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Abstract

This paper presents the free vibration and critical buckling analyses of porous plates based on the first-order
shear deformation theory by the proposed three-node triangular element. The bending strain fields of the sug-
gested element are enriched by the bubble node located at the centroid of the triangular element. The shear-
locking phenomenon is eliminated by the independent interpolations of the transverse shear strains following
the MITC3+ technique. The edge-based smoothed (ES) strain method is employed to improve the in-plane strain
fields. The influence of the porosity distributions, length-to-thickness ratios, porous coefficient, and boundary
conditions on the free vibration and critical buckling load of the porous plates are evaluated through several
numerical examples by the proposed element, namely ES-MITC3+ element. The obtained results are compared
with other references to perform the efficiency of the proposed element.

Keywords: free vibration, buckling load; porous plate; first-order shear deformation; edge-based smoothed
strain; MITC3+.
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1. Introduction
Porous material has an interconnected network of pores and must be specifically designed to yield

the optimization of the material’s performance. They are usually all around us and have multiple uses
in different fields, including vibration damping, thermal insulation and sound absorption [1]. Foams
or porous materials with a cellular structure have many special combinations of mechanical and phys-
ical properties, such as low specific weight high stiffness, excellent sound and thermal insulators [2].
Therefore, structures that are made of porous materials or porous-cellular materials have increasingly
become popular in many fields, such as the civil engineering, automotive, aerospace industry and so
on because of their excellent characteristics [3, 4]. In recent years, many studies on porous materials
and related structures have been published.

A four-variable advanced plate theory was used by Barati et al. [5, 6] to investigate the natural
vibration and instability of plate structures made of functionally graded (FG) materials with porosity.
Wang and Zhang [7] studied the effects of three distinct porosity distributions throughout the thickness
on the deflections and critical loadings of foam graphene plates. Wang and Zu [8] used both analytical
and numerical techniques to analyze the nonlinear vibrations of functionally graded material plates
with porosity Based on classical plate theory, Tran et al. [9] used an analytical method to study the ge-
ometrically nonlinear buckling and post-buckling behaviors of metal foam plates. Magnucka-Blandzi
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[10] studied the critical buckling load of sandwich plates with a metal foam core, including the influ-
ence of porosity. Based on the first-order shear deformation theory (FSDT), Du et al. [11] investigated
the free vibration of metal foam rectangular plates with three different types of porosity distribution
along the thickness of the plates. Pham et al. [12] used a moving Kriging mesh-free method based on
the higher-order shear deformation theory (HSDT) to study the free vibration and mechanical buck-
ling of porous metal foam plates. The finite element method (FEM) was employed by Ebrahimi and
Habibi [13] to examine the deflection and vibration of porous rectangular plates. Rezaei et al. [14]
determined the natural frequencies of FG plates with porosities using the FSDT.

The literature mentioned above shows that numerous studies of plate structures made of porous
materials have been conducted in recent years. The research is quite in-depth and extensive, revolving
around many aspects related to the influence of the porosity coefficient, porosity distribution, and
boundary conditions on the behaviors of structures. However, such recent improvements of the FEM
as 3-node triangular elements [15] or smoothed FEM (SFEM) [16] have required further deep studies
about the ability of developing to plate structures. Chau-Dinh et al. [17–19] investigated the isotropic,
laminated composite or FG plates using the MITC3+ elements improved by employing the edge-based
smoothed strains (ES) approach.

The objective of this paper focuses on the SFEM, based on the FSDT and the MITC3+ element
[15] to develop a three-node triangular element plate for free vibration and critical buckling load
analyses of plates made of porous materials. The bubble node is used to enrich the displacement
approximations with a cubic shape function. This leads to the non-constant strain fields on each
element. Consequently, the strain fields of the discrete structure are smoother than those given by the
other conventional three-node triangular elements. The proposed ES-MITC3+ plate finite element can
be used to analyze both thick and thin plates by using the independent interpolations of the transverse
shear strains to remove the shear-locking phenomenon. In addition, the suggested ES-MITC3+ plate
element is also used to evaluate the influence of the length-to-thickness ratios, porosity coefficient,
and boundary conditions on the free natural frequencies and critical buckling load of the porous plates
with three different porosity distributions across the thick plate.

