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Abstract

This work aims to study the crack pattern in masonry-like structures by a simplified description of the medium
using a variational damage model. In literature, when modeling fractures in masonry structures, capturing
both fracture types, cracks in units, and cracks at the interface simultaneously, usually requires a complicated
scheme. The phase-field method has been widely used recently because of its robustness in capturing various
fracture types. In this work, we consider the mortar and the interface (between the mortar and units) as a thick
interface layer with pseudo-material properties. We conduct numerical tests on a bending beam and a tensile
wall using strategies of material properties with a phase field model. As it is not distinguished the crack in the
mortar and the brick-mortar interface, it is shown in this work that both types of fracture, in the thick interface
layer and the unit, can be captured just using the phase field method and the simplified micro model.
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1. Introduction
Masonry is one of the oldest construction structures. While advances have been made in building

materials to enhance their properties, the fundamental components of masonry remain unchanged,
primarily consisting of two main ingredients: units and mortar. For units, the elastic and fracture
properties can vary since they can be made of clay, concrete, stone, or other innovative materials.
Damage in this structure may result from external loads, especially lateral loads such as earthquakes
(see [1]), material shrinkage, and boundary inhomogeneities. Although masonry structures are not
commonly employed as load-bearing components in modern construction, they remain valuable in
many urban areas where high-rise buildings are less prevalent, and structures made from local mate-
rials are favored. Moreover, the preservation of many historic structures necessitates an understanding
and prediction of the behavior of masonry works.

Recent progress in modeling damage in masonry structures can be classified into three groups
as shown in Fig. 1(a)-(c): (1) macro modeling, where masonry units and mortar phases are consid-
ered homogeneous using homogenization techniques [2–5]; (2) micro-modeling [6, 7] with distinct
elements and constitutive laws for the masonry units, mortar joints, and interfaces between units and
mortar; (3) simplified micro-models [8, 9] where structures are composed of blocks and interfaces
between blocks only. While the micro model can lead to difficulties in tracking geometry, the macro
model homogenizes the medium and cannot capture the zig-zag cracks in this type of structure. The
simplified micro model in the literature usually examines the interaction between individual units and
require tracking geometry during computation. To reduce this burden for simulation, this work sug-
gests a simplified model where the interface and the mortar are treated as a thick interface layer as in
Fig. 1(c).
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(a) Macro model (b) Micro model (c) simplified micro models

Figure 1. Modeling of masonry medium: (a) homogenized medium with 1 phase description; (b) micro model
with 3 phase description and (c) simplified description with 2 phases: thin interface [8, 9] and thick interface

(mortar-interface) in this work

Modeling the propagation of cracks in heterogeneous mediums is not a straightforward task due
to inherent nonlinearity. In many structures, material uncertainties can lead to varying results, and
accurately predicting post-peak behavior is rare. For heterogeneous materials, damage models offer
advantages over discrete models, as seen in [10]. Utilizing continuum theory, damage models employ
one or several damage variables in constitutive formulas to describe material degradation. As no node
or element is embedded, the medium remains continuous, and cracks cannot be sharp and separate.
However, cracks can simultaneously initiate at multiple positions in the object without any predefined
path.

Recently, phase field models [11–13] have been widely used in crack studies for several reasons:
they are thermodynamically consistent, damage laws can be ignored, and there are no broadening dis-
continuities as other damage models. Nevertheless, when applied to modeling a structure, significant
computational efforts may be required. Additionally, although there are formulas to select an internal
length associated with all damage models for satisfactory stress-strain relations, the results may lead
to an unsuitable mesh size. Wu et al. [14] treated the internal length as a geometric parameter only, re-
quiring a cohesive law, and the medium is not purely continuous. This study does not aim to solve the
mentioned problem but examines masonry-like structures as a continuous medium for crack tracking
using the phase field method.

Since the simplified descriptions in the literature, where blocks are usually expanded to the center
of mortar, lead to difficulties tracking interfaces, this study suggests using the mortar phase as a
thick interface with modified material parameters. The ability of the phase field model to capture a
variety of crack patterns when material properties change will be discussed. The next section briefly
reviews a phase