are functionally
graded through the plate thickness employing four distributions of carbon nanotubes. A third-order shear
deformation theory is employed to represent the displacement along with the plate thickness, whilst a non-
uniform rational B-splines surface is utilized to approximate the displacement in the plate plane. The dynamic
responses at important degrees of freedom are resolved by the Newmark method instead of dealing with all
degrees of freedom as those of the full model. Accordingly, a reduced order model based on the second-
order Neumann series expansion is utilized to build the isogeometric analysis. Several examples are tested to
illustrate the ability of the suggested paradigm. Obtained outcomes are compared with those of other works
and full model to prove the reliability of the reduced Isogeometric analysis.
Keywords: dynamic analysis; carbon nanotube-reinforced composite (CNTRC) plates; isogeometric analysis
(IGA); reduced order model (ROM).
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1. Introduction
In the past few decades, advanced composite materials have extensively attracted a large number

of scholars in the scientific community. This discovery is known as a new revolution, especially
in material science and structural engineering. Among them, carbon nanotube-reinforced composite
(CNTRC) is one of the notable materials owing to its prominent thermo-mechanical properties such as
high stiffness, high strength, light weight, and so on. For those reasons, carbon nanotubes (CNTs) are
often integrated into conventional material matrices such as isotropic polymer to produce advanced
materials with more outstanding features, aiming at designing structural members in many fields such
as automotive, aerospace, civil engineering, etc. Therefore, studying the mechanical behavior of
structural components such as beam [1], plate [2, 3], and shell [4] is essential and crucial, especially
for cases under free vibration, time-history loads, etc. With this aspect, interesting readerships can
consult a review paper reported by Soni et al. [5] for more comprehensive discussions.

In 2005, Hughes et al. [6] first introduced an enhanced numerical approach as a competition and
alternative to the standard finite element method (FEM) which is the so-called isogeometric analysis
(IGA). This technique serves as a bridge for integrating computer-aided design (CAD) and finite ele-
ment analysis (FEA) into a unified model, aiming to reduce the computational cost. This IGA utilizes
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the same non-uniform rational B-spline (NURBS) for both geometrical modeling and mechanical be-
havior analysis. Hence, any complicated geometrical domains can be also exactly represented, whilst
high-order derivatives and continuities required to simulate the responses of composite materials can
be naturally guaranteed, especially for CNTRC plates [7, 8], functionally graded (FG) porous plates
[9], FG plates [10]. The IGA’s applications could be also found in the following publications [11–14].

Nevertheless, all the above-mentioned researches have analyzed the dynamic behavior of CNTRC
plates within the full IGA framework. This means that all degrees of freedom (DOFs) defined at
control points of the structural system after discretizing by the IGA context in the algebraic dynamic
equation system are resolved. Nevertheless, for issues encountered in structural health monitoring
(SHM), especially when measurement sensors are limited, the way of analyzing such problems in the
SHM by the full model is not suitable. More concretely, in such cases, the signals at important DOFs
of a monitored structure are measured by sensors. Then, the information of the remaining DOFs that
are not recorded by sensors is numerically inferred by the mathematical equations formulated from
the so-called model order reduction (MOR) or reduced order model (ROM). With this regard, studies
on the applications of MOR can be found in the literature. In particular, Dang et al. [15] built ROMs
for the linear time-history analysis for damage detection of truss structures via inverse optimization.
Qui [16] applied the MOR technique to infer time-dependent signals at unmeasured DOFs, serving the
calculation of the acceleration-displacement-based strain energy indicator (ADSEI). Moreover, Qui
[17] utilized the second-order Neumann series [18] to compute the free vibration data at unmeasured
DOFs.

To the best knowledge of the author, for such problems, there have been no such reports on
applying the IGA framework to the dynamic analysis of CNTRC plates. Therefore, this work is
conducted as the first contribution. Following the content and scope of this study. The next Section
presents the theoretical basis for CNTRC plates. Moreover, the governing equations of motion for
dynamic analysis by the IGA based on the four-variable plate theory are also reported. Section 3
derived the reduced IGA based on second-order Neumann series expansion. Section 4 tests several
examples to prove the reliability of the proposed paradigm. Finally, several crucial conclusions are
drawn.

