RESEARCH RESULTS AND APPLICATIONS

MODELLING OF IDEALIZED CONCRETE USING
MULTIPLE LEVEL-SET WITHIN XFEM

Tran Anh Binh”

Summary: When modelling concrete with high volume fractions, complex microstructures and nearby inclusions,
the classical level-set/’XFEM method induces some actefacts, even for extremely fine background meshes. It
leads to significant errors in the effective thermal conductivity and poor convergence of the solution with respect
to the mesh size. We proposed in previous works a method using multiple level-sets within the XFEM method to
overcome these issues. In this method, each inclusion interface is associated with a different level-set function
and related to a different enrichment strategy. In this paper, we extend this method to estimate effective thermal
conductivity of idealized concrete. The proposed approach is demonstrated through the numerical results.
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(@ 1.introduction

Concrete is known as a high complex material with nearby inclusion. Many studies have been published
in the literature for predicting effective thermal conductivity of such material. Analytical methods are often based
on a simplification of inclusion shapes, potential theory and spherical harmonic functions... Many exact and
approximate closed-form solutions have been derived by such methods for materials having a linear behavior [1-
3]. However, its limitations are shown when the microstructure is known in all of its complexity. Upper and lower
bounds on the possible values of the effective conductivities [4-6] are not very useful in the case of high contrast of
matrix-inclusion conductivities. Some simple approximations [7-9] are available for estimating the effective
thermal conductivity but they are not efficient for complex microstructures. The numerical methods can overcome
these issues, but the computational cost is a big concern. Finite element method (FEM), boundary element
method (BEM) and fast Fourier transform method (FFT) are widely used for homogenization problems. These
methods have been reported in numerous works [10-16]. More recently, the use of the Extended Finite Element
Method (XFEM) [17-19] has been proposed for modelling and computing the overall properties of complex
microstructures. However, it does not well describe the local fields and the convergence is slow when the
microstructure contains the nearby inclusions. To overcome these limitations, we use the modified XFEM/Level-
set technique [20] which involves multiple level-set functions for describing of the interfaces and introduces
additional degrees of freedom (DOF) for nodes associated with element cut by more than one interface. This
approach allows modeling the concrete with arbitrary inclusion shape. However, the study area of this paper is
limited to modelling of the idealized concrete associated with spherical inclusions embedded in a continuous
matrix. More complex concrete shall be the subject of our following study. The layout of this paper is as follows.

Firstly, the XFEM/level-set method is summarized in Section 2. In the next section, the proposed
approach is presented. The numerical examples are shown in the Section 4. Some conclusions are finally
pointed out in the last section.

( @ 2. Quickrecall the Level-set/’XFEM method

In order to model a multi phasic domain, the Finite Element Method (FEM) requires an explicit meshing of
all interfaces, which must conform to the volume mesh. This operation can be highly challenging for complex
three-dimensional microstructures. In contrast, the XFEM uses an implicit description of the discontinuities that
do not need to coincide with the mesh and an enriched approximation to model the jumps through the surface
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discontinuities (cracks or interfaces). Sukumar et al. [17] were the first ones to combine the XFEM with a level-set
description of the interface. Let I be an interface between two neighboring domains, which is taken to be a
smooth 2D or 3D surface. In this context, I is defined as the zero level-set of a function ¢ : R > R:

I ={xeR’| $(x) =0 (1)
where dis the dimension of the space under consideration. An important example is the signed distance function:

0 (x)=, min (| [sign o - (x=x..)),

k=1,2,..m

where x.. is the normal projection of x on I, n" is the unit
normal vector as illustrated in Figure 1 and m is the
number of inclusions.

Figure 1. Level-set function ¢(x) related to interface T,.

In the case of spherical (circular) inclusions, Eq (2) leads to:

¢(x)= min {hxfxfﬁHfr‘ }, (3)

k=12,

where n, is number of spherical inclusions; x', is the center of inclusion &; and + is radius of inclusion k. Graphical
illustrations of such function are shown in Figure 2.

To introduce discontinuities within elements cut by the interface, the XFEM approximation is employed,
assuming the following form for displacement formulation:

()= 2N (97 + 2N, (F (e “)

Figure 2. Level-set function of (a) a circular inclusion; (b) four circular inclusions

where N are the standard shape functions, N, are the shape functions related to nodes of elements whose support
is cut by the interface. The additional DOF «, are only added to nodes for which support is cut by the interfaces. In
the present work, only perfect interfaces are considered, assuming the continuity of both displacements and
normal forces through the interfaces. Thus we utilize the enriched function F(x) proposed in [17]:

Fx)= ol ()-[o.¥, (x). ©

To carry out numerical integration, elements cut by the interfaces must be subdivided [17]. The
approximated interface can be constructed through a linear approximation of nodal values of level-set function.
Let ¢, and ¢, denoting nodal value of level-set functions values at two vertices x, and x, of an element. An element
edge is cut by the zero level-setif ¢, ¢, < 0. The intersection is then found by:

¢,
X :xi+§(x.7xi),5_,:*—, (6)
d ! (bj 7¢i

where x, is the intersection point.
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When the XFEM/Level-set method is used to model a basic cell containing nearby inclusions, different
artefacts are observed [20]. The first one is artificial percolation. When the distance between two inclusions is
smaller than the local element size, or when a single element is cut by more than one interface, the level-set
method is not capable to describe accurately the local topology of the interfaces. It results in an artificial
connexion between two inclusions. The second one is due to the fact that when a single node is contained
between two interfaces, the kinematical fields cannot be reproduced accurately due to a lack of degrees of
freedom. The third one is the incapability of the level-set method to accurately describe nearby interfaces with a
single level-set function, when single nodes are contained between two interfaces. The consequences of these
issues are strongly oscillating and slow convergence of solution and of effective properties with respect to the
mesh size when applying linear homaogenization. The objective of this paper is to present a modified version of
the XFEM/level-set to avoid to aforementioned difficulties.