In the next section, the formula of the ES-MITC3+ plate finite element for the free vibration and
mechanical buckling analyses of porous plates is built. The proposed element’s convergence, accuracy,
and efficiency are presented in Section 3 through vibration and mechanical buckling analyses of
several porous plates. Finally, some essential conclusions will be drawn in the last section.

2. Formulation of the ES-MITC3+ plate element for the free vibration and buckling analyses
of porous plates

2.1. Three distinct types of porosity distributions
This work examines porous plates with three distinct porosity distribution types through the plate

thickness t, including the uniform distribution (Type I), symmetric distribution (Type II) and asym-
metric distribution (Type III) as illustrated in Fig. 1 The following expressions represent the variation
of the mass density ρ(z), shear modulus G(z), and Young’s modulus E(z) along the z-direction of the
plate thickness [11, 12].

- Type I: 

E(z) = E1 (1 − e0β)

G(z) = G1 (1 − e0β)

ρ(z) = ρ1
(
1 −

√
1 − e0β

)
β =

1
e0
−

1
e0

(
2
π

√
1 − e0 −

2
π

+ 1
)2

(1)
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(a) Uniform distribution (Type I) (b) Symmetric distribution (Type II) (c) Asymmetric distribution (Type III)

Figure 1. Three typical kinds of the porosity distribution

- Type II: 
E(z) = E1

[
1 − e0 cos

(
πz
t

)]
G(z) = G1

[
1 − e0 cos

(
πz
t

)]
ρ(z) = ρ1

[
1 − em cos

(
πz
t

)] (2)

- Type III: 

E(z) = E1

[
1 − e0 cos

π

2

(
z
t

+
1
2

)]
G(z) = G1

[
1 − e0 cos

π

2

(
z
t

+
1
2

)]
ρ(z) = ρ1

[
1 − em cos

π

2

(
z
t

+
1
2

)] (3)

where em and e0 denote the porosity density coefficient and porosity coefficient, respectively. In
addition, em can be computed by

em = 1 −
√

1 − e0 (4)

In this study, the Poisson’s ratio ν is assumed to be constant [20].

2.2. Displacement approximations and strain fields of the MITC3+ element based on the FSDT

The displacements of a porous plate are determined by utilizing the first-order shear deformation
theory as follows

u (x, y, z) = u0 (x, y) + zβx (x, y)
v (x, y, z) = v0 (x, y) + zβy (x, y)
w (x, y, z) = w0 (x, y)

(5)

where u0, v0, and w0 denote the displacements of the middle plane in the x, y, and z directions,
respectively; βx and βy represent the rotations of the middle plane about the y and x axes, respectively,
as shown in Fig. 2.

Discretizing the middle plane of the porous plate into three-node triangular elements. The dis-
placement fields of the middle plate are approximated by

u0 =

4∑
I=1

NIu0I; v0 =

4∑
I=1

NIv0I; w0 =

4∑
I=1

NIw0I; βx =

4∑
I=1

NIθyI; βy = −

4∑
I=1

NIθxI (6)

here, u0I , v0I , and w0I are respectively the translational displacements of node I along the x, y, and z
axes and notice that w04 = 0 to maintain the flat geometry of the element; θxI and θyI are the rotations
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Figure 2. The porous plate’s geometric characteristic symbols and coordinates

Figure 3. Positive signs of the degrees of freedom at the nodes of the three-node triangular element
with a bubble node

of node I about the x and y axes, respectively; the positive signs of the nodal displacements are defined
in Fig. 3; N I are the cubic bubble interpolation functions expressed in the natural coordinates (ξ, η) by

N1 = 1 − ξ − η − 9ξη (1 − ξ − η) ; N2 = ξ − 9ξη (1 − ξ − η)
N3 = η − 9ξη (1 − ξ − η) ; N4 = 27ξη (1 − ξ − η) (7)

From the displacement approximations in Eq. (6), the strain fields of the element are derived in
terms of the nodal displacements

ε =


εxx

εyy

γxy

 =


u0,x
v0,y

u0,y + v0,x

︸            ︷︷            ︸
εm

+z


βx,x

βy,y

βx,y + βy,x

︸            ︷︷            ︸
εb

=

4∑
I=1

BI
mdI︸    ︷︷    ︸

εm

+z
4∑

I=1

BI
bdI︸    ︷︷    ︸

εb

(8)

