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Abstract

The Extreme Gradient Boosting (XGBoost) model has found success across a wide range of engineering chal-
lenges because it is straightforward, flexible, and applicable to both classification and regression tasks. Con-
crete, a composite material made up of several intricate components, is affected by various factors, making
it difficult to predict its properties with precision. This article presents an Extreme Gradient Boosting (XG-
Boost) model designed to predict the slump and strength of high-performance concrete (HPC) incorporating
a combination of blast furnace slag and silica fume as mineral admixtures. The model was developed using
an experimental dataset following the Box-Hunter statistical method. The criteria used to assess the models’
accuracy are R squared (R2) and mean squared error (MSE). The findings indicate that the XGBoost model, de-
veloped using an experimental dataset following the Box-Hunter statistical method, is well-suited for predicting
both the slump and compressive strength of concrete.
Keywords: extreme gradient boosting (XGBoost); the slump of concrete; prediction; the strength of concrete.
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1. Introduction
Concrete is a widely used building material across the globe [1–3], with several distinct types hav-

ing been developed over the years [4–13]. High-performance concrete (HPC) has gained traction for
its excellent mechanical strength and durability. This popularity can be attributed to innovations like
advanced superplasticizers and the inclusion of mineral additives, which create denser microstructures
and reduce permeability. This latest generation of HPC offers enhanced workability, a compressive
strength exceeding 60 MPa, and improved resistance to physicochemical degradation. These charac-
teristics allow HPC to withstand significant stress and remain durable even in severe environmental
conditions.

Concrete’s inherent complexity, stemming from its many components, complicates the task of
predicting its properties. Building models to estimate concrete properties based on various influencing
factors is difficult because of the material’s low predictability. This challenge is compounded when
designing experiments, where researchers must manage a large array of variables that impact the
results. To account for these numerous factors, more experimental trials are required, increasing the
workload and complicating the process of accurately estimating the true response function. Moreover,
the presence of uncontrolled variables further complicates the task of achieving reliable predictions.

Lately, the construction industry has increasingly embraced machine learning techniques (MLT)
to boost project efficiency, better manage resources, and improve the ability to predict outcomes in
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construction workflows and material properties [14–16]. Additionally, machine learning techniques
have been used more frequently to increase the precision of predictions regarding concrete properties.

Li and Liew [17] developed a prediction model using the XGBoost algorithm to forecast the fac-
tors influencing the compressive strength of steel fiber reinforced concrete and mortar when subjected
to high temperatures. Their model outperformed seven other machine learning methods assessed in
their study, which included AdaBoost, Random Forests, k-Nearest Neighbors Regression, Artificial
Neural Network, Support Vector Regression, Multivariate Adaptive Regression Splines, and Linear
Regression. Similarly, Duan, Asteris [18] conducted research on the 28-day compressive strength
of recycled aggregate concrete, employing four different artificial intelligence techniques. They de-
veloped a model using a combination of a meta-heuristic search sociopolitical algorithm (ICA) and
XGBoost, termed the ICA-XGBoost model. This model was the top performer among those created,
yielding the best results according to performance metrics. In a different study, Tipu, Panchal [19]
pursued three key objectives: maximizing compressive strength, reducing costs, and lowering CO2
emissions. They modeled the compressive strength of concrete using the XGBoost Regressor, while
costs and CO2 emissions were calculated using mathematical models. The results supported the relia-
bility and effectiveness of the XGBoost model for predicting compressive strength. Furthermore, Le,
Vu [20] presented a new predictive tool built on a machine learning framework to estimate the com-
pressive strength and effective porosity of previous concrete based on its composition. Their findings
indicated that the extreme gradient boosting (XGB) method offered significantly greater accuracy
than other techniques.

There are not many studies investigating the application of the XGBoost model to forecast both the
slump and compressive strength of high-performance concrete. This study examined the suitability of
the XGBoost model for simultaneously predicting these two properties in high-performance concrete
samples. The dataset used to construct these models included various concrete samples, each with
different ratios of water/adhesive, blast furnace slag/adhesive, silica fume/adhesive, and super-plastic
additive/adhesive. The samples were prepared following the Box Hunter statistical method [21], to
find the optimal composition for high-performance concrete. The models’ accuracy in predicting the
desired outcomes was evaluated using RSQ and MSE metrics to identify the most effective prediction
model.