2. Theoretical basis
2.1. Carbon nanotube-reinforced composite material

As depicted in Fig. 1, four types of CNT distributions through the thickness of CNTRC plate (h)
are taken into account in this work. It is noted all CNTs are only arranged parallel to the x-axis. More
concretely, if the distribution of CNTs is uniform, it is called as UD. The remaining three types of
CNT distributions are known as V, O and X. More concretely, the V type possesses CNTs-rich at the
top surface of CNTRC plate. The mid-plane of the CNTRC plate is CNTs-rich in the case of O type.
Finally, the X configuration is of the CNTs-rich at both top and bottom surfaces. The distribution of
CNT volume fractions through the plate thickness for such four types are defined as follows [2]

VCNT (z) =



V∗CNT , U(
1 +

2z
h

)
V∗CNT , V

2
(
1 −

2 |z|
h

)
V∗CNT , O

2
(
2 |z|
h

)
V∗CNT , X

(1)
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where
V∗CNT =

wCNT

wCNT + (ρCNT /ρm) − (ρCNT /ρm) wCNT
(2)

in which wCNT is the mass fraction of CNTs; ρCNT and ρm are the densities of the CNTs and the
polymer matrix, respectively.

(a) U-type (b) V-type

(c) O-type (d) X-type

Figure 1. Four types of CNT distributions

As known, the CNTRC materials are often made of two distinct constituents as a mixture of
CNTs (fiber) and isotropic polymer (matrix), the effective material properties are thus required to be
estimated. Since the simplicity and accuracy of the rule of mixtures, the strategy is adopted in this
work. Accordingly, the effective material properties of CNTRC plate are given as follows [3]

E11 = η1VCNT ECNT
11 + VmEm

η2

E22
=

VCNT

ECNT
22

+
Vm

Em

η3

G12
=

VCNT

GCNT
12

+
Vm

Gm

(3)

where E11 and E22 are the Young’s modulus of CNTs, respectively; and G12 denotes shear modulus
of CNTs; Em and Gm stand for the Young’s and shear modulus of the isotropic polymer matrix,
respectively. It is worth noting that it is extremely difficult to achieve the perfect bond between the
CNTs and isotropic polymer matrix due to the available implicit causes such as surface effects, strain
gradient effects, intermolecular coupled stress effects, etc. This leads to a decrease in a certain part

Table 1. Effective parameters of CNTs

V∗CNT η1 η2 η3

0.11 0.149 0.934 0.934
0.14 0.150 0.941 0.941
0.17 0.140 1.381 1.381
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interactive force transferred between them. Therefore, three effective parameters, i.e. η j ( j = 1, 2, 3),
are suggested by Shen [3] to consider the incomplete interfacial interactions as indicated above, and
given in Table 1.

Note that VCNT and Vm are of the following relationship,

VCNT + Vm = 1 (4)

Finally, the Poisson’s ratio ν12 and the density ρ of CNTRC plate are respectively evaluated as

ν12 = V∗CNTν
CNT
12 + Vmνm (5)

ρ = VCNTρ
CNT + Vmρm (6)

where νCNT
12 and ρCNT are the Poisson’s ratio and the density of CNTs, respectively; νm and ρm denote

the Poisson’s ratio and the density of the polymer matrix, respectively.

2.2. Third-order shear deformation plate theory

The displacement at a certain point through the plate thickness is computed by [19]

u (x, y, z) = u0 (x, y) − zw0,x (x, y) + f (z) β0x (x, y)

ν (x, y, z) = ν0 (x, y) − zw0,y (x, y) + f (z) β0y (x, y) (−h/2 ≤ z ≤ h/2)

w (x, y) = w0 (x, y)
(7)

where u0, ν0,w0, β0x and β0y are five unknown displacements at the middle plate of the plate; f (z) =
z−4z3/3h2 is the shape function, and the subscript “,” denotes the derivative.

