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Abstract

Musculoskeletal disorders are a prevalent issue in the construction industry, largely due to the physical demands
of object-lifting tasks. Effective ergonomic assessment is crucial for preventing these injuries and enhancing
workplace safety. This study introduces a novel integrated system that utilizes advanced computational models
to assess the NIOSH Lifting Index in real-time, offering a significant improvement over traditional ergonomic
assessment methods. The system combines pose estimation, object detection, cycle counting, and Long Short-
Term Memory modeling to provide dynamic, real-time evaluations of lifting practices. The integrated approach
allows for continuous monitoring and analysis of lifting tasks, providing immediate feedback that can be used
to adjust working conditions proactively. This system was tested in a controlled environment, demonstrating
high accuracy in predicting the lifting index and identifying ergonomic risks with impressive precision and
recall metrics. The practical applications of this system in real-world settings suggest substantial benefits for
improving safety standards and reducing the incidence of Musculoskeletal disorders on construction sites. The
study also explores the challenges faced during the implementation of the system, including limitations related
to pose estimation accuracy and the requirement for predefined object weights in detection processes. Finally,
future research directions were also discussed.
Keywords: Musculoskeletal disorders; NIOSH’s lifting equation; construction safety; real-time monitoring;
ergonomic assessment.
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1. Introduction
Musculoskeletal disorders (MSDs), particularly low back pain (LBP), are among the most preva-

lent occupational health issues faced by workers in the construction industry. These disorders not
only lead to significant health-related expenses but also impact productivity due to lost workdays and
increased disability claims [1]. The physical demands and dynamic nature of construction work ne-
cessitate effective preventive measures and reliable methods for assessing ergonomic risks associated
with manual object-lifting tasks.

The National Institute for Occupational Safety and Health (NIOSH) Lifting Equation has been ex-
tensively adopted as a tool for evaluating the risk factors contributing to LBP. This equation, known for
its utility in calculating a Lifting Index (LI), has become a cornerstone in the ergonomic assessment
of lifting tasks. The LI provides a quantitative measure of the physical demand of object-lifting ac-
tivities, where higher values correlate with an increased risk of developing LBP. Studies consistently
validate the relationship between a high LI and the occurrence of LBP, reinforcing the importance of
this tool in occupational health assessments [2, 3].
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The evolution of ergonomic risk assessments, particularly those aimed at preventing MSDs in
workplace settings, has seen significant advancements through the integration of technology [4].
Firstly, the automation of the NIOSH lifting equation parameters initially utilized depth camera tech-
nologies like the Microsoft Kinect [5], which despite its rapid and robust performance, suffered from
accuracy limitations due to its frame-by-frame analysis [6]. Efforts to correct these inaccuracies in-
volved complex error-correction models that, while improving estimates, highlighted the technol-
ogy’s limitations in practical applications. Secondly, the integration of wearable sensors was seen
as a promising advancement, with studies demonstrating their utility in capturing real-time, biome-
chanical data that could potentially transform ergonomic risk assessments [7]. However, wearable
sensors have faced deployment challenges. They can be intrusive, affecting workers’ convenience and
attitude towards their use. This is compounded by the difficulty of maintaining these devices in oper-
ational conditions without interfering with worker productivity or comfort [8]. Additionally, the use
of fixed and calibrated cameras, although beneficial for controlled data collection, does not reflect
the dynamic and often unpredictable conditions of actual construction sites [9]. In response to these
above challenges, recent research has pivoted towards employing advanced computational techniques,
including machine learning and computer vision, to overcome the limitations of traditional sensors
and manual assessments. Machine learning models, particularly those utilizing decision trees, support
vector machines, and neural networks, have shown potential in accurately classifying ergonomic risks
from biomechanical data collected via less intrusive methods like IMUs placed on the body [10].