(@ 3.XFEM/multiple Level-sets method

This section presents a modified version of the level-set/ XFEM method where each inclusion interface is
described by a level-set function and is associated with an individual enrichment. In that framework the
approximation scheme is given by:

" (x) ZN T+ Y ZN JFE@ (x )t (7

keN,,., j=1

where n is the number of nodes of the element, m is the number of enriched nodes of the element, and N, is the
set of nodes whose support is cut by an interface. The functions ¥, (x) and ¥, (x) are the classical FEM shape

functions and F* (¢'(x)) is an enrichment function constructed via the level-set function ¢ of an individual inclusion
kwith boundary I'". The general form of level-set function ¢*is such as

I ={xeR’| $*(x) =0}. (8)

In the case of the signed distance, we obtain:

o (x):”x~xﬁ |sign (n*.(x-x. ) (9)

For a spherical (circular) inclusion, it yields:

¢ ()= ffe—xtf -}

Figure 3. Level-set function of four circular inclusions

Using (7) allows to represent several discontinuities in a single element. It also removes all the numerical

artefacts due by nearby inclusions.
@ 4.Numerical examples

The field equations of thermo-static problem are given by:

V-q(x)-r(x)=0 in Q, (11)

q(x) =—x)VT(x). (12)

Above, q(x) denotes the heat flux, »(x) is a heat source term and ¢(x) the thermal conductivity. Using
XFEM/Level-set or XSFEM/multiple level-set procedure, one finds the discrete system of linear ordinary equations:

KD=Q, D={T a}, (13)
where D are nodal unknowns and K and Q are the global stiffness matrix and external flux, respectively. More
precisely, the matrix K and vector Q are defined by

K= [B'c(xBdQ, Q= [ N'rQ, (14)
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where B and N are the matrices of shape function derivatives and shape functions associated with the
approximation scheme (4,7).

As the first example, we consider a basic cell of idealized concrete which contains 2024 spherical inclusions
having thermal conductivity ¢(x) = ¢, = 20w /mK embedded in a matrix of thermal conductivity «(x) = ¢,, = 0.9w /mK
(Figure 4). The phase fractions as well as the essential parameters of the geometries are reported in Table 1. We
assume the perfect interface between matrix and inclusions and small deformation. The microstructure of idealized
concrete is provided by French Electricity (Electricité de France - EDF)[15].

4.5

—o— XFEM/Level-set
4 —+— XFEM/Multiple Level-set

S
®-9—o0-6-0-0-o

15
DOF

a) b)
Figure 4. a) The basic cell contains 2024 spherical inclusions.
b) Effective thermal conductivity of the basic cell with XFEM/level-set and XFEM/multiple level-sets
We aim to compute the effective thermal conductivity ¢’ of the basic cell using both XFEM with single level-

set function and XFEM with multiple level-set functions. The results are reported in the Figure 4.b. These results
are obtained with help a super computer of 400GB RAM and 32 cores. For using the full computational power of
your machine, we code the program in MATLAB® with parallel technique to take advantage of multicore and
multiprocessor computers. It can be shown that the proposed approach converges faster than XFEM/single level-
set method does, as a function of the total number of DOF., by avoiding the artefacts. The method XFEM/multiple
level-sets seem to converge at 5.10° DOFS. While XFEM/single level-sets do not converge yet at the 5.10° DOFS.

The second example, 3200 spherical inclusions are embedded in a continuous matrix as depicted in
Figure 6.a. The information about microstructure are presented in the Table 1. We take the material parameter as
the same as in previous example. The obtained results are shown in Figure 5.b. Here again, proposed technique
converges faster than XFEM/single level-set method. Furthermore, Figure 4 and 5 show that the model
containing 3200 spherical inclusions

. : Table 1. Essential phase information about the microstructures.
have more inclusions, but have lower

frective th | conductivity th £ is the inclusion fraction, ¢, is the minimum diameter, ¢,,.. is the
effective thermal conductivity than one maximum diameter and d

of 2024 inclusions. This result came
from the fact that the volume fraction of . fi i Binax Ui

3200 inclusions is smaller than one of 2024 0.402 0.043 0.167 1.14x107°
2024 inclusions (see Table 1). 3200 0.361 0.036 0.125 2.17x107

min

is the minimum inter-inclusion distance

—0- XFEM/Level-set
—+— XFEM/Multiple Level-set

S
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b)
Figure 5. a) The basic cell contains 3200 spherical inclusions.
b) Effective thermal conductivity of the basic cell with XFEM/level-set and XFEM/multiple level-sets
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(@ 5.conclusions

We extended our previous work to treat thermal problem aiming at determining the effective conductivity
of concrete. The method allows to model the concretes with arbitrary inclusion shape by changing the form of
level-set function. However, the research in this paper is limited in the simple morphology of concretes which
contain only spherical inclusions. The concrete associated with complex inclusion shapes shall be the subject of
our future study. The code is built in MATLAB® with parallel technique which allows to execute on multicore and
multiprocessor of super computer. The big tests of idealized concrete containing 2024 inclusions and 3200
spherical inclusions embedded in continuous matrix have been carried out. XFEM/multiple level-set functions
always give a better convergence than XFEM/single level-set function especially in the case of complex
microstructure.
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