2. Experimental study process and data
A considerable body of research has demonstrated that adding silica fume, along with other min-

eral additives such as pozzolan, granulated slag, blast furnace slag, or fly ash, to cement significantly
enhances the durability and mechanical properties of high-performance concrete (HPC) [22, 23].
Ground granulated blast furnace slag (GGBFS) stands out for its low water absorption due to the
smooth surfaces of its grains, which improves the workability of HPC compared to ordinary Portland
cement concrete [24, 25].

The inclusion of silica fume and superplasticizer plays a critical role in strengthening the durabil-
ity and mechanical properties of concrete. This enhancement is attributed to both the filling mecha-
nism and chemical reactions occurring within the concrete. The differing particle sizes between silica
fume and cement lead to a denser paste through the physical effects of the filler material, which boosts
compaction and increases the accumulation of solid particles.

This experimental study utilized blast furnace slag, silica fume, and a super-plastic additive to
create concrete specimens. The goal was to produce concrete with a compressive strength above 60
MPa, a slump exceeding 16 cm, and a cement content of less than 300 kg/m3.
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2.1. Materials
This study utilized PCB40 cement from the NGHI SON cement corporation, located in Hai

Thuong Ward, Nghi Son Town, Thanh Hoa Province, Vietnam. This specific cement type meets
the mechanical property standards set by the TCVN 6260:2020 [26]. The mechanical characteristics
of this cement were evaluated based on the methodologies detailed in TCVN 6016:2011 [27], TCVN
6017:2015 [28], and TCVN 13605:2023 [29]. The results of these assessments are summarized in
Table 1.

Table 1. Property of PCB40 cement

Items Value

Density (g/cm3) 3.0
Fineness (the amount leftover on a 80 µm sieve) (%) 2.5
Standard ductility (%) 29.5
Coagulate start time (minutes) 90
Coagulate end time (minutes) 135
The intensity of age 28 days (Mpa) 50.4

The coarse-ground powder of GGBFS (ground granulated blast furnace slag) used in this study
was sourced as a byproduct from the manufacturing of cast iron at the Thai Nguyen Iron and Steel
Joint Stock Corporation in Vietnam. The slag was initially collected in its raw form and then ground
down to achieve a particle size smaller than 2.5 mm. Table 2 provides an overview of the physical
properties of the GGBFS.

Table 2. Property of GGBFS

Absolute density (g/cm3) Blaine Specific Surface (cm2/g) Activity index at 7 days (%)

2.94 6300 98

Table 3. Property of silica fume

Absolute density (g/cm3) Blaine Specific Surface (cm2/g) Activity index at 7 days (%)

2.2 5000 100

This study used a grey, ultra-fine powder of silica fume sourced from the Elkem Company in
China. The details of the physical characteristics of the silica fume are presented in Table 3.

The crushed stone used in this study was sourced from Luong Son Town in Hoa Binh Province,
Vietnam. The stone had a maximum diameter of 20 mm and complied with the physical and mechan-
ical standards outlined in TCVN 7570:2006 [30]. Table 4 contains the test results for the key physical
and mechanical properties of the crushed stone, following the guidelines of TCVN 7572:2006 [31].

Song Lo sand was employed in this study, and it satisfied the physical and mechanical require-
ments set by TCVN 7570:2006 [30]. The results of tests conducted to determine the key physical and
mechanical properties of the sand, as specified in TCVN 7572:2006 [31], are shown in Table 5.