2.3. Governing equations of motion for dynamic analysis

From Eq. (7), the strains are calculated as follows
εx

εy

γxy

 =


u0,x
v0,y

u0,y + v0,x

 − z


w0b,xx

w0b,yy

2w0b,xy

 + f (z)


β0x,x

β0y,y

β0x,y + β0y,x

{
γxz

γyz

}
= f,z

{
β0x

β0y

} (8)

Then, the stresses can be computed from the Hooke’s law as follows
σx

σy

τxy

 =
 C11 C12 0

C21 C22 0
0 0 C66



εx

εy

γxy

{
τxz

τyz

}
=

[
C44 0
0 C55

] {
γxz

γyz

} (9)

where
C11 =

E11

1 − ν12ν21
, C22 =

E22

1 − ν12ν21

C12 = C21 =
ν21E11

1 − ν12ν21
,

C44 = G23, C55 = G13, C66 = G12

(10)
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Now, the governing equations of motion for the dynamic analysis of a CNTRC plate are defined
by the Hamilton’s principle as follows∫ t

0
(δΨ + δΓ − δΛ) dt = 0 (11)

where δΨ is the virtual strain energy; δΓ is the virtual work caused by the transverse loading q (x, y, z, t),
and δΛ is the virtual kinetic energy. They are respectively given as

δΨ =

∫
Ωe

{ δε0 δχ1 δχ2

}
Dm−b


ε0
χ1
χ2

 + {
δβ0x δβ0y

}
Ds

{
β0x

β0y

} dxdy (12)

δΓ = −

∫
Ωe

δw0q (x, y, z, t) dxdy (13)

δΛ =

∫
Ωe

ρ (u̇δu̇ + v̇δv̇ + ẇδẇ) dxdy = −
∫
Ωe

δUT IÜdxdy (14)

where

Dm−b =


Dm−b

1 Dm−b
2 Dm−b

3
Dm−b

2 Dm−b
4 Dm−b

5
Dm−b

3 Dm−b
5 Dm−b

6

 (15)

Dm−b
r,i, j =

∫ h/2

−h/2

(
1, z, z2, f , z f , f 2

)
Ci jdz, r = 1, . . . , 6; i, j = 1, 2, 6 (16)

Ds =


∫ h/2

−h/2
g2
,zC44dz 0

0
∫ h/2

−h/2
g2
,zC55dz

 (17)

I =


Ĩ 0 0
0 Ĩ 0
0 0 Ĩ

 , Ĩ =

 Ĩ1 Ĩ2 Ĩ4
Ĩ2 Ĩ3 Ĩ5
Ĩ4 Ĩ5 Ĩ6

(
Ĩ1, Ĩ2, Ĩ3, Ĩ4, Ĩ5, Ĩ6

)
=

∫ h/2

−h/2
ρ
(
1, z, z2, f , z f , f 2

)
dz

(18)

U =
{

U1 U2 U3
}T
, U1 =

{
u0 −w0,x β0x

}T

U2 =
{

v0 −w0,y β0y
}T
, U3 =

{
w0 0 0

}T (19)

3. Reduced order isogeometric model
3.1. NURBS functions

The NURBS functions for a surface [20] is given by

N p,q
i, j (ξ, η) =

Bp
i (ξ)Bq

j(η)ωi, j

n∑
î=1

m∑
î=1

Bp
î
(ξ)Bq

ĵ
(η)ωi, j

(20)
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where Bp
i (ξ) and Bq

i (η) are the univariate functions of order p and q which correspond to the knot
vectors of ξ =

{
ξ1, ξ2, . . . , ξi, . . . , ξn+p+1

}
and η =

{
η1, η2, . . . , ηi, . . . , ηm+q+1

}
, respectively; and ωi, j is

the weight at the i-, j-th control point. And the univariate basis function Bp
i (ξ) [20] as follows

Bp=0
i (ξ) =

{
1, ξi ≤ ξ < ξi+1
0, otherwise

(21)

Bp≥1
i (ξ) =

ξ − ξi
ξi+p − ξi

Bp−1
i (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Bp−1

i+1 (ξ) (22)

where ξi ∈ R is the i-th knot in the parameter space ξ; i the knot index; p and n are the polynomial
order and the number of functions, respectively.