Moreover, the development of video-based AI systems for object-lifting risk assessment indicates
a shift towards non-wearable, non-invasive methods that can provide accurate, real-time feedback
without the drawbacks associated with sensor-based systems [11]. These systems leverage the power
of deep learning and computer vision to analyze video data unobtrusively, offering a practical solution
to the limitations posed by wearable and fixed-camera systems. The trajectory of ergonomic risk as-
sessment technologies suggests a growing reliance on sophisticated algorithms and machine learning
models that can adapt to the complexities of real-world environments.

In response to the inherent shortcomings of manual calculations of the Lifting Index (LI), such as
susceptibility to errors, inability to provide real-time alerts, and challenges in continuously monitoring
workers throughout their shifts, this present study incorporates advanced technological solutions. The
study introduces an integrated system that leverages machine learning techniques to automate the
calculation of the LI. By utilizing real-time data acquisition from cameras, the system can dynamically
assess the risk levels associated with manual object-lifting tasks. This approach not only reduces
the potential for human error in calculations but also enables immediate feedback to workers and
supervisors, thereby enhancing the potential for preventive interventions. Additionally, the continuous
data collection capability of this system allows for comprehensive monitoring throughout entire work
shifts, addressing critical gaps in traditional manual methods. This methodology thus promises to
significantly improve the precision, reliability, and practicality of ergonomic risk assessments in the
construction industry.

2. Literature review
2.1. Introduction, history, and influences of NIOSH lifting guidelines

Construction workers are prone to musculoskeletal disorder, among which low back pain is among
the most popular [12] and low back injuries account for the majority of the total cost because of sick
day off, clinical cost and insurance cost [13, 14]. One of the most impactful reasons of low back
pain is repetitive heavy-object lifting task [15], in which, biomechanical factor postures and exerted
force influence the seriousness of the disorders [7, 16]. Therefore, one way to reduce the risk to low
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back injuries or musculoskeletal disorders in general is to analyze biomechanical factors and external
load in assessing task and designing tasks. Roman-Liu (2014) synthesized a resourceful review of
approaches to assess external load based on parts of the body and the nature of tasks, such as NIOSH,
REBA – Rapid Entire Body Assessment. . .

NIOSH was initially introduced in 1981, updated in 2021 and has been a cornerstone in the er-
gonomic assessment of lifting tasks within workplace settings [17, 18]. This tool is designed to eval-
uate the physical demands of manual lifting tasks and their potential risk for causing low back pain
(LBP), a prevalent issue among workers in various industries. The revised version, known as the
Revised NIOSH Lifting Equation (RNLE), incorporates a broader range of variables including the
weight of the load, the conditions under which the lifting occurs, and the posture of the lifter, to pro-
vide a more comprehensive risk assessment [2]. Despite its widespread use, the RNLE is not without
its critics [2, 3]. Practical limitations such as the need for precise measurements and the complexity
of calculations have been highlighted as barriers to its application, especially in dynamic and unpre-
dictable field settings like construction sites [19]. Additionally, factors such as lifting frequency and
the horizontal reach required by the task have been shown to significantly influence the recommended
weight limits, often diverging from real-world capabilities and task demands [20, 21].

While the NIOSH Lifting Equation has played a pivotal role in enhancing our understanding and
management of ergonomic risks associated with manual lifting, its application in modern industrial
environments requires further adaptation and integration with new technologies. This evolution will
enable more accurate, real-time assessments, contributing to safer workplace practices and the preven-
tion of musculoskeletal disorders among workers. The ongoing research and development in this area
reflect a concerted effort to align traditional ergonomic assessments with contemporary workplace
needs and technological advancements.