A superplasticizer was used to reduce the water-to-cement ratio in the concrete mixture while
ensuring it retained workability. Dynamon SP1, a product of Mapei, was selected for this purpose.
This modified acrylic polymer is ideal for precast concrete, offering a lower water-to-cement ratio and
excellent mechanical strength in both the initial and final stages of curing. The specific properties of
Dynamon SP1 are detailed in Table 6.
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Table 4. Property of crushed stone

Items Value

Sieve size, (mm) 5 10 10 20
Residual mass accumulated on the sieve, (%) 100 0 100 0
Density, (g/cm3) 1.57 1.63
Absorption of water, (%) 2.7 2.8
Porosity volume mass, (kg/m3) 2.68 2.78
Crushed compression strength in cylinders, (%) 0.74 0.63
Content of rhombus and flatform particles, (%) 0.08 0.07
Content of dust, mud, clay, (%) 12 10.8

Table 5. Property of sand

Items Value

Sieve size, (mm) 5 2.5 1.25 0.63 0.31 0.14

Residual mass accumulated on the sieve, (%) 0 7.7 17.2 45.1 78.7 96.3
Density, (g/cm3) 2.66
Absorption of water, (%) 1.35
Modulus of magnitude 2.45
Content of dust, mud, clay, (%) TCVN 7570:2006

Table 6. Characteristics of the superplasticizer

Form Color
Density according to

ISO 758 (g/m3)

Chlorides soluble
in water according
to EN 480-10 (%)

Alkali content according
to EN 480-12 (%)

Liquid Amber
1.08 ± 0.02
at +20 °C

< 0.1 (absent according to
EN 934-2)

< 3.0

Box Hunter’s statistical method for experimenters was used to identify the rules governing factor
variation. An experimental design with 31 points was established to examine the impact of four
factors—namely, the water/adhesive ratio (W/AH, coded as variable x1), blast furnace slag/adhesive
ratio (BFS/AH, coded as variable x2), silica fume/adhesive ratio (SF/AH, coded as variable x3), and
superplasticizer/adhesive ratio (SPA/AH, coded as variable x4)—on compressive strength at 28 days
(R28) and slump (SN). The experimental results are provided in Table 7.

Table 7. Experimental outcomes based on Box Hunter’s methodology

Coded variables Factorial experiments SN R28

x1 x2 x3 x4 W/AH BFS/AH SF/AH SPA/AH (cm) (Mpa)

1 -1 -1 -1 -1 0.3 30 3 0.6 9 88.7
2 1 -1 -1 -1 0.34 30 3 0.6 16.5 78.0
3 -1 1 -1 -1 0.3 50 3 0.6 12 85.9
4 1 1 -1 -1 0.34 50 3 0.6 19.5 77.1
5 -1 -1 1 -1 0.3 30 9 0.6 0.5 89.5
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Coded variables Factorial experiments SN R28

x1 x2 x3 x4 W/AH BFS/AH SF/AH SPA/AH (cm) (Mpa)

6 1 -1 1 -1 0.34 30 9 0.6 4 81.8
7 -1 1 1 -1 0 50 9 0.6 2 85.8
8 1 1 1 -1 0.34 50 9 0.6 7 81.2
9 -1 -1 -1 1 0.3 30 3 1 19 89.0
10 1 -1 -1 1 0.34 30 3 1 21 77.6
11 -1 1 -1 1 0.3 50 3 1 20.5 86.1
12 1 1 -1 1 0.34 50 3 1 22 77.2
13 -1 -1 1 1 0.3 30 9 1 11 89.8
14 1 -1 1 1 0.34 30 9 1 17.5 81.9
15 -1 1 1 1 0.3 50 9 1 17 86.5
16 1 1 1 1 0.34 50 9 1 21 81.5
17 -2 0 0 0 0.28 40 6 0.8 11 94.7
18 2 0 0 0 0.36 40 6 0.8 21 77.4
19 0 -2 0 0 0.32 20 6 0.8 15.5 84.1
20 0 2 0 0 0.32 60 6 0.8 19.5 79.8
21 0 0 -2 0 0.32 40 0 0.8 21 80.1
22 0 0 2 0 0.32 40 12 0.8 4 84.7
23 0 0 0 -2 0.32 40 6 0.4 2.5 82.7
24 0 0 0 2 0.32 40 6 1.2 19.5 82.8
25 0 0 0 0 0.32 40 6 0.8 18 84.7
26 0 0 0 0 0.32 40 6 0.8 17.5 84.1
27 0 0 0 0 0.32 40 6 0.8 18.5 83.2
28 0 0 0 0 0.32 40 6 0.8 17 84.2
29 0 0 0 0 0.32 40 6 0.8 16.5 83.3
30 0 0 0 0 0.32 40 6 0.8 17.5 84.2
31 0 0 0 0 0.32 40 6 0.8 18.5 82.1