γ =

{
γxz

γyz

}
=

{
w0,x + βx

w0,y + βy

}
=

4∑
I=1

BI
sdI (9)

in which

BI
m =

 NI,x 0 0 0 0
0 NI,y 0 0 0

NI,y NI,x 0 0 0

 ; BI
b =

 0 0 0 0 NI,x

0 0 0 −NI,y 0
0 0 0 −NI,x NI,y

 (10)

BI
s =

[
0 0 NI,x 0 NI

0 0 NI,y −NI 0

]
(11)

with, dI =
[

u0I v0I w0I θxI θyI
]T

and w04 = 0.
Theoretically, as the thickness of the plate decreases, the transverse shear strains approach zero.

Nevertheless, because the displacements estimated in Eq. (6) employ the C0-type shape functions, the
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approximations of the transverse shear strains cannot reach zero. It is called the shear-locking phe-
nomenon. In this paper, the shear-locking phenomenon is eliminated by the independent interpolations
of the transverse shear strains following the MITC3+ technique [15] as follows

γ̂ξς =
2
3

(
γB
ξς −

1
2
γB
ης

)
+

1
3

(
γC
ξς + γC

ης

)
+

1
3

[(
γF
ξς − γ

D
ξς

)
−

(
γF
ης − γ

E
ης

)]
(3η − 1)

γ̂ης =
2
3

(
γA
ης −

1
2
γA
ξς

)
+

1
3

(
γC
ξς + γC

ης

)
+

1
3

[(
γF
ξς − γ

D
ξς

)
−

(
γF
ης − γ

E
ης

)]
(1 − 3ξ)

(12)

wherein γ(∗)
ξς , γ

(∗)
ης are the transverse shear strains in the natural coordinate system computed from

Eq. (9) at the tying points A, B, C, D, E and F defined in Fig. 4.

Figure 4. The tying points’ coordinates in the natural coordinate system [15]

The MITC3+ transverse shear strains in Eq. (12) are described in terms of the nodal displacements
by calculating the transverse shear strains in Eq. (9) at the tying points and substituting them into
Eq. (12). As a result, we have

γ̂s =

{
γ̂xz

γ̂yz

}
=

4∑
I=1

B̂I
sdI (13)

2.3. Formulation of the ES-MITC3+ element for the porous plates based on the FSDT
The strain fields in standard FEM are determined on each element from the displacement ap-

proximations. Therefore, the three-node triangular MITC3+ plate finite elements do not display in-
terelement continuity of the train fields. When the mesh is not adequately refined, the difference of
the strain fields between adjacent elements becomes larger. To reduce this significant difference, Liu
and Nguyen-Thoi [16] suggested the edge-based smoothed (ES) FEM to average the strain fields on
domains determined by elements sharing common edges.

In this work, the in-plane strain fields of the MITC3+ components are smoothed using the ES-
FEM to simulate the behavior of the porous plate employing FSDT-type theory. The in-plane strain
fields are averaged across the smoothing domain Ωs defined by the straight-line segments connecting
the centroids of two adjacent elements and the two nodes of the common edge, as shown in Fig. 5(a).

Therefore, the strain fields provided in Eq. (8) are smoothed by

ε̃m =
1
As

∫
Ωs

εmdΩ =
1
As

∫
Ωs

 4∑
I=1

BI
mdI

 dΩ =
1
As

4∑
I=1


∫
Ωs

BI
mdΩ

 dI

ε̃b =
1
As

∫
Ωs

εbdΩ =
1
As

∫
Ωs

 4∑
I=1

BI
bdI

 dΩ =
1
As

4∑
I=1


∫
Ωs

BI
bdΩ

 dI

(14)
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in which, As is the area of the edge-based smoothing domain Ωs.

(a) Ωs (b) n

Figure 5. The edge-based smoothing domains Ωs and vector n normal to the boundary Γs

of the smoothing domain Ωs

The surface integration of the gradient matrices in Eq. (14) is converted to the line integration
using the divergence theorem as follows∫

Ωs

NI,xdΩ =

∫
Γs

NInxdΓ;
∫
Ωs

NI,ydΩ =

∫
Γs

NInydΓ (15)

here, nx and ny are the components of the vector n normal the boundary Γs of the smoothing domain
Ωs as shown in Fig. 5(b).