2.2. Detailed guidelines of the RNLE

In building up the RNLE, some notions need to be defined (Fig. 1 depicts some of the notions):
- Lifting Task: the act of manually grasping an object of definable size and mass with two hands,

and vertically moving the object without mechanical assistance.
- Load Weight (L): Weight of the object to be lifted.
- Horizontal Location (H): Hand distance from ankle midpoint, measured in inches or centimeters

(at lift start and end).
- Vertical Location (V): Distance of the hands above the floor, measure at the origin and the

destination of the lift.
- Vertical Travel Distance (D): Absolute value of the difference between the vertical heights at the

destination and origin of the lift.
- Asymmetry Angle (A): Angular displacement from worker’s mid-sagittal plane at lift start/end,

in degrees (measured at lift origin and destination). Asymmetry angle is based on load position rela-
tive to mid-sagittal plane, not foot position or body twist extent.

- Neutral Body Position: the position of the body when the hands are directly in front of the body
and there is minimal twisting at the legs, torso, or shoulders.

- Lifting Frequency (F): Average number of lifts per minute over a 15 minute period.
- Lifting Duration: Categorized into three tiers based on work-time and recovery-time distribution

(work pattern). Classifications include short (1 hour), moderate (1–2 hours), or long (2–8 hours),
determined by the work pattern.

- Coupling Classification: Hand-to-object coupling quality classification (e.g., handle, cut-out, or
grip) as good, fair, or poor.
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- Significant Control: situations demanding precise load placement at the lift’s destination. Typi-
cally, this occurs when the worker needs to (1) re-grasp the load near the destination, (2) momentarily
hold the object there, or (3) carefully position or guide the load.

Figure 1. Graphic representation of the LI’s elements [18]

The RNLE is defined as below:

RWL = LC × HM × V M × DM × AM × FM ×CM

Then the Lifting Index is calculated as:

LI =
Load Weight

Recommended Weight Limit
=

L
RWL

where LC is load constant – set at 23 kg, HM is horizontal multiplier = 25/H (metric) or 10/H (U.S.
Customary), V M is vertical multiplier = 1 − (0.003|V − 75|) (metric) or 1 − (0.0075|V − 30|) (U.S.
Customary), DM is distance multiplier = 0.82+ (4.5/D) (metric) or 0.82+ (1.8/D) (U.S. Customary),
AM is asymmetric multiplier = 1 − (0.0032A) (both metric and U.S. Customary), FM is frequency
Multiplier (taken from NIOSH table), CM is coupling multiplier (taken from NIOSH table)

After LI is calculated, the NIOSH recommend to interpret the result as follows:
- LI < 1: Indicates biomechanical stress below the recommended limit, suggesting low injury risk.
- LI ≈ 1: Suggests stress nearing the limit; monitor and consider interventions.
- LI > 1: Indicates stress exceeds the limit, posing a high injury risk; immediate interventions

needed. Furthermore, NIOSH elaborates the range of 1.0 < LI < 3.0 is the medium risk and LI > 3.0
is the classified as high risk.

NIOSH offers tables for users to record worker measurements and provides mobile applications
compatible with iOS and Android platforms. However, utilizing these tools requires manual measure-
ment of each component and inputting the data into the forms.

3. Methodology
This section outlines the comprehensive methodology employed to enhance construction safety

through the integration of deep learning techniques for pose estimation and LSTM modeling for real-
time NIOSH Lifting Index estimation from video data. The methodology comprises two primary
steps: Pose Estimation and LSTM Model Training. The entire process is summarized in Fig. 2.
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Figure 2. The planned process for automatic NIOSH’s lifting index calculation

3.1. Pose Estimation

The initial step involves estimating the pose of workers utilizing sophisticated deep learning tech-
niques. This process is subdivided into three sequential stages:

a. Human Detection and Skeleton Estimation

- RTMdet Model: The authors employ the RTMdet model [22] for human detection within video
frames. This model, trained on the COCO-person dataset [23], has demonstrated exceptional perfor-
mance. The COCO-person dataset, comprising 118,000 training images and 5,000 validation images,
provides a robust foundation for detecting human instances.