3.2. Isogeometric analysis
For the free vibration analysis with the harmonic motion, i.e. Ü = −ω2U, the full IGA model is

established from Eq. (11) as follows (
K − ω2M

)
U = 0 (23)

whereω is the eigenvalue vector; the global stiffness matrix K and the mass matrix M are respectively
defined as follows

K =
∫
Ωe

m×n∑
i=1

( Θm
i Θb1

i Θb2
i

)
Dm−b


Θm

i
Θb1

i
Θb2

i

 +
(
Θs

i

)T
DsΘs

i

dxdy (24)

M =
∫
Ωe

m×n∑
i=1

ΛT mΛdxdy (25)

where

Θm
i =

 Ni,x 0 0 0 0
0 Ni,y 0 0 0

Ni,y Ni,x 0 0 0

 , Θb1
i = −

 0 0 −Ni,xx 0 0
0 0 −Ni,yy 0 0
0 0 −2Ni,xy 0 0


Θb2

i =

 0 0 0 Ni,x 0
0 0 0 0 Ni,y

0 0 0 Ni,y Ni,x

 , Θs
i =

[
0 0 0 Ni 0
0 0 0 0 Ni

] (26)

Λ =
{
Λ1 Λ2 Λ3

}T
, Λ1 =

 Ni 0 0 0 0
0 0 −Ni,x 0 0
0 0 0 Ni 0


Λ2 =

 0 Ni 0 0 0
0 0 −Ni,y 0 0
0 0 0 0 Ni

 , Λ3 =

 0 0 NI 0 0
0 0 0 0 0
0 0 0 0 0


(27)

with Ni being the i-th NURBS function.
From Eq. (11), the full IGA model for the dynamic analysis is expressed as follows

MÜ +KU = F (t) (28)

where the load vector is given by

F (t) =
∫
Ωe

m×n∑
i=1

{
0 0 Ni 0 0

}T
q (x, y, z, t) dxdy (29)
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3.3. Second-order Neumann series expansion

Let the subscript “m” be the DOFs used to build the ROM, and the subscript “s” be the remaining
DOFs. Then, Eq. (23) can be separated as follows[

Kmm Kms

Ksm Kss

] {
Φm

Φs

}
= ω2

[
Mmm Mms

Msm Mss

] {
Φm

Φs

}
(30)

In comparison with the Guyan’s method and the first-order Neumann series expansion which were
suggested by Yang [18], the second-order Neumann series expansion is more accurate than the others,
it is hence adopted in this study. According to the second-order Neumann series expansion, Eq. (30)
can be rewritten in terms of the model order reduction as follows

KROMΦm = ω
2
ROMMROMΦm (31)

where ωROM is the eigenvector attained by the ROM; KROM and MROM are the reduced order global
stiffness and lumped mass matrices, respectively. And they are calculated by

KROM = VT KV, MROM = VT MV (32)

where V is the matrix employed to transform a system from a large domain into a smaller space,
given by

V =
 Imm

−
[
b1 +K−1

ss Mss (a1a4 + a1a5)
]−1 [

b2 +K−1
ss Mss (a1a2 + a1a3)

]  (33)

where
a1 = K−1

ss MssK−1
ss KsmM−1

mm
a2 = KmmM−1

mmKmm

a3 = KmsM−1
ss Ksm

a4 = KmmM−1
mmKms

a5 = KmsM−1
ss Kss

(34)

b1 = Iss + A1Kms

b2 = K−1
ss Ksm + A1Kmm

(35)

The i-th eigenvector corresponding to the remaining DOFs “s” can be inferred by

Φs,i = −
[
b1 +K−1

ss Mss (a1a4 + a1a5)
]−1 [

b2 +K−1
ss Mss (a1a2 + a1a3)

]
Φm,i (36)

Now, the reduced IGA model for the dynamic analysis is given by

MROMÜ +KROMU = FROM (t) (37)

with
FROM (t) = VT F (t) (38)