The line integration in Eq. (15) is numerically evaluated by the two-point Gaussian quadrature
method on each straight segment of the boundary Γs. Therefore,∫

Γs

NInxdΓ =

Ned∑
ed=1

2∑
qp=1

Nqp
I Wqpned

x ;
∫
Γs

NInydΓ =

Ned∑
ed=1

2∑
qp=1

Nqp
I Wqpned

y (16)

where Ned is the number of segments of Γs and Nqp
I are the value of the shape function N I at the

Gaussian quadrature point qp with the associated weights Wqp.

Denote NIx =

Ned∑
ed=1

2∑
qp=1

Nqp
I Wqpned

x ; NIy =

Ned∑
ed=1

2∑
qp=1

Nqp
I Wqpned

y . We can express the surface inte-

grations in Eq. (15) in terms of N Ix and N Iy as

∫
Ωs

BI
mdΩ = B̃I

m =

 NIx 0 0 0 0
0 NIy 0 0 0

NIy NIx 0 0 0

 ;
∫
Ωs

BI
bdΩ = B̃I

b =

 0 0 0 0 NIx

0 0 0 −NIy 0
0 0 0 −NIx NIy

 (17)

Consequently, the relations between the smoothed strains and the nodal displacement in Eq. (14)
are rewritten as

ε̃m =
1
As

4∑
I=1

B̃I
mdI; ε̃b =

1
As

4∑
I=1

B̃I
bdI (18)

Following the standard finite element procedure, substituting the relations between the smoothed
strains and nodal displacements into the virtual work principle the discretized equations of the plate
element Ωe can be described as follows

med̈e +
(
ke − kg

)
de = 0 (19)
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in which, de is the element nodal displacements; me, ke and kg are respectively the mass, stiffness,
and geometric matrices of the ES-MITC3+ element determined by

mIJ
e =

∫
Ωe

(
NI

)T
mNJdΩ (20)

kIJ
e =

∫
Ωe

(
B̃I

m

)T
AB̃J

mdΩ +

∫
Ωe

(
B̃I

b

)T
BB̃J

mdΩ +

∫
Ωe

(
B̃I

m

)T
BB̃J

bdΩ

+

∫
Ωe

(
B̃I

b

)T
DB̃J

bdΩ +

∫
Ωe

(
B̂I

s

)T
DsB̂

J
s dΩ

(21)

kIJ
g =

∫
Ωe

(
BI

g

)T
N0BJ

gdΩ (22)

with

m =


I0 0 0 I1 0
0 I0 0 0 I1
0 0 I0 0 0
I1 0 0 I2 0
0 I1 0 0 I2


and (I0, I1, I2) =

t
2∫

− t
2

ρ (z)
(
1, z, z2

)
dz (23)

NI =


NI 0 0 0 0
0 NI 0 0 0
0 0 NI 0 0
0 0 0 NI 0
0 0 0 0 NI


(24)

A = ν̄1

t
2∫

− t
2

E (z)dz; B = ν̄1

t
2∫

− t
2

E (z) zdz; D = ν̄1

t
2∫

− t
2

E (z)z2dz (25)

Ds =
5
6

t2

t2 + αh2
e
ν̄2

t
2∫

− t
2

E (z)dz (26)

and

ν̄1 =



1
1 − ν2

ν

1 − ν2 0
ν

1 − ν2

1
1 − ν2 0

0 0
1 − ν

2
(
1 − ν2)


; ν̄2 =


1

2 (1 + ν)
0

0
1

2 (1 + ν)

 (27)

BI
g =



NI,x 0 0 0 0
NI,y 0 0 0 0
0 NI,x 0 0 0
0 NI,y 0 0 0
0 0 NI,x 0 0
0 0 NI,y 0 0


; N0 =



Nx Nxy 0 0 0 0
Nxy Ny 0 0 0 0
0 0 Nx Nxy 0 0
0 0 Nxy Ny 0 0
0 0 0 0 Nx Nxy

0 0 0 0 Nxy Ny


(28)
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In this study, the constitutive matrix of the transverse shear strains in Eq. (26) is stabilized by the
modification factor in which he is the longest length of the element’s edges and α = 0.1 [21].