- RTMpose Model: Subsequently, the RTMpose model [24] is applied to estimate the 2D skele-
tal poses of the detected human subjects. Trained on the Body8 dataset, which amalgamates data
from various sources including AI Challengers, MS COCO, CrowPose, MPII, sub-JHMDB, Halpe,
PoseTrack18, and OCHuman, RTMpose ensures accurate estimation of skeletal structures.

- VideoPose3D: The 2D skeletal poses are then transformed into their corresponding 3D, rep-
resentations using the VideoPose3D model [25]. The dataset and the type of the skeletal posture is
the Human3.6M, a popular dataset used for health safety research. This limitation in the number of
points (17 points) helps to eliminate the smallest connections related to the details of the hands and
feet, going deeper into the kinematic chain related to the wrist and ankle joints [26]. The Human3.6
dataset also contains more important information needed for health safety studies when compared to
other datasets (Fig. 3).

Both skeletons from the CMU Panoptic and Campus and Shelf datasets do not have points that
represent the curvature of the spine. While the data from the CMU Panoptic set has too many unnec-
essary facial points [27], the Campus and Shelf set has only one point, which does not represent the
direction of head rotation [28]. The 3D Whole-Body datasets can also detect posture, however these
data are large in size due to the need to reconstruct the entire detected body [29].
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(a) Human3.6M (b) CMU Panoptic (c) Campus and Shelf

Figure 3. Comparison of different 3D skeletal models

b. Normalization of 3D Skeletal Postures

- Following the extraction of 3D skeletal postures from the video data, a normalization process is
conducted. A conversion matrix is applied to standardize the orientation of the 3D skeletal postures,
ensuring uniformity across varying camera perspectives.

3.2. LSTM Model Training

The subsequent step involves training an LSTM model [30] to estimate the NIOSH Lifting Index
(LI) in real-time from the processed video data. This phase encompasses three concurrent processes:

a. LSTM Training

- LSTM Model: The LSTM model is trained to predict the value of HM×V M×DM×AM based on
the 3D skeletal posture data obtained from the previous step. The model is trained on a meticulously
curated dataset comprising 17-point 3 (x, y, z) 17,490 instances, ensuring a robust training regime.
LSTM’s inherent capability to capture temporal dependencies in sequential data renders it the ideal
choice for this task.

b. Object Detection

- YOLOv8: Object detection, particularly for identifying the object being lifted (LC) and the cou-
pling variable, is executed using the YOLOv8 algorithm [31]. Renowned for its efficiency and accu-
racy in object detection tasks, YOLOv8 ensures precise identification of lifting objects and coupling
factors.

c. Cycle Counting

- Repnet Algorithm: The Repnet algorithm [32] is leveraged to automatically determine the cy-
cle count of the lifting task (FM variable). Developed by Dwibedi et al. [33], Repnet’s efficacy in
accurately counting lifting cycles from video data has been extensively validated, making it an indis-
pensable component of our methodology.

By integrating advanced deep learning techniques for precise pose estimation and LSTM mod-
eling for real-time NIOSH Lifting Index estimation, our methodology offers a holistic approach to
enhancing construction safety in lifting tasks.
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4. Results and discussions
4.1. The pose estimation results

The initial stage of the present methodology involved the use of the RTMpose model, which
performed exceptionally well in generating 2D skeletal poses from video footage of construction
workers engaged in various lifting tasks. These poses were accurate and detailed, providing a solid
foundation for further analysis.

Upon obtaining the 2D skeletal poses, the VideoPose3D model was applied to convert these into
17-joint 3D skeletal poses. This transformation was based on logical geometrical relationships, such
as ensuring the alignment of the pelvis center on the ground fell on the line between the two feet. To
achieve this, 3D poses were straightened using transformation matrices, providing standardized and
accurate 3D representations of the workers’ postures.

With the 3D poses established, all coordinates of the 17 joints were accurately identified. This
allowed for the automatic computation of critical components like the Horizontal Multiplier (HM),
Vertical Multiplier (VM), Distance Multiplier (DM), and Asymmetric Multiplier (AM), essential for
the lifting index calculations. Fig. 4 illustrates the entire process from capturing the raw footage to
building the comprehensive 3D pose dataset.