In this study, the Newmark approach with the assumption of the average acceleration is utilized
to resolve Eq. (37).
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4. Numerical examples
4.1. Free vibration

In this example, a square CNTRC plate is investigated. This problem was before studied by Zhu
et al. [2] using the standard FEM based on the first order shear deformation plate theory. The matrix
is of the material properties as follows: Em = 2.1 GPa, νm = 0.34, ρm = 1160 kg/m3. Meanwhile,
the material features of CNTs at the temperature 300 K are: ECNT

11 = 5.6466 TPa, ECNT
22 = 7.08

TPa, GCNT
12 = 1.9445 TPa, νCNT

12 = 0.175, ρCNT = 1400 kg/m3, and G23 = G13 = G12. The plate
thickness h is 2 mm, while the edge-to-thickness ratios (a/h) are investigated with 10, 20 and 50. For
comparison with the previously published results, the frequencies are normalized by the following

formula, i.e. ω̄ =
ωa2

h

√
ρm

Em . All edges of the square plate are restricted as the simply supported

boundary which is symboled as ‘S’. After very careful investigations of the convergence of discretized
meshes, a uniform mesh of 7 × 7 cubic NURBS elements is sufficient to achieve acceptable accuracy
for the obtained results. Tables 2, 3 and 4 report outcomes for various kinds of CNT distributions and
different ratios of a/h. It can be found that the results obtained by the full IGA are in good agreement
with those of the reference solutions.

Figure 2. Control points of the SSSS-CNTRC square plate

Now, the ability of the reduced order IGA developed in this work is illustrated. For that aim,
only DOFs attached to control points marked in a red rectangle with dashed lines as plotted in Fig. 2
are taken into account. According to this selection, there are a total of 64 DOFs used to establish
a reduced order model. As a consequence, the number of DOFs in the reduced IGA reduces 20%
against that of the full model. Currently, the DOFs selected to build the MOR-based IGA are mainly
based on the characteristics of free vibration of the investigated problem without optimization. In
the next studies, they are optimized to achieve the best MOR. As can seen from Tables 2, 3 and
4, the results provided by the reduced IGA agree with those of the full model as well as the other
study. This confirms the reliability and efficiency of the proposed IGA which is built by reducing the
dimensionality of the plate model.
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Table 2. The non-dimensional natural frequencies of the SSSS-CNTRC square plate with V∗CNT = 0.11

a/h Mode

U V O X

Ref.
[2]

This study
Ref.
[2]

This study
Ref.
[2]

This study
Ref.
[2]

This study

Full
IGA

Reduced
IGA

Full
IGA

Reduced
IGA

Full
IGA

Reduced
IGA

Full
IGA

Reduced
IGA

10 1 13.532 13.610 13.611 12.452 12.518 12.518 11.550 11.407 11.407 14.616 14.740 14.741
2 17.700 17.705 17.708 17.060 17.061 17.064 16.265 16.156 16.159 18.646 18.641 18.645
3 19.449 19.428 19.430 19.499 19.477 19.479 19.499 19.477 19.479 19.499 19.478 19.480
4 19.449 19.428 19.440 19.499 19.477 19.490 19.499 19.477 19.489 19.499 19.478 19.490
5 27.569 26.941 26.946 27.340 26.716 26.721 26.513 25.958 25.964 28.519 27.734 27.739

20 1 17.355 17.340 17.342 15.110 15.098 15.099 13.523 13.434 13.434 19.939 19.941 19.943
2 21.511 21.457 21.460 19.903 19.855 19.858 18.486 18.391 18.393 23.776 23.721 23.724
3 32.399 31.983 31.985 31.561 31.150 31.152 30.166 29.763 29.765 34.389 33.928 33.930
4 38.898 38.855 38.859 38.998 38.955 38.959 38.998 38.953 38.958 38.998 38.955 38.960
5 38.898 38.855 38.879 38.998 38.955 38.980 38.998 38.953 38.977 38.998 38.955 38.979

