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Abstract

This study introduces a novel Ritz approximation function to analyze the free vibrations of laminated composite
shallow curved beams. The methodology utilizes polynomial functions-based Fibonacci series to develop the
Ritz’s approximation function. The displacement field aligns with the high-order shear deformation theory
designed explicitly for shallow curved beams. The problem’s governing equation is established by applying the
Lagrange equation, providing a comprehensive framework for the subsequent analysis. The study meticulously
examines the convergence rate and accuracy of the proposed approximation function. Numerical investigations
are conducted to determine the natural frequencies of curved beams. Factors such as curvature-to-length ratio,
length-to-thickness ratio, boundary conditions, and material anisotropy are carefully considered. Furthermore,
extensive survey results concerning the natural frequencies of curved beams are presented. These results serve
as valuable reference data for future investigations in this area, thereby contributing to the academic discourse
on this subject matter.

Keywords: laminated composite shallow curved beam; free vibration; Ritz method; high-order shear deforma-
tion beam theory.
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1. Introduction

The increased utilization of multilayered materials in numerous engineering applications could
be attributed to their high strength-to-weight ratio, high stiffness-to-weight ratio, fatigue resistance,
and customization capability to fulfill specific design requirements for strength and stiffness. Vari-
ous engineering structures, such as aircraft wings, helicopter blades, and roofs, are often represented
as curved beams. As a result, many researchers have been simulating the behaviors of laminated
composite curved beams. Understanding the free vibration characteristics, encompassing the natural
frequencies and mode shapes, is crucial for laminated composite curved beams exposed to dynamic
loads. Accurately portraying laminated beams’ dynamic characteristics requires adopting a suitable
mathematical model in conjunction with an appropriate solution method. Several beam models and
methods have been developed to assess laminated composite curved beams’ free vibration character-
istics [1, 2].

The classical beam theory (CBT) [3, 4] serves as the fundamental framework for beam analy-
sis. However, CBT overlooks shear deformation effects, rendering it most suitable for analyzing thin
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beams. Adapting to the analysis of thick beams, the first-order shear deformation beam theory (FS-
DBT) [5-8] introduces a shear correction factor. Furthermore, the higher-order shear deformation
beam theory (HSDBT) emerges as a comprehensive alternative for thick beam analysis, garnering
significant interest from the research community [9-15]. Numerical methods like the finite element
method (FEM) [16-19] and isogeometric analysis [20, 21] have been used for analyzing curved
beams. Besides, analytical methods such as Navier’s solution [22-24] specifically apply to simply-
supported beams. The analytical prowess of the Ritz method [25-28] highlights the critical role of
choosing suitable approximation functions for accuracy and convergence. Each theoretical framework
and analysis method exhibits distinct advantages and constraints, capturing the attention of scholars in
recent years. Noteworthy research includes the analysis of functionally graded material (FGM) curved
beams by Karamanli et al. [29] and the exploration of composite curved beams’ free vibration using
the HSDBT theory and FEM approach by Marur and Kant [30]. Qatu and Elsharkawy [31] delved into
the implementation of the Ritz method, employing polynomial approximation functions for analyz-
ing the free vibration of curved beams based on FSDBT theory under various boundary conditions.
Further investigations encompassed the study of free vibration in FG curved beams by Yousefi and
Rastgoo [32] utilizing the Ritz method with Jacobi polynomial approximations. Notably, FEM based
on HSDBT has been introduced for delving into the behavioral characteristics of FGM curved beams
in recent studies [29, 33].

After reviewing the existing literature, it is evident that exploring the free vibration of laminated
composite shallow curved beams (LCSCB) utilizing the Ritz method based on the higher-order shear
deformation beam theory is relatively limited. This paper aims to address this gap by introducing a
novel approximation function. The proposed function is based on applying the Fibonacci series within
the Ritz method to analyze the free vibration characteristics of LCSCB. The governing equation is ob-
tained from the Lagrange’s equation. The numerical results are meticulously compared with existing
solutions in the literature. This comparative analysis encompasses various aspects, such as lay-up,
material orthotropy ratios, length-to-thickness ratios, curvature ratios, and boundary conditions, con-
tributing to a comprehensive understanding of the free vibration behavior of LCSCB.