Figure 4. Entire process of building the 3D pose dataset

To evaluate the precision of the 3D poses and the calculated components of the lifting index, the
authors classified worker postures into four distinct groups, presented in Fig. 5: standing and lifting
(T01), lowering to pick up (T02), walking while holding an object (T03), and placing down the object
(T04). The study then compared measurements such as height (H), vertical (V), distance (D), and
angle (A) between manual calculations following NIOSH guidelines and those derived automatically
from the 3D pose coordinates. Table 1 provides a detailed analysis of these comparisons, showing the
percentage errors across different cases. In Table 1, the results demonstrate variability in the accuracy
of the algorithmic calculations across different measures and tasks. For example, significant errors
are observed in the angular measures (A), which show the highest discrepancies, particularly in tasks
T01 and T04. Despite some errors, the overall performance of the algorithm is deemed satisfactory
by experts, as all deviations fall within acceptable limits for practical applications.

Fig. 6 offers a visual representation of the transition from raw footage to 2D skeletal poses, and ul-
timately to refined 3D skeletal poses, illustrating the effectiveness and accuracy of the pose estimation
process.
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Figure 5. 3D pose generation from four posture groups

Table 1. Validation of the 3D pose dataset

Geometric measures

Case Measured L (kg) H (cm) H err. % V (cm) V err % D (cm) D err. % A (rad) A err %

T01
NIOSH

10
40

8.2%
110

1.3%
120

7.1%
5

84.4%Algorithm 36.73 111.5 111.5 9.22

T02
NIOSH

10
56

6.7%
50

1.4%
120

41.1%
15

4.5%Algorithm 59.77 49.32 70.68 15.67

T03
NIOSH

15
45

18.2%
125

2.7%
100

3.3%
15

14.4%Algorithm 36.82 128.3 103.3 12.84

T04
NIOSH

15
32

11.3%
78

4.9%
100

2.4%
25

20.5%Algorithm 28.4 81.86 102.4 19.88

Lifting Equation components

Case Measured L (kg) HM HM err % VM VM err % DM DM err % AM AM err %

T01
NIOSH

10
0.63

7.9%
0.9

1.1%
0.83

3.6%
1

7.0%Algorithm 0.68 0.89 0.86 0.93

T02
NIOSH

10
0.45

6.7%
0.93

1.1%
0.85

3.5%
0.95

0.0%Algorithm 0.42 0.92 0.88 0.95

T03
NIOSH

15
0.56

21.4%
0.85

1.2%
0.82

4.9%
0.93

3.2%Algorithm 0.68 0.84 0.86 0.96

T04
NIOSH

15
0.78

12.8%
0.99

1.0%
0.88

8.0%
0.89

5.6%Algorithm 0.88 0.98 0.81 0.94
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Figure 6. Transition process from raw footage to 2D and 3D skeletal poses

4.2. The automated lifting index deep learning algorithm’s (LSTM) performance

a. Model Structure and Function

Fig. 7 visually illustrates the architecture of our LSTM model. The diagram traces the workflow
from the initial input, which starts with a key-point detection dataset, progressing through a sequence
input layer and an LSTM layer with multiple cells. This is followed by a fully connected layer leading
to an output layer designed for regression. The output factors in multiple elements—HM, VM, DM,
AM from the pose analysis, L and CM from the object detection model, and FM from the RepNet
model—to compute the Lifting Index (LI). Finally, the output is classified into three risk categories:
No risk, Medium risk, and High risk.