Min -2 -2 -2 -2 0.28 20 0 0.4 0.5 77.1
Max 2 2 2 2 0.36 60 12 1.2 22 94.7

Table 8. Test specimens

No
Coded variables Factorial experiments SN R28

x1 x2 x3 x4 W/AH BFS/AH SF/AH SPA/AH (cm) (Mpa)

1 -2 1.675 -0.765 1 0.28 56.75 3.705 1 18.5 92.2
2 -1 0.551 -1.121 0 0.3 45.51 2.637 0.8 17.5 88.5
3 0 1.409 -1.548 -1 0.32 54.09 1.356 0.6 18.5 75.4
4 1 0.678 -0.863 -1 0.34 46.78 3.411 0.6 18.5 72.6
5 2 1.034 -0.39 -1 0.36 50.34 4.83 0.6 18 70.3

Min -2 0.551 -1.548 -1 0.28 45.51 1.356 0.6 17.5 70.3
Max 2 1.675 -0.39 1 0.36 56.75 4.83 1 18.5 92.2

Using Box Hunter’s statistical method [21], a regression function was developed to identify the
optimal composition. Five samples were created for additional testing, and the results are displayed
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in Table 8. Based on these results, it is possible to produce concrete with a compressive strength
exceeding 60 MPa, a slump greater than 16 cm, and a cement content below 300 kg/m3.

Figure 1. Preparation of concrete samples and compressive strength testing

Figure 2. Variations in compressive strength of concrete across different periods

Fig. 2 illustrates the variations in compressive strength of concrete across different periods. The
results indicate that a mixture containing 45%-55% GGBFS, adhesive, and silica fume did not slow
down the initial strength development of the concrete when compared to traditional concrete.

2.2. Data division and preprocessing

The training dataset contained 31 samples, as detailed in Table 7, while the testing dataset in-
cluded 5 samples, as outlined in Table 8. The test data is entirely new compared to the training data
and is planned according to Box-Hunter’s methodology, with some values falling beyond the range
of the training data. To ensure balanced treatment of all variables during training and to minimize
dimensionality, preprocessing involved scaling both input and output variables to a range between 0
and 1. The scaling formula used to adjust the value of each variable, x, is shown below:

xi =
(x − xmin)

(xmax − xmin)
(1)

where xmax and xmin refer to the maximum and minimum values of each variable x, respectively.
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3. XGBoost model
3.1. Overview of XGBoost model

The XGBoost model, short for Extreme Gradient Boosting, is an improved variant of the gradient
boosting technique originally introduced by [32]. This sophisticated tree-boosting system uses a set
of additive functions to make predictions, which can be mathematically expressed as:

yi = y0 + η ·

M∑
k=1

fk(Xi) (2)

In this equation, yi denotes the predicted output for the ith sample, with Xi being the vector of
features for that sample. M represents the total number of estimators, while each estimator fk (where
k ranges from 1 to M) is an individual tree structure. The initial prediction y0

i is the average value of
the observed outputs in the training dataset. The parameter η is the learning rate, sometimes called
the shrinkage parameter, which helps optimize model performance by allowing gradual adjustments
as new trees are added, thereby reducing the risk of overfitting.

The training procedure follows an additive approach, as described in Eq. (2). At each kth step, a
new estimator is added to the model. The prediction for this step, yk

i , is calculated by combining the
prediction from the previous step, yk−1

i , with the estimate from the newly added kth estimator, fk, as
illustrated in the following expression:

yk
i = yk−1

i + η · fk (3)

The estimation for fk comes from the leaf weights, determined by minimizing the target function
for the kth tree, as shown in the equation below:

ob j = γT +
T∑

j=1

[
G jω j +

1
2

(H j + λ)ω2
j

]
(4)

In this setting, T represents the number of leaves in the kth tree, with ω j (where j ranges from 1
to T ) signifying the weight attributed to each leaf. The parameters λ and γ are used to regulate the
tree’s structure and prevent overfitting. G j and H j denote the aggregated first and second gradients of
the loss function, respectively, for all samples linked to the jth leaf.