2. Formulation
2.1. Kinematics

The characteristics of an LCSCB are defined by its cross-sectional dimensions illustrated in Fig.
1, where h represents the thickness, b signifies the width of the cross-section, and L denotes the length
of the beam. The displacement field is based on the higher-order deformation beam theory [12]:

u(x,z,t) = (1 + I%)MO(X’ 1) — 2wox(x, 1) + f(Ddo(x, 1) (1)

w(x, z,1) = wo(x, 1) (2)

where the displacements of the mid-surface of the LCSCB in the x- and z-directions are denoted as
ug (x, t) and wy (x, 1), respectively. Additionally, ¢¢ (x, t) represents the rotation of a transverse normal

5
about the y-axis, while f(z) = ZZ - 3—22 denotes the shear function. Furthermore, R denotes the radius

of curvature.
The strain field is presented as follows:
w wo

Exx = Uy + E = Ugx — IW0xx t+ f¢0,x + ? 3)
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Figure 1. Geometry of curved beam
U
Viz = Uzt Wy — R = fz90 4)

It is stated that the term z/R is small in comparison with unity and hence its effect in Eq. (3) has
been neglected for shallow curved beams [12, 14, 34].

2.2. Constitutive relations

The composite beam investigated in this research is a multi-layered one characterized by or-
thotropic behavior within each layer, exhibiting distinct fiber orientations. The stress-strain relation-
ship for a specific layer, expressed in the global coordinate system, is mathematically represented as

follows: o ©
o | _ {Qﬁ? _?k)} £ )
o 0 05/ |y¥

where Q_(lkl) and ngs) are the transformed reduced stiffness constants of the k™ layer, see Ref. [14] for
more details.

2.3. Variational formulation

The strain energy of the beam is expressed as follows:

1
Isg = 5 f (O xx&xx + OxzYx)dV
\%4

1 L Au&x - ZBMO’XWQ’XX + Dwg,xx + ZBSMO,xgbO,x - 2DSWO,xx(i)O,x + Hs¢%,x (6)
=§f s, A 5, 24 2B 2B* dx
0 +A ¢0 + ﬁwo + ?u(),xWo - FWO,xxWO + R ¢O,xWO
where
n Thtl 0 5 9
(A, B,D, B*, D', H*) = Zf O (1.2.2% f. fz. f*) bdz (7)
k=1 Y%
n Zhe+1 ~(k) 2
A=y f 0% 2bdz ®)
k=1 Tk
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The kinetic energy of the beam is written as follows:

1 )
Ige = 5 j“/ [p(z) (I/t +w )] av

. f iy — 2zigWo.x + 2W, + 2fltodo — 22fWoxbo + £ + Wy

=5 | [p@| 2 2 272 2zf dv
-2 -2 S .

2 Jy TR T gt T R HoWox t ?uofﬁo ©)
1 I I()l;lg -2 uoWwo,x + Igvi/g’x +2J4 I;toq.ﬁo - 2]2W0,X(.ﬁ0 + Kg(ﬁ(z) + IQW%)
-2 fo

21 I p) 2L 2Jr . dx
& TR0 R0t R od0

where
n Zk+1
(o, Iy, b, 1, Ja, K2) = ) f p(1.2.2 fo2f. f2) bdz (10)
k=1 %
The total energy of the beam
I = s — kg (I
2.4. Method