The natural frequenciesω and mode shape φ of the plate’s free vibration are determined by solving
the following equations (

K − ω2M
)
φ = 0 (29)

For mechanical buckling analyses, the critical buckling load factor λ is obtained by the below
equations (

K − λKg
)

d = 0 (30)

where M, K, and Kg are respectively the global mass, stiffness and geometric matrices of the plate
assembled from the mass, stiffness, and geometric matrices of the ES-MITC3+ elements given in
Eqs. (20), (21), (22).

3. Numerical results
In this section, the proposed ES-MITC3+ finite element will be used to analyze free vibration and

buckling responses of several square plates made of the three different kinds of porosity distributions.
The obtained results are compared with other references to evaluate the efficiency of the proposed
element The boundary conditions of plate are investigated as follows:

- CCCC designates the clamped condition on all edges.
- SSSS refers to the simply supported condition on all edges.
- SCSS indicates the clamped condition on one edge and the simply supported ones on the

other edges.

3.1. Free vibration analysis
a. Porous metal foam square plate

The first numerical example focuses on a porous metal foam square plate. The plate has the length
of edges a and thickness t as shown in Fig. 6. The material properties are E1 = 200 GPa, ν = 0.33, ρ1
= 7850 kg/m3.

(a) CCCC (b) SSSS

Figure 6. Geometry of the square plates with the (a) CCCC and (b) SSSS boundaries;
and the regularly triangular meshes with N = 8

To investigate the convergence rate of the ES-MITC3+ plate element when used to determine
the free vibration of the plate under different boundary conditions, including the CCCC and SSSS
boundaries the regular meshes of N = 8, 12, 20, and 24 in which N is the number of elements on each
edge are employed. Fig. 6 demonstrates the mesh of N = 8. In this example, the normalized natural
frequency Ω = 100ωt (ρ1/E1)1/2 for the five lowest modes of the plate is considered.
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(a) SSSS (b) CCCC

Figure 7. The five lowest normalized natural frequencies of the symmetric porous metal foam square plate
when element sizes in the mesh decrease (a/t = 50, e0 = 0.1)

The five lowest normalized frequencies of the symmetric porous plate given by the ES-MITC3+
element versus the various element sizes are plotted in Fig. 7(a) and Fig. 7(b) for the SSSS and
CCCC boundary conditions, respectively. The results well converge to those of Pham et al. [12] when
increasing the number of element on each edge. The best natural frequencies provided by the ES-
MITC3+ element yield when the mesh of N = 24 is used. With the mesh of N = 24, the three lowest
normalized frequencies of the metal foam square plates made of varying porosity distribution types
given by the ES-MITC3+ elements are presented in Table 1 and Table 2. In comparison with Pham et
al. [12], the obtained results are in excellent agreement.

Table 1. Three lowest normalized natural frequencies of the porous metal foam square plate with the SSSS
boundary condition on the edges (a/t =10, e0 = 0.1)

Type Mode Pham et al. [12] ES-MITC3+ % Relative error

Type I 1 5.7276 5.6940 0.59
2 13.6513 13.7288 0.57
3 13.6566 13.7569 0.73

Type II 1 5.8051 5.7340 1.22
2 13.8138 13.6943 0.87
3 13.8191 13.7239 0.69

Type III 1 5.7421 5.6698 1.26
2 13.6821 13.5531 0.94
3 13.6874 13.5824 0.77
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Table 2. Three lowest normalized natural frequencies of the porous metal foam square plate with the CCCC
boundary condition on the edges (a/t =10, e0 = 0.1)

Type Mode Pham et al. [12] ES-MITC3+ % Relative error

Type I 1 9.7405 9.7096 0.32
2 18.5511 18.6849 0.72
3 18.6119 18.7342 0.66

Type II 1 9.8482 9.7625 0.87
2 18.7193 18.6159 0.55
3 18.7804 18.6706 0.58

Type III 1 9.7611 9.6662 0.97
2 18.5839 18.4536 0.70
3 18.6447 18.5078 0.73

b. Porous-cellular aluminum square plate

The frequency analysis of a cellular aluminum square plate of the edge a and thickness t with
asymmetric porosity distribution is presented in this example. The material properties of the plates
are G1 = 26.923 GPa, ν = 0.3, E1 = 2G1 (1 + ν) and ρ1 = 2707 kg/m3. The normalized natural
frequency of the plate is computed by $ = ωt (ρ1/E1)1/2.