50 1 19.223 19.161 19.161 16.252 16.206 16.206 14.302 14.253 14.253 22.984 22.905 22.906
2 23.408 23.283 23.283 21.142 21.038 21.038 19.373 19.277 19.277 26.784 26.631 26.631
3 34.669 34.119 34.120 33.350 32.818 32.818 31.615 31.110 31.111 37.591 37.000 37.000
4 54.043 52.443 52.443 53.430 51.854 51.854 51.370 49.862 49.863 56.946 55.263 55.263
5 70.811 70.129 70.130 60.188 59.606 59.608 53.035 52.265 52.267 83.150 81.804 81.807

Table 3. The non-dimensional natural frequencies of the SSSS-CNTRC square plate with V∗CNT = 0.14

a/h Mode

U V O X

Ref.
[2]

This study
Ref.
[2]

This study
Ref.
[2]

This study
Ref.
[2]

This study

Full
IGA

Reduced
IGA

Full
IGA

Reduced
IGA

Full
IGA

Reduced
IGA

Full
IGA

Reduced
IGA

10 1 14.306 14.415 14.416 13.256 13.343 13.343 12.338 12.202 12.202 15.368 15.458 15.459
2 18.362 18.395 18.398 17.734 17.753 17.756 16.848 16.755 16.758 19.385 19.345 19.348
3 19.791 19.774 19.776 19.879 19.862 19.864 19.879 19.862 19.864 19.879 19.863 19.865
4 19.791 19.774 19.786 19.879 19.862 19.876 19.879 19.862 19.874 19.879 19.863 19.875
5 28.230 27.613 27.618 28.021 27.399 27.404 27.003 26.489 26.494 29.398 28.532 28.537

20 1 18.921 18.936 18.938 16.510 16.520 16.522 14.784 14.705 14.706 21.642 21.629 21.630
2 22.867 22.844 22.847 21.087 21.063 21.067 19.462 19.385 19.386 25.360 25.290 25.294
3 33.570 33.182 33.185 32.617 32.229 32.232 30.906 30.532 30.533 35.938 35.457 35.460
4 39.583 39.549 39.553 39.759 39.725 39.730 39.759 39.724 39.728 39.759 39.727 39.731
5 39.583 39.549 39.573 39.759 39.725 39.750 39.759 39.724 39.748 39.759 39.727 39.751

50 1 21.354 21.323 21.324 17.995 17.975 17.975 15.801 15.773 15.773 25.555 25.501 25.501
2 25.295 25.201 25.201 22.643 22.566 22.566 20.563 20.492 20.492 29.192 29.060 29.060
3 36.267 35.749 35.749 34.660 34.156 34.156 32.509 32.034 32.034 39.833 39.257 39.258
4 55.608 54.025 54.025 54.833 53.275 53.276 52.184 50.703 50.703 59.333 57.641 57.641
5 78.110 77.511 77.513 66.552 66.025 66.027 58.748 57.991 57.993 87.814 84.676 84.678
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Table 4. The non-dimensional natural frequencies of the SSSS-CNTRC square plate with V∗CNT = 0.17

a/h Mode

U V O X

Ref.
[2]

This study
Ref.
[2]

This study
Ref.
[2]

This study
Ref.
[2]

This study

Full
IGA

Reduced
IGA

Full
IGA

Reduced
IGA

Full
IGA

Reduced
IGA

Full
IGA

Reduced
IGA

10 1 16.815 16.687 16.688 15.461 15.296 15.297 14.282 13.962 13.963 18.278 18.050 18.051
2 22.063 21.919 21.923 21.307 21.158 21.161 20.091 19.917 19.920 23.541 23.216 23.220
3 24.337 24.308 24.310 24.511 24.480 24.483 24.512 24.479 24.482 24.512 24.482 24.485
4 24.337 24.308 24.323 24.511 24.480 24.497 24.512 24.479 24.495 24.512 24.482 24.497
5 34.448 33.584 33.590 34.273 33.416 33.422 32.766 32.174 32.182 36.245 34.931 34.937