Figure 7. The Structure of the Constructed LSTM

b. Model’s error and error analysis

Fig. 8 depicts RMSE and accuracy of the model in tandem. The charts show how quickly the
model reached stable performance.
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Figure 8. Training performance metrics

The RMSE and validation accuracy curves show initial rapid improvement, with RMSE drop-
ping sharply to 0.4 and accuracy increasing significantly by the 5th epoch, then stabilizing by the
50th epoch. This indicates effective learning and a good fit, with the model extracting maximum in-
formation from the training data and generalizing well to validation data, thus avoiding overfitting.
Both accuracy measures start at 0.5 and quickly improve, stabilizing by the 20th epoch. After the
50th epoch, the training accuracy remains consistently lower than validation accuracy, suggesting
good model generalization possibly due to effective regularization or differences in data distribution
between training and validation sets.

Fig. 9 presents histograms for RMSE and MAE, providing insight into the distribution of error
values across all predictions made by the LSTM model.

Figure 9. Error distribution

The majority of cases (87.31%) have an RMSE between 0.00 and 0.02, showing extremely high
accuracy. Error rates gradually increase with the range, with very few cases (0.74%) having an RMSE
greater than 0.06. A large proportion of the data has an MAE less than 0.75 (85.86%), with the largest
percentage of cases (24.41%) between 0.40 and 0.45. The error rates are higher for MAE, with more
variability in error magnitude compared to RMSE. These histograms highlight the model’s precision
and reliability, with most predictions exhibiting very low errors, indicative of strong performance.

Fig. 10 plots the actual versus predicted Lifting Index (LI). The data predominantly cluster around
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the diagonal line, indicating high accuracy of the model with minimal error deviation.
Most data points are concentrated between LI values of 0.5 and 1.75, with denser population

extending up to 3.0. There are only a few outliers and four data points exceeding an LI of 3.0, denoting
high-risk scenarios as defined by the NIOSH (LI < 1.0 - No risk; 1.0 < LI < 3.0 - Medium risk; LI >
3.0 - High risk).

Fig. 11 is a histogram that quantifies the distribution of predicted risk levels across different
datasets. The histogram displays the distribution of predicted risk levels across training, validation,
and test datasets reveals key insights into the LSTM model’s performance. The training set, with
10,824 medium-risk cases, 2,753 no-risk, and 415 high-risk cases, illustrates a focus on medium-
risk scenarios, which are also predominant in the validation (1,381 medium-risk) and test sets (1,362
medium-risk).

Figure 10. RMSE error analysis of prediction Figure 11. Histogram of the
results by the LSTM Model

This distribution ensures the model is well-versed in handling the most common and varied lift-
ing tasks, which are typically of medium risk. Fewer no-risk and high-risk cases across all sets ensure
the model can accurately identify both less frequent high-risk situations, crucial for immediate safety
interventions, and low-risk scenarios, important for overall risk management. The consistency in risk
classification across different datasets demonstrates the model’s robust capability to generalize well
from training to real-world applications, making it a reliable tool for assessing lifting risks in con-
struction and similar industries.

c. Model’s Accuracy and Confusion Matrix

Fig. 12 showcases a confusion matrix of the model’s predictions, with a part showing raw numbers
and the other showing percentages. Part B, which is more detailed, reveals the true positive rates
and misclassifications: for the ’No Risk’ category, 17.15% were correctly predicted with a low false
positive rate (2.69%); the ’Medium Risk’ category showed a robust true positive rate of 75.19% with
minor misclassification rates (2.40% classified as ’No Risk’ and 0.29% as ’High Risk’); the ’High
Risk’ category had an impressively accurate prediction rate of 1.82% true positive, with a negligible
misclassification rate from ’Medium Risk’ (0.46%).

The LSTM model demonstrates strong predictive performance with a high degree of accuracy
in classifying different risk levels of lifting tasks. The detailed analysis through error metrics, risk
distribution, and a confusion matrix further validates the model’s efficacy and reliability in real-time
application environments aimed at enhancing workplace safety.
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Figure 12. Confusion matrix of the results

4.3. The object detection and cycle counting results

This study selected five types of materials commonly carried on construction sites: bricks, cylin-
ders, rectangles, and cubes. Specifically, brick samples were tested when carried singly or in pairs.
The study used the Yolov8 model to detect these objects from a dataset compiled to record workers’
carrying positions. Training was conducted on an Alienware 17R4 laptop with an NVIDIA GeForce
GTX 1070, achieving a precision of 0.894 and recall of 0.754. Fig. 13 depicts some examples of
successful detection of carried objects.