(a) e0 = 0.1 (b) e0 = 0.3

Figure 8. Influence of thickness-to-length ratios on the first normalized frequency of the simply supported
cellular aluminum square plate with asymmetric porosity distribution

The first normalized frequencies of the SSSS cellular aluminum square plates with asymmetric
porosity distribution provided by the ES-MITC3+ element using the mesh of N = 24 are demonstrated
in Fig. 8. With the thickness-to-length ratios ranging from 0.1 to 0.4 and the porosity coefficients of
0.1 and 0.3, the results obtained by the ES-MITC3+ element are similar to those of Rezaei and Saidi
[22] and better than those of Pham et al. [23]. The influence of the thickness-to-length ratios and
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porous coefficients on the first normalized frequency of the asymmetric porous cellular aluminum
square plate with the SSSS and SCSS boundary conditions is shown in Fig. 9. The thicker the plate
is, the lower the natural frequency is when the porous coefficients increase. Fig. 9 also shows the
accuracy of the proposed ES-MITC3+ element in comparison with Rezaei and Saidi [22].

(a) SSSS (b) SCSS

Figure 9. First normalized frequency of the asymmetric porous cellular aluminum square plate having the
various boundary conditions, porosity coefficients and thickness-to-length ratios

c. Square metal foam plate with a circular hole

A square plate has the length of edges a = 1, thickness t and contains a circular hole with the
diameter d = 0.5 as shown in Fig. 10. All edges of the plate are clamped or simply supported. The
plate is made of porous foam material with different porosity distributions. The material properties
are E1 = 200 GPa, ν = 0.33 and ρ1 = 7850 kg/m3. To compare with reference solutions [12], the
normalized natural frequencies of the plate are defined by Ω = 100ωt (ρ1/E1)1/2.

(a) SSSS (b) CCCC

Figure 10. Geometry of the (a) SSSS and (b) CCCC plates with a circular hole and meshes with N = 8

The plate is discretized by triangular meshes with the number of elements on each edge N =
8, 12, 16, 20 and 24. Fig. 10 shows the mesh with N = 8. Fig. 11 compares the first normalized
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frequency of the metal foam plate with a/t = 10 and uniformly distributed porosity e0 = 0.1 obtained
by the proposed ES-MITC3+ element and the other three-node triangular MITC3 and ES-MITC3
elements when using different meshes. It shows the enhancement of the ES-MITC3+ element over the
MITC3 and ES-MITC3 elements in comparison with Pham et al. [12] because of the displacement
approximation enriched by the cubic shape function at the bubble node.

(a) SSSS (b) CCCC

Figure 11. Convergence of the first normalized frequency of the square plate with a circular hole made of
uniformly porous distributed metal foam (a/t = 10, e0 = 0.1) given by various three-node triangular elements

when increasing the number of elements on each edge N

(a) SSSS (b) CCCC

Figure 12. The five lowest normalized natural frequencies of the porous metal foam square plate with a
circular hole corresponding to uniform porosity distribution when decreasing element sizes in the mesh

(a/t = 10, e0 = 0.1)

When using the gradually dense meshes, the five lowest normalized frequencies Ω of the uni-
formly distributed porous metal foam square plate given by the ES-MITC3+ element converge to the
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reference results [12] as plotted in Fig. 12. Employing the convergent mesh of N = 24, the three lowest
normalized frequencies of the square plate with the circular hole provided by the ES-MITC3+ ele-
ment for the different types of the porosity distributions with the coefficients e0 = 0.1 and 0.2, and
the length-to-thickness ratios a/t = 10 and 30 are presented in Table 3, Table 4 for the SSSS boundary
conditions and in Table 5, Table 6 for the CCCC boundary conditions. The results in tables indicate
the accuracy of the suggested ES-MITC3+ element in comparison with the reference [12].
Table 3. The three lowest normalized natural frequencies of the SSSS porous metal foam square plate with a

circular hole having varied porosity distributions, coefficients, and length-to-thickness ratio a/t = 10