20 1 21.456 20.965 20.967 18.638 18.202 18.204 16.628 16.186 16.186 24.764 24.140 24.142
2 26.706 26.274 26.277 24.734 24.381 24.385 22.739 22.420 22.421 29.819 29.216 29.221
3 40.401 39.650 39.652 39.471 38.798 38.801 37.139 36.581 36.582 43.612 42.618 42.621
4 48.674 48.615 48.621 49.023 48.962 48.967 49.024 48.959 48.964 49.024 48.964 48.969
5 48.674 48.615 48.646 49.023 48.962 48.994 49.024 48.959 48.989 49.024 48.964 48.994

50 1 23.697 22.980 22.980 19.982 19.410 19.411 17.544 17.052 17.052 28.413 27.511 27.511
2 28.987 28.312 28.313 26.204 25.698 25.699 23.783 23.375 23.375 33.434 32.540 32.540
3 43.165 42.129 42.129 41.646 40.765 40.765 38.855 38.096 38.097 47.547 46.267 46.267
4 67.475 65.247 65.247 66.943 64.870 64.871 63.179 61.293 61.294 72.570 70.028 70.028
5 87.385 84.317 84.319 74.030 71.372 71.374 65.154 62.595 62.596 102.939 99.251 99.254

4.2. Dynamic analysis
In this part, the dynamic behavior of the SSSS-CNTRC plate with a/h = 10 is presented. A

uniform loading of q (t) = 10 N/cm2 is applied to the plate. The time-history displacement at the plate
center is analyzed in the time domain [0, 300] µ sec with the time step ∆t = 1 µ sec. This case uses the
same number of NURBS elements as that of the previous example. Figs. 3, 4 and 5 show the deflection
at the plate center for four different configurations of CNT distributions concerning V∗CNT = 0.11, 0.14
and 0.17 attained by the full IGA and reduced IGA, respectively. It can be found from the above
figures that the ROM-based IGA can yield outcomes with high compatibility compared with the full
model. Additionally, the CNT distribution with the X-type configuration always gives the largest
stiffness. This can be recognized via the smallest deflection obtained in all investigated cases as
shown in Figs. 6, 7 and 8. The reason is CNTs are put far away from the neutral plane. Accordingly,
the moment of inertia becomes larger and the bending stiffness is also better.

(a) U-type (b) V-type
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(c) O-type (d) X-type

Figure 3. The deflection at the plate center for four different configurations
of CNT distributions with V∗CNT = 0.11

(a) U-type (b) V-type

(c) O-type (d) X-type

Figure 4. The deflection at the plate center for four different configurations
of CNT distributions with V∗CNT = 0.14
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(a) U-type (b) V-type

(c) O-type (d) X-type

Figure 5. The deflection at the plate center for four different configurations
of CNT distributions with V∗CNT = 0.17

Figure 6. Comparison of the deflection at the plate center for four different configurations
of CNT distributions with V∗CNT = 0.11 attained by the reduced IGA
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Figure 7. Comparison of the deflection at the plate
center for four different configurations of CNT
distributions with V∗CNT = 0.14 attained by the

reduced IGA

Figure 8. Comparison of the deflection at the plate
center for four different configurations of CNT
distributions with V∗CNT = 0.17 attained by the

reduced IGA

5. Conclusions
In this paper, the transient responses of CNTRC plates are analyzed by the so-called reduced

IGA for the first time. In this paradigm, only important DOFs defined at control points within the
IGA framework are utilized to construct the order reduction of the isogeometric model based on the
second-order Neumann series expansion. The dynamic equation system of the CNTRC plate in the
ROM is resolved by the Newmark method. Then, the remaining DOFs of the structural system can be
numerically inferred by the mathematical expressions derived in the ROM. Four different configura-
tions of the distribution of CNTs in the plate are investigated. Several examples are demonstrated to
confirm the reliability of the reduced IGA with full model and other publications. Acquired outcomes
indicated that the X-type configuration is of the time-history responses with the smallest amplitude.
This proves that this CNT distribution is the best against the others. In the next studies, optimiza-
tion of selecting important DOFs as well as distributing the CNTs is interesting and will be soon
carried out.
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