Figure 13. Carried object detected using Yolov8

Figure 14. The cycle counting RepNet results
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The selected model – RepNet – is a model designed to count repetitions and determine the cycle of
repetitive actions in a video. It processes a video as a sequence of frames through three main compo-
nents: a frame encoder, a temporal self-similarity matrix (TSM), and a cycle predictor. The encoder,
structured like a ResNet model [34], extracts 2D features from each frame. The TSM, generated by
comparing frames within the video, maps out the repetitive actions, allowing the model to analyze
patterns over time. The cycle predictor then uses this matrix to estimate the length and periodicity of
the action cycle, utilizing two fully connected layers of size 512 for each predictor. This architecture
enables RepNet to effectively identify and quantify repetitive motions in video data. Fig. 14 illustrates
an example that was extracted from the footage, in which the model successfully counted 15 cycles.

4.4. Integration of components

The individual components (i.e. pose estimation, LSTM model, object detection, cycle counting)
are each complicated but advanced in doing their tasks. Though working on a modest computational
device, the integrated system demonstrated high effectiveness and efficiency in real-time environ-
ments. The use of advanced algorithms allowed for accurate pose detection and object recognition,
while the LSTM model effectively utilized the sequential data to make real-time predictions. The
system’s ability to process and analyze complex data on the fly significantly enhances its practical
application in workplace safety, enabling proactive measures to mitigate injury risks. The integration
not only ensures accuracy but also the adaptability of the system in various operational conditions,
making it a robust tool for ergonomic assessment in dynamic settings.

4.5. Discussions

a. Practical implications

The study’s results demonstrate the efficacy of an integrated approach in evaluating the ergonomic
risks associated with object-lifting tasks on construction sites. The system combines pose estimation,
object detection, cycle counting, and LSTM modeling to assess the NIOSH Lifting Index in real-time.
This method offers a dynamic analysis of workers’ interactions with various loads, providing insights
that are crucial for improving workplace safety and ergonomics.

The integrated system successfully predicts the lifting index with high accuracy and efficiency,
even on modest computational setups. Key findings reveal that real-time analysis and proactive risk
assessments are feasible with the proposed model, which can significantly mitigate potential injuries
by allowing immediate corrective actions. The application of such an advanced analytical tool in in-
dustry promises to enhance safety practices by providing continuous, real-time feedback. This system
can be integrated into existing safety protocols, offering a more granular understanding of risk fac-
tors associated with specific lifting tasks and worker behaviors. Compared to traditional methods,
which often rely on manual calculations of the NIOSH Lifting Index or use wearable sensors, our
approach provides a more comprehensive and automated solution. While traditional methods provide
static assessments, our system offers dynamic, real-time analysis, bridging the gap between observa-
tional studies and immediate application needs. Additionally, the primary advantage of the proposed
approach lies in its ability to integrate multiple data sources into a cohesive analysis tool without the
need for invasive sensors or extensive manual inputs. This not only ensures higher accuracy but also
enhances user compliance and ease of use in field conditions.

The findings hold significant practical implications for various stakeholders in the construction
industry, including site managers, safety officers, and workers themselves. By implementing this in-
tegrated system, stakeholders can achieve a higher level of situational awareness regarding ergonomic
risks. This proactive approach not only enhances worker safety but also contributes to reducing the
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incidence of musculoskeletal disorders, which are prevalent in construction due to the physical na-
ture of the work.To effectively implement this methodology in real-world settings, several steps are
recommended:

1. Training and awareness: Train site managers and safety officers on how to interpret the system’s
outputs and integrate these insights into daily operational decisions.