The Ritz method is employed to approximate the displacement field in this paper as follows:

m
uo(x, 1) = )" uojihje” (12)
j=1
m .
wo(x, 1) = Z wojg e’ (13)
j=1
m .
Bo(x, 1) = D gojéje” (14)
j=1
where w is natural frequency; P2 =- 1; ugj, woj, ¢o; are unknown parameters; ¥ j(x), ¢ j(x), £ (x) are the

approximation functions, shown in Table 1. The choice of the approximation functions significantly
impacts on the convergence rate and accuracy of the solution. Presently, extensive research exists on
beam analysis utilizing the Ritz method with various approximation functions, including the Cheby-
shev function [35] and the Hybrid function [36]. In this study, the Fibonacci sequence (FBN) [37-39]
is employed for constructing the approximation functions. The FBNs, as indicated in Eq. (11), are
specifically tailored to accommodate a range of boundary conditions such as simply-supported (S-S),
clamped-free (C-F), clamped-simply supported (C-S), and clamped-clamped (C-C), as elaborated in
Table 1.
The Fibonacci sequence is defined:

1 n=0
F,=11 n=1 (15)
F,1+F, ., n=>2
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where n are natural numbers. Developing the approximation functions from the FBN involves defining
fundamental functions as follows:

XEI(P;( - %) (16)
wmhfuﬁf—gxﬁ@r%) (17)
k=1

where F; denotes the Fibonacci sequence; s, r are natural numbers, and Py, Qy are vectors to conform
with boundary conditions as shown in Table 1.

Table 1. The approximate functions and essential boundary conditions

BCs K r P Q @j(x) v i(x) &i(x) x=0 x=1L
S-S 1 0 1 0 i (x) {jx {jx wo =0 wo =0
wo =0
uyg = 0
C-F 0 0 0 Zj(x) @ (x) @ (x) Woe = 0 -
$0=0
wo =0
up=0
C-S 1 0,1) 0 {j(x) @ (x) @ (x) Wox = 0 wp =0
$0=0
wo = 0 wo = 0
cc oLy 1 4w wme e 00 00
- .1, i (x @ (x wij(x Wox =0 Wox =0
$o=0 $o=0
From Egs. (11)—(15), and using the Lagrange’s equations as follows,
ol d oIl
- T = (18)
8uoj dt auoj
oIl d Jdll
- = (19)
5W()j dt 5W0j
ol  d oll
(20)

(’)¢oj - d_fa(.ﬁoj -

the characteristic equations for vibration analysis of the LCSCB can be obtained:

(K-w’M)q=0

21

T, .
where q = [uo wo @o] is the column vector of unknown parameters, and K and M are the stiffness
and mass matrix, respectively. The components of K and M are given by:

L

Kiljl :Afl//i,xl//j,xdx
0
5

(22)
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K/} =-B f Vixpjcedx + = f Wixpjdx (23)
L
KD = B f Viréindx (24)
0
L L L L
Kij =D QDi,xx‘pj,xxdx + F (,Dit,Djdx - E ‘pi,xx‘pjdx + ‘Pi‘pj,xxdx (25)
0 0 0 0
L L
BS
K5 =-D' f Gk jnd + — f @i jaddx (26)
0 0
K} =H f Eixéjadx + A° f &édx (27)
21
M)} = (1 =L ) f i jdx (28)
M}f -1 - — f Yipjxdx (29)
L
J
MY =(J1 +E2) f Ui jdx (30)
0
L L
M =1 f pipidx + I f i xpjxdx 31
0 0
L
ME = -0 [ gt (32)
0
M = K f £ idx (33)
0

3. Numerical examples

In this section, numerical examples illustrate the convergence and precision of the present method.
Shallow curved beams exhibit a geometric configuration, as illustrated in Fig. 1, featuring cross-
sectional dimensions of 7 = b = 0.254m. The composite material employed in this study has the
following mechanical characteristics: Er = 6.9x10° Pa, E| = 40E», Ga3 = 0.5E2, G2 = Gz = 0.6Ea,
p = 1550 kg/m?, vi» = 0.25 [14].
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3.1. Convergence study