Type Mode

Porosity coefficient of plate e0

0.1 0.2

Pham et al. [12] ES-MITC3+ Pham et al. [12] ES-MITC3+

Type I 1 6.4059 6.4114 (0.09%) 6.2905 6.1864 (1.65%)
2 11.1537 11.1878 (0.31%) 10.9528 10.8355 (1.07%)
3 11.1545 11.1970 (0.38%) 10.9535 10.8445 (1%)

Type II 1 6.4947 6.3991 (1.47%) 6.4806 6.2839 (3.04%)
2 11.2808 11.1416 (1.23%) 11.2242 10.9630 (2.33%)
3 11.2816 11.1506 (1.16%) 11.2250 10.9719 (2.25%)

Type III 1 6.4225 6.3266 (1.49%) 6.3227 6.1286 (3.07%)
2 11.1778 11.0293 (1.33%) 11.0002 10.7207 (2.54%)
3 11.1786 11.0382 (1.26%) 11.0010 10.7294 (2.47%)

Table 4. The three lowest normalized natural frequencies of the SSSS porous metal foam square plate with a
circular hole having varied porosity distributions, coefficients, and length-to-thickness ratio a/t = 30

Type Mode

Porosity coefficient of plate e0

0.1 0.2

Pham et al. [12] ES-MITC3+ Pham et al. [12] ES-MITC3+

Type I 1 0.7354 0.7238 (1.58%) 0.7222 0.6980 (3.35%)
2 1.3753 1.3398 (2.58%) 1.3505 1.2934 (4.23%)
3 1.3769 1.3408 (2.62%) 1.3521 1.2944 (4.27%)

Type II 1 0.7463 0.7331 (1.77%) 0.7454 0.7193 (3.5%)
2 1.3946 1.3562 (2.75%) 1.3917 1.3314 (4.33%)
3 1.3961 1.3572 (2.79%) 1.3932 1.3324 (4.36%)

Type III 1 0.7375 0.7244 (1.78%) 0.7261 0.7008 (3.48%)
2 1.3789 1.3406 (2.78%) 1.3575 1.2981 (4.38%)
3 1.3805 1.3416 (2.82%) 1.3591 1.2991 (4.41%)
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Table 5. The three lowest normalized natural frequencies of the CCCC porous metal foam square plate with a
circular hole having varied porosity distributions, coefficients, and length-to-thickness ratio a/t = 10

Type Mode
0.1 0.2

Pham et al. [12] ES-MITC3+ Pham et al. [12] ES-MITC3+

Type I 1 14.6715 14.7269 (0.38%) 14.4072 14.2908 (0.81%)
2 17.6638 17.7442 (0.46%) 17.3456 17.2518 (0.54%)
3 17.7019 17.7608 (0.33%) 17.3830 17.2680 (0.66%)

Type II 1 14.8251 14.6471 (1.2%) 14.7346 14.4261 (2.09%)
2 17.8274 17.6364 (1.07%) 17.6939 17.3875 (1.73%)
3 17.8660 17.6526 (1.19%) 17.7325 17.4036 (1.85%)

Type III 1 14.7009 14.5081 (1.31%) 14.4655 14.1249 (2.35%)
2 17.6955 17.4800 (1.22%) 17.4091 17.0474 (2.08%)
3 17.7337 17.4961 (1.34%) 17.4468 17.0632 (2.2%)

Table 6. The three lowest normalized natural frequencies of the CCCC porous metal foam square plate with a
circular hole having varied porosity distributions, coefficients, and length-to-thickness ratio a/t = 30

Type Mode

Porosity coefficient of plate e0

0.1 0.2

Pham et al. [12] ES-MITC3+ Pham et al. [12] ES-MITC3+

Type I 1 1.8366 1.8003 (1.98%) 1.8035 1.7380 (3.63%)
2 2.3088 2.2463 (2.71%) 2.2672 2.1702 (4.28%)
3 2.3145 2.2486 (2.85%) 2.2728 2.1723 (4.42%)