2. Technology integration: Equip sites with the necessary hardware, such as cameras and comput-
ing devices, capable of supporting the system.

3. Continuous monitoring: Set up a continuous monitoring system that can provide real-time feed-
back to workers and site supervisors. This could involve setting up display screens at suitablelocations
to alert workers when they are performing high-risk maneuvers.

4. Feedback mechanisms: Establish feedback mechanisms that allow workers to report about the
system’s effectiveness and usability, ensuring that the tool remains worker-centered and practical for
daily use.

Moreover, the proposed system can be seamlessly integrated into existing safety protocols by:
1. Pre-shift assessments: Incorporating system checks into pre-shift safety briefings to assess risk

levels and plan the day’s work accordingly.
2. Real-time alerts: Utilizing the system’s real-time analysis capabilities to provide immediate

alerts to workers and supervisors if risky behaviors are detected. This could be linked directly to
personal protective equipment (PPE) such as smart helmets or vests.

3. Training programs: Enhancing existing training programs with data from the system to educate
workers about ergonomic risks and safe lifting practices. Use historical data collected by the system
to highlight common risk patterns and teach corrective techniques.

4. Policy updates: Updating internal safety policies to include guidelines for the use of automated
ergonomic assessment tools, specifying how data should be collected, analyzed, and acted upon.

By adopting these recommendations, construction sites can enhance their safety culture, making
a tangible impact on reducing injuries and promoting a healthier workplace.

b. Limitations s and Future Research

One limitation encountered is the potential for error in pose estimation due to varying camera
angles. Fig. 15 shows a case in which the 3D pose was built incorrectly due to the camera angles.

Figure 15. Incorrect 3D pose due to camera angle
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Additionally, the effectiveness of object detection is contingent upon the reduction of carried ob-
jects to known weights. Future research should explore the enhancement of pose estimation accuracy
and the expansion of object detection capabilities to include a broader range of object types and
weights. Investigating the integration of environmental and contextual data could also enhance the
model’s applicability across diverse settings. It is also useful to conduct a long-term study to deter-
mine the level of improvement in worker health when applying this model to real production. Finally,
the system’s reliance on specific data conditions, such as camera angles and known object weights,
presents limitations that need addressing to broaden its practical utility. Expanding the dataset to
cover a broader array of objects and lifting scenarios will also enhance the system’s generalizability
and effectiveness across diverse construction environments.

5. Conclusions
This study introduces an integrated system that assesses the NIOSH Lifting Index in real-time,

leveraging advanced computational models and real-time data analytics. The proposed system com-
bines pose estimation, object detection, cycle counting, and LSTM modeling to dynamically assess
lifting tasks on construction sites. This innovative approach offers a substantial improvement over tra-
ditional ergonomic assessment methods, which often rely on manual calculations or are constrained
by the capabilities of wearable sensors. By employing cutting-edge algorithms and machine learning
techniques, our methodology enables accurate, real-time evaluations of lifting practices, facilitating
immediate and effective interventions to mitigate risk.

Several strategies are also recommended to incorporate this system into existing safety protocols.
These include the use of real-time monitoring to provide immediate feedback on risky behaviors,
integration of system outputs into daily safety briefings, and the enhancement of worker training
programs with personalized, data-driven insights. Additionally, updating internal safety policies to
include the use of such advanced technologies will ensure that safety practices remain robust and
responsive to the evolving demands of construction work.

In conclusion, this study significantly advances construction safety by providing a sophisticated
tool that not only evaluates ergonomic risks in real-time but also seamlessly integrates into construc-
tion site operations. This system not only supports the NIOSH guidelines but also pioneers a shift
towards proactive safety management, ultimately fostering a safer and more efficient workplace. As
this technology evolves, it will undoubtedly play a pivotal role in transforming occupational health
standards, propelling the construction industry towards a future where preventive measures effectively
mitigate the risks of lifting-related injuries.
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