This section analyzes the current approach in convergence characteristics, focusing on the LCSCB
under different boundary conditions, including S-S, C-F, C-S, and C-C. The frequencies of beams
corresponding to the first five mode shapes are presented in Table 2. The graphical representation

in Figs. 2(a), (b), (c), and (d) illustrates the variation of Aw™ with respect to m. It is noted that
|w™ — e

Aw'™ is defined Aw™ = x 100% where ™ is natural frequency of beams at m, and

w™m
e is reference frequency. These results demonstrate a gradual convergence trend as the number
of series (m) increases. The findings highlight the efficient and precise convergence achieved by the
proposed Ritz method compared to the outcomes presented by June et al. [14], which relied on the
dynamic stiffness matrix approach. Utilizing an approximation function derived from the Fibonacci
series satisfies essential boundary conditions and maintains a simple structure, facilitating the process
of programming formulations. In contrast, the dynamic stiffness matrix method encounters numerous
challenges attributable to its intricate nature of expressions. Notably, at m = 10, the outcomes exhibit
satisfactory precision across the boundary conditions, indicating the suitability of this point for the
subsequent numerical illustrations in this study.

Table 2. Convergence study for first five frequencies w (Hz) of LCSCBs (L/h =5, R/L =5,0°/90°)
with respect to m

BCs Mode m Jun et al.
2 4 6 8 10 12 [14]
S-S 1 364.4 325.6 325.5 325.5 325.5 325.5 325.5
2 1096.6 970.5 968.3 968.3 968.3 968.3 968.3
3 25559  2010.1 17024  1689.6 16894  1689.4 1689.4
4 4148.6  2435.6 24353 24353 24353 24353 24353
5 61653 32034  2507.9 24619  2460.5  2460.5  2460.5
C-F 1 128.7 125.4 125.2 125.1 125.1 125.1 125.1
2 897.7 585.1 578.5 577.4 577.3 577.3 577.3
3 1699.3  1281.1 12535  1250.1  1249.6 12495 1249.6
4 3379.6 16894 16612  1660.0 16599  1659.9 1659.9
5 38425  2956.0  2089.3 20548 20524 20523 20524
C-S 1 489.3 429.5 426.3 425.6 425.5 425.5 425.5
2 16289  1069.4  1059.8  1057.0  1056.7  1056.7 1056.7
3 33414 16273 1627.1  1627.1  1627.1  1627.1 1627.1
4 36103 22924 17892 17812 17800  1779.9 1780
5 39082  3013.9 2618.6  2570.1  2564.6 25645 = 2564.6
Cc-C 1 581.2 570.9 568.8 568.6 568.5 568.5 568.5
2 24295 11542 11440 11405  1140.1  1140.1 1140.1
3 36469 18948  1879.3  1875.6 18754  1875.4 1875.4
4 3913.6 24319 24252 24247 24246 24246  2424.6
5 57843  3589.0 27383 26947 26877 26877  2687.7
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Figure 2. Convergence rate for first five frequencies of LCSCB with various boundary conditions
3.2. Verification study

The research outcomes for (0°/90°) and (0°/90°/0°); LCSCBs (R/L = 5) across various bound-
ary conditions are detailed in Table 3. A comparative analysis of the first five natural frequencies with
the results obtained by Jun et al. [14], employing the HSDBT and dynamic stiffness matrix, reveals
a correlation between the findings of this study and those of Ref. [14]. Additionally, the examina-
tion delves into the non-dimensional fundamental frequencies of (0°/90°) and (0°/90°/0°) beams for
various length-to-thickness and curvature ratios under diverse boundary conditions, as presented in
Tables 4 and 5. Notably, the findings demonstrate that the present results and those of Khdeir and
Reddy [12], who utilized HSDBT and the state space solution, are consistent.