Type II 1 1.8625 1.8213 (2.21%) 1.8591 1.7881 (3.82%)
2 2.3401 2.2716 (2.93%) 2.3343 2.2311 (4.42%)
3 2.3459 2.2738 (3.07%) 2.3401 2.2333 (4.57%)

Type III 1 1.8414 1.8004 (2.23%) 1.8129 1.7434 (3.83%)
2 2.3147 2.2461 (2.96%) 2.2786 2.1765 (4.48%)
3 2.3204 2.2483 (3.11%) 2.2843 2.1786 (4.63%)

In addition, Fig. 13 illustrates the first three mode shapes of the SSSS square plate a/t = 30 with
a circular hole having the asymmetric porosity distribution e0 = 0.1.

(a) Mode 1 (b) Mode 2 (c) Mode 3

Figure 13. The lowest three mode shapes of the SSSS asymmetrically porous metal foam square plate
with a circular hole (a/t = 30, e0 = 0.1)
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3.2. Buckling analysis

Consider a SSSS square plate subjected to uniaxial or biaxial compressions. The plate has the
edge a, thickness t and is made of the porous metal foam with the material properties E1 = 200 MPa
and ν = 0.33. To compare with the references, the critical buckling load Ncr of the plate is normalized
by Ncr = Ncra2/

(
E1t3

)
.

(a) Type I (b) Type III

Figure 14. Critical buckling loads of the SSSS metal foam square plate with a/t = 10 under uniaxial and
biaxial compressions

(a) Uniaxial compression (b) Biaxial compression

Figure 15. Normalized critical buckling load of the SSSS metal foam square plate subjected to (a) uniaxial and
(b) biaxial compressions in cases of e0 = 0.2 and various length-to-thickness ratios a/t
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The plate is discretized by the regular mesh of N = 24. For the a/t = 10, the effect of the porosity
coefficient e0 on the buckling load of the plate under uniaxial and biaxial compressions given by the
ES-MITC3+ element is demonstrated in Fig. 14(a) and Fig. 14(b) for the porous distributions of Type I
and Type III, respectively. In both cases of the uniform and asymmetric porosity distributions, Fig. 14
shows that the normalized critical buckling load closely matches to that provided by the reference
solution [12].

With the porous coefficient e0 = 0.2, the influence of the length-to-thickness ratios on the normal-
ized critical buckling load of the SSSS metal foam plates having the porosity distributions of Type I,
II, III is displayed in Fig. 15(a) and Fig. 15(b) for the uniaxial and biaxial compressions, respectively.
Fig. 15(b) indicates the good agreement between the results given by the proposed element and the
reference solution [12] for all kinds of the porosity distributions. In both cases of buckling, the critical
buckling load values are greatest for the symmetric porous distribution and smallest for the uniform
porous distribution.

(a) Uniaxial compression – Type I: Ncr = 3.0546 (b) Uniaxial compression – Type III: Ncr = 3.0880

(c) Biaxial compression – Type I: Ncr = 1.5273 (d) Biaxial compression – Type III: Ncr = 1.5440

Figure 16. Mode shape of the buckling load of the SSSS porous metal foam square plate subjected to uniaxial
and biaxial compressions with the Type I and Type III porosity distribution in cases of e0 = 0.2 and a/t = 10

Furthermore, Fig. 16 shows the mode shape resulting from the buckling load of the SSSS porous
metal foam square plate under uniaxial and biaxial compressions in the cases of both uniform (Type I)
and asymmetric (Type III) porosity distribution.

4. Conclusions
The study has developed a three-node triangular plate element with the five degrees of freedom

per node for the frequency and buckling analysis of porous plates. The displacement approximations
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of the proposed element are enriched by the cubic shape function corresponding to the bubble node
located at the element centroid. The edge-based smoothed strain method is employed to improve the
in-plane strain fields. By using the MITC3+ technique the shear-locking phenomena is eliminated.
Based on the first-order shear deformation theory, the ability of the suggested ES-MITC3+ plate
element to analyze the frequencies and buckling is evaluated through several plates having different
porosity distributions and boundary conditions. Numerical results have shown that the accuracy and
convergence of the ES-MITC3+ element well agree with those of reference solutions.
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