Building the kth tree begins with a single leaf and involves an iterative process of splitting. This
approach is guided by maximizing the gain parameter, as detailed below:

gain =
1
2

 G2
L

HL + λ
+

G2
R

HR + λ
−

(GL +GR)2

HL + HR + λ

 − γ (5)

The formula presented above calculates the gain parameter, which is obtained from the GL,HL,GR,
and HR values associated with the left and right leaves following a split. A split is deemed acceptable
when the gain parameter exceeds 0. Raising the regularization parameters λ and γ reduces the gain
parameter, promoting a less complex tree structure by restricting leaf splitting. Nevertheless, it’s cru-
cial to keep in mind that increasing these regularization parameters can decrease the model’s capacity
to fit the training data accurately.
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3.2. Development of the XGBoost model

In this research, the XGBoost model was developed with Python and the Sklearn library. The
focus was primarily on four key parameters: the learning rate (g), the number of estimators (N), and
the regularization parameters (λ and γ). By concentrating on these four, the other parameters were
left at their default settings in the XGBoost package, as they were deemed to have minimal impact on
the model’s performance. The training subset was then used to train the model.

Figure 3. Impact of the number of estimators on model performance

The XGBoost model was trained using a wide range of estimator values, designated as N, ranging
from 10 to 1000. The other parameters were kept at their default settings within the XGBoost package.
Fig. 3 shows that the optimal RSQ and MSE values were achieved with 20 estimators. However,
testing with 50 to 1000 estimators did not lead to any significant improvements over the performance
seen with 20 estimators. Therefore, setting the estimator count to 20 proved to be the optimal decision,
offering a balanced approach between precision and simplicity in the model.

The XGBoost model was trained over a spectrum of learning rates, ranging from 0.1 to 2, with the
number of estimators fixed at the optimal value of 20. The other parameters were kept at their default
settings. Fig. 4 indicates that the best RSQ and MSE results were obtained with a learning rate of 1.

To assess how sensitive the XGBoost model is to the regularization parameter λ, the number of
estimators and learning rate were kept at their optimal settings: N = 20 and η = 1, as illustrated in
Fig. 5. The parameter λ was tested over a range from 0.1 to 100. The results suggest that setting λ to
0 produces better results compared to other values in the given range.

Similarly, as demonstrated in Fig. 6, the impact of varying the regularization parameter γ on the
XGBoost model was examined. Within the range from 0 to 10, the influence of γ appeared to be
relatively small, with the model exhibiting slightly better performance when γ was set to 0.

According to the results, the ideal setup for the XGBoost model involved 20 estimators, a learning
rate of 1, and regularization parameters λ and γ both set at 0. This configuration achieved the highest
accuracy and will be employed for additional testing and validation. The time required to manually
select the optimal parameters for the model is relatively long. However, the training time for the
model is relatively short, taking less than 5 seconds.

Given the limited size of the experimental dataset, this study explores the effectiveness of applying
the k-fold technique to enhance model generalization and mitigate overfitting. Fig. 7 illustrates the
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Figure 4. Impact of the learning rate on model performance

Figure 5. Impact of the regularization parameter λ on model performance

Figure 6. Impact of the regularization parameter γ on model performance

variation in R-squared and MSE values across different k-fold values. The results indicate that when
k-fold is set to 3, the model achieves the highest accuracy for both slump and strength predictions of
concrete.
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Figure 7. R-squared and MSE values across different k-fold values

4. Model validation
Figs. 8 and 9 depict the XGBoost model’s performance on the training and validation datasets.

The data indicates only minor deviations from the best fit line, suggesting a close correlation between
the observed and expected outcomes. The evaluation metrics also demonstrate high precision in the
training data, with R-squared scores of 0.997 for slump and 0.991 for specific strength, while the mean
squared error (MSE) is 0.108 for slump and 0.149 for specific strength. These values are superior to
those of a Random Forest (RF) model presented in [33]. Furthermore, applying the k-fold technique
has improved the XGBoost model’s accuracy and generalization, resulting in R-squared scores of
0.997 for slump and 0.992 for specific strength. The MSE values are also significantly lower, at
0.00023 for slump and 0.00018 for specific strength.