Besides, the free vibration response of beams with arbitrary angles is investigated. The present
results are presented in Table 6 and compared with those of Mantari and Canales [27] which HSDBT
theory and Ritz method based on hybrid functions are used. It is seen that the present results are in

agreement with those of Ref. [27]. These instances serve to substantiate the soundness of the current
formulation.
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Table 3. First five frequencies w (Hz) of LCSCBs (R/L = 5)

Mode
BCs Reference
w1 Wy w3 w4 ws
0°/90°,L/h =10
S-S Present 92.0 325.0 629.8 967.1 1324.6
Jun et al. [14] 92.0 325.0 629.8 967.1 1321.6
C-F Present 33.5 186.9 452.6 769.9 914.0
Jun et al. [14] 334 186.8 452.4 769.5 913.9
C-S Present 133.8 376.3 678.2 910.9 1013.1
Jun et al. [14] 133.8 376.2 677.9 910.8 1012.5
C-C Present 207.1 425.9 726.7 1056.6 1409.1
Jun et al. [14] 207.1 425.7 726.4 1055.9 1408.7
0°/90°/0°,L/h =5
S-S Present 486.0 1132.3 1848.3 2676.4 3651.3
Jun et al. [14] 486.0 1132.3 1848.3 2676.4 3059.8
C-F Present 223.2 763.1 1505.7 2168.3 2287.4
Jun et al. [14] 223.1 763.0 1505.6 2168.2 2287.4
C-S Present 538.4 1204.5 1954.3 2178.1 2830.0
Jun et al. [14] 538.4 1204.4 1954.3 2178.1 2829.9
C-C Present 657.5 1283.6 2081.8 2991.3 4051.7
Jun et al. [14] 657.5 1283.6 2081.8 2991.1 4050.8

Table 4. Dimensionless fundamental frequencies (&) = wl?/h \e/ Ez) of LCSCBs (R/L = 5)

L/h
BCs Reference
5 10 20 50 100
0°/90°
S-S Present 6.155 6.961 7.221 7.295 7.303
Khdeir and Reddy [12] 6.156 6.961 - 7.294 7.303
C-F Present 2.366 2.531 2.582 2.598 2.601
C-S Present 8.047 10.123 11.024 11.325 11.368
Khdeir and Reddy [12] 8.047 10.121 - 11.324 11.367
C-C Present 10.751 15.668 21.750 40.284 45.447
Khdeir and Reddy [12] 10.751 15.667 - 40.282 45.441
0°/90°/0°
S-S Present 9.190 13.586 16.305 17.427 17.608
Khdeir and Reddy [12] 9.190 13.586 - 17.427 17.608
C-F Present 4.220 5.481 6.055 6.254 6.285
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L/h
BCs Reference
5 10 20 50 100
C-S Present 10.181 16.507 22.739 26.544 27.269
Khdeir and Reddy [12] 10.181 16.505 - 26.535 27.266
C-C Present 12.433 21.670 34.585 57.372 93.369
Khdeir and Reddy [12] 12.433 21.670 - 57.370 93.363

Table 5. Dimensionless fundamental frequencies (G) = wl? [h+p/ Ez) of LCSCBs (L/h = 10)

R/L
BCs Reference
5 10 20 50 00
0°/90°
S-S Present 6.961 6.956 6.952 6.948 6.945
Khdeir and Reddy [12] 6.961 6.956 - - 6.945
C-F Present 2.531 2.538 2.541 2.542 2.543
C-S Present 10.123 10.140 10.139 10.135 10.131
Khdeir and Reddy [12] 10.121 10.138 - - 10.130
C-C Present 15.668 14.194 13.798 13.684 13.661
Khdeir and Reddy [12] 15.667 14.193 - - 13.660
0°/90°/0°
S-S Present 13.586 13.607 13.612 13.613 13.614
Khdeir and Reddy [12] 13.586 13.607 - - 13.614
C-F Present 5.481 5.490 5.493 5.493 5.494
C-S Present 16.507 16.577 16.595 16.599 16.600
Khdeir and Reddy [12] 16.505 16.575 - - 16.599
C-C Present 21.670 20.221 19.841 19.733 19.712
Khdeir and Reddy [12] 21.670 20.221 - - 19.712

Table 6. Dimensionless fundamental frequencies (&) = wl? [h+p/ Ez) of LCSCBs (L/h = 5,R/L = o)

Lay-up
BCs Reference
0°/30°/0° 0°/45°/0° 0°/60°/0° 0°/30°/ -30°/0° 0°/45°/ 45°/0° 0°/60°/ -60°/0°
S-S Present 9.4651 9.3802 9.2947 9.4195 9.2930 9.1700
Mantari and Canales [27] 9.4651 9.3801 9.2946 9.4194 9.2928 9.1699
C-F Present 43326 4.2961 4.2624 4.2925 4.2229 4.1645
Mantari and Canales [27] 4.3218 4.2855 4.2519 4.2821 4.2129 4.1548
C-S Present 10.5604 10.4512 10.3440 10.5018 10.3339 10.1714
Mantari and Canales [27] 10.8520 10.7411 10.6304 10.8021 10.6395 10.4777
Cc-C Present 11.9977 11.8603 11.7284 11.9186 11.6991 11.4902
Mantari and Canales [27] 11.8724 11.7378 11.6087 11.7949 11.5797 11.3749

10
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3.3. Parametric analysis

The natural frequency of laminated composite shallow curved beams is investigated in this section,
focusing on the effects of the length-to-thickness and curvature ratio, fiber angle, boundary condition,
and material anisotropy. Fundamental frequency data for curved beams under various L/h ratios,
boundary conditions (BCs), and lay-ups are presented in Tables 7 and 8. Additionally, Figs. 3(a) and
3(b) depict the fundamental frequency of (0°/45°) and (0°/45°/0°) LCSCBs (R/L = 5) with respect to
the L/h ratio. The results illustrate a decrease in frequency with an increase in the L/h ratio and fiber
angle (6), indicating that higher L/h and 6 values correspond to reduced beam stiffness. Furthermore,
the analysis reveals that, for identical L/A ratios and fiber angles, the fundamental frequency is highest
for C-C beams and lowest for C-F beams. This trend suggests that the constraint of BCs contributes
to an augmentation in beam stiffness.

Table 7. Fundamental frequencies w (Hz) of LCSCBs (R/L = 5) with one or two layers

L/h Laminated S-S C-F C-S C-C

5 0° 504.006 230.572 561.133 703.173
30° 450.978 196.520 512.888 632.444

45° 371.541 151.719 446.656 552.805

60° 250.945 95.382 336.522 436.522

90° 142.873 52.274 209.690 290.920

0°/30° 478.071 212.697 538.369 669.599

0°/45° 438.389 186.507 508.899 636.882

0°/60° 375.845 150.238 464.935 599.807

0°/90° 325.513 125.110 425.537 568.547

10 0° 184.733 74.244 225.868 306.955
30° 152.765 59.166 196.889 266.877

45° 113.595 42.436 156.747 216.395

60° 68.881 25.012 101.911 146.561

90° 37.108 13.316 56.831 84.178

0°/30° 167.839 65.936 211.283 287.467

0°/45° 143.634 54.762 189.509 263.703

0°/60° 112.305 41.485 157.558 231.608

0°/90° 92.022 33.463 133.826 207.139

Table 8. Fundamental frequencies w (Hz) of LCSCBs (R/L = 5) with three or four layers

L/h Lay-up S-S C-F C-S c-C

5 0°/30°/0° 499.532 228.496 555.298 688.058
0°/45°/0° 495.047 226.569 549.536 675.261

0°/60°/0° 490.534 224.791 543.884 665.002

0°/90°/0° 485.976 223.158 538.374 657.461
0°/30°/-30°/0° 497.120 226.385 552.195 630.081
0°/45°/-45°/0° 490.443 222.711 543.317 660.048
0°/60°/-60°/0° 483.952 219.627 534.738 643.884
0°/90°/0°/90° 411.853 174.994 474.421 587.939

11
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L/h Lay-up S-S CF C-S c-C
10 0°/30°/0° 183.213 73.637 223.844 299.853
0°/45°/0° 181.857 73.138 221.898 294.020
0°/60°/0° 180.661 72.746 220.027 289.542
0°/90°/0° 179.615 72.461 218.228 286.487
0°/30°/-30°/0° 181.215 72.572 222.220 296.083
0°/45°/-45°/0° 178.298 71.261 218.885 287.099
0°/60°/-60°/0° 176.029 70.341 215.905 280.244
0°/90°/0°/90° 135.000 51.462 177.827 245.133
800
600 |
=
<L 400
3
2007
0
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
L/h L/h
(a) (0°/45°) beam (b) (0°/45°/0°) beam

Figure 3. Fundamental frequencies w (Hz) of the (0°/45°) and (0°/45°/0°) LCSCBs (R/L = 5)
with respect to L/h ratio with various boundary conditions

The findings from Table 9 indicate that the fundamental frequency of LCSCBs (L/h = 10) re-
mains relatively stable across various R/L ratios, suggesting that the variation in this ratio does not
significantly impact the beam frequency. Furthermore, there is a discernible decrease in frequency
with an increase in the fiber angle, aligning with the anticipated trend.

Table 9. Fundamental frequencies w (Hz) of LCSCBs (L/h = 10) with various R/L ratios

Lay-up

BCs

0° [15°/ —15°] [30°/ —30°] [45°/ —45°] [60°/ —60°] [75°/ —75°] [90°/ —90°]
R/L=5
S-S 184.733  176.829 152.765 113.595 68.881 41.088 37.108
C-F 74244 70.379 59.166 42.436 25.012 14.760 13.316
C-S 225.868 218915 196.889 156.747 101.911 62.719 56.831
C-C 306955 296.831 266.877 216.395 146.561 92.611 84.178
R/L =10
S-S 185.011  177.095 152.994 113.765 68.984 41.149 37.163
C-F 74372 70.498 59.263 42.502 25.050 14.782 13.336
C-S 226.813  219.830 197.706 157.384 102.313 62.963 57.051
C-C 280.283  272.769 249.408 206.412 141.907 90.162 81.996

12



Nhan, N. T,, et al. / Journal of Science and Technology in Civil Engineering

Lay-up
BCs
0° [15°/ = 15°] [30°/ —30°] [45°/—45°] [60°/ —60°] [75°/ —75°] [90°/ —90°]

R/L = o0

S-S 185.104 177.184 153.071 113.822 69.019 41.170 37.182
C-F 74415 70.538 59.296 42.525 25.062 14.789 13.343
C-S 227.130  220.137 197.980 157.598 102.449 63.045 57.126
C-C 270.760  264.222 243.284 202.966 140.318 89.329 81.255

Moreover, Table 10 and Figs. 4(a) and 4(b) present the fundamental frequency of LCSCBs with
respect to the E|/E, ratio. The results demonstrate that an increase in the E/E» ratio leads to higher
frequencies for all boundary conditions and fiber angles.

Table 10. Fundamental frequencies w (Hz) for LCSCBs (L/h = 5; R/L = 5) with respect to E|/E, ratio

Ei/E>
2 10 25 40 50 80 100

BCs

0°/45°
S-S 48.855 84.772 120.609 143.634 155.382 180.983 193.142
C-F 17.556 30.872 45.008 54.762 60.009 72.249 78.536

C-S 74.238 123.403 165.789 189.509 200.681 223.279 233.399
C-C 109.171 176.832 232.271 263.703 279.232 313.794 331.530

0°/45°/0°
S-S 52.618 108.689 155.796 181.857 194.011 218.078 228.462
C-F 18.955 40.357 60.523 73.138 79.521 93.375 99.962

C-S 79.645 151.978 199.656 221.898 231.619 250.385 258.613
C-C 116.361 208.714 265.305 294.020 308.097 340.253 357.448

800 1000

£ —4—-SS —e-C-S
—*—C-F —*—C-C x
600 | | 800
N ;//'/M q N 600 ;
L 400 —4—S-S I J
3 —*—C-F 3 400 1
i "
2001;/*/*/*’*’*"*"—*—4 —e-CS 200 a—r—r T
—*—C-C
- 0
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
E/E, EJE,
(a) (0°/45°) beam (b) (0°/45°/0°) beam

Figure 4. Fundamental frequencies w (Hz) of the (0°/45°) and (0°/45°/0°) LCSCBs (L/h = 5;R/L = 5)
with respect to £ /E; ratio with various boundary conditions

The mode shapes of LCSCBs under S-S, C-F, C-S, and C-C boundary conditions are visually
depicted in Figs. 5, 6, 7, and 8, respectively. Observation reveals that for C-F and S-S beams, the first
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mode corresponds to a bending mode, while the second, third, and fourth modes indicate shearing
modes. In contrast, the first four modes predominantly represent shearing modes for C-S and C-C

beams. Notably, it is highlighted that the influence of shear effects is more pronounced in C-S and
C-C beams compared to C-F and S-S beams.
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Figure 5. First four mode shapes of S-S LCSCB (0°/90°; L/h = 5;R/L = 5)
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Figure 6. First four mode shapes of C-F LCSCB (0°/90°; L/h = 5;R/L = 5)

1 :
—_— UO B
o5t P
I ¢0 /./,/
o~ 7
N 7
\ N 7 s
i N // //
-0.5 11 AN % s
\ RS P
\ S T
\ _7
-1 L
0 0.2 04 0.6 0.8
X/L
(a) Mode 1; w, = 425.537 (Hz)
0.2

(c) Mode 3; w; = 1627.069 (Hz)

1 r
Yo 7N
s \,
o5t Y%/ Y
I / '
b B
/ P - ‘\.
O~ v ]
i S o ! Pd \
| T4 \
i ! \
05 /! \
. /
\ /
\ /
gL : -
0 0.2 04 0.6 0.8
Xx/L
(b) Mode 2; w, = 1056.698 (Hz)
1 < -
/ /N
‘/, \\ _ UO / \
.j \ —— - W /'/ \,
05f 1 o \
i \‘\ T ¢0 // \
S [ A
—~ ~ ! ~ \
0 i ~ B P \
\ -~ - '
) / )
\ / \
057 \ / !
\ /
L
N
-1

x/L
(d) Mode 4; w, = 1779.950 (Hz)

Figure 7. First four mode shapes of C-S LCSCB (0°/90°; L/h = 5;R/L = 5)
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Figure 8. First four mode shapes of C-C LCSCB (0°/90°; L/h = 5;R/L = 5)

4. Conclusions

The introduction of novel Ritz functions in this study provided a comprehensive framework for
evaluating the free vibration characteristics of laminated composite shallow curved beams under di-
verse boundary conditions, emphasizing displacement based on the higher-order deformation beam
theory. Furthermore, the governing equations were formulated utilizing Lagrange equations. The re-
search delved into the impact of several parameters, including the length-to-thickness ratio, curvature
ratio, fiber angle, material anisotropy, and boundary conditions on the natural frequency of the beams.
Here are the key findings:

- A rise in the L/h ratio and fiber angle (6) resulted in a decrease in the frequency of LCSCBs.

- An escalation in the E/E; ratio increased the frequency of LCSCBs.

- The variation in the R/L ratio had an insignificant impact on the frequency of LCSCBs.

- The frequencies were notably higher for C-C beams and lower for C-F beams.

- Overall, the current methodology demonstrates efficiency in analyzing the free vibration char-
acteristics of LCSCBs.
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