The XGBoost prediction model generates accurate results for the experimental dataset following
the Box Hunter statistical method. The model occasionally predicts values that stray beyond the 5%
deviation line, as shown in Figs. 7, 8, and Table 9 especially when handling data points that lie out-
side the training dataset’s range. This result is consistent with the recognized constraints of empirical
models; XGBoost typically performs more accurately with interpolation than with extrapolation. Ad-
ditionally, if there are data points with identical output values but different input variables, it can lead
to confusion in the XGBoost model, particularly when the training dataset is small (Fig. 7). Thus,
enlarging the training dataset could enhance the XGBoost model’s performance.

Additionally, the XGBoost model demonstrates higher accuracy in predicting strength parame-
ters compared to slump parameters, as illustrated in Figs. 7, 8 and Table 9. Thus, prioritizing the
construction of the XGBoost model to predict compressive strength is more efficient than utilizing it
to forecast concrete slump.

Table 9 compares the predictive performance of the XGBoost model with and without the k-fold
technique. While the k-fold model demonstrates higher accuracy on the training dataset, its predictive
accuracy for concrete strength is lower than that of the model without k-fold. This discrepancy can
be attributed to the small size of the test sample set and the potential for experimental errors.
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Figure 8. Scatterplots comparing predicted and
measured data for slump

Figure 9. Scatterplots comparing predicted and
measured data for specific strength

Table 9. Model accuracy (testing set)

No
Slump Specific strength

Measured
value (cm)

Predicted
value (cm)

Predicted
value with

K-Fold (cm)

Measured
value (Mpa)

Predicted
value (Mpa)

Predicted
value with

K-Fold (Mpa)

1 18.5 12.83 19 92.2 94.70 94.7
2 17.5 20.50 19 88.5 86.10 85.90
3 18.5 19.50 19.5 75.4 79.99 84.30
4 18.5 19.50 19.5 72.6 77.10 77.1
5 18 7.00 19.5 70.3 77.40 77.40

Rsquared 0.0004 0.1667 0.9109 0.828
MSE 32.829 1.35 20.748 32.576

Figure 10. Features importance analysis

The feature importance analysis was conducted using the built-in functionality of the XGBoost
algorithm, which evaluates feature significance based on gain, weight, or cover during training. The
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results of this analysis are summarized in Fig. 10. As shown, the Super-Plastic Additive/Adhesive Ra-
tio (x4) emerged as the most influential factor in constructing the XGBoost model, with an importance
score of 0.4078. The Silicafume/Adhesive Ratio (x3) followed as the second most important variable,
scoring 0.3241. These findings highlight the crucial role of the Super-Plastic Additive/Adhesive Ratio
in determining the properties of concrete samples.

5. Conclusions
After producing concrete specimens with varying ratios of water/adhesive, blast furnace slag/ad-

hesive, silica fume/adhesive, and super-plastic additive/adhesive to evaluate the optimal composition
for high-performance concrete (HPC), along with developing an XGBoost prediction model to fore-
cast the slump and compressive strength of these samples, the following conclusions can be drawn:

- Combining GGBFS and silica fume allows for creating concrete with exceptional properties,
including a compressive strength exceeding 60 MPa and a slump measurement over 16 cm. This can
be achieved while keeping the cement content under 300 kg/m3 and limiting silica fume to less than
5%. Additionally, using GGBFS at 45%-55% of the total composition, along with adhesive and silica
fume, does not hinder the early strength development rate compared to traditional concrete.

- The XGBoost model, developed using the experimental dataset following the Box-Hunter sta-
tistical method, is well-suited for predicting both the slump and compressive strength of concrete.
However, it’s important to note that the XGBoost model is more accurate in predicting compressive
strength than slump. As a result, focusing on developing an XGBoost model for predicting concrete
strength is considered more practical than constructing an XGBoost model for forecasting concrete
slumps.

- While the XGBoost models generally achieved high accuracy in predicting concrete characteris-
tics, and the k-fold technique improved generalizability, some predicted values still showed significant
deviations from the observed measurements. This aligns with the fact that empirical models like XG-
Boost are best suited for interpolation tasks. To enhance the model’s performance, it is crucial to
expand the training dataset in both size and diversity to encompass a broader range of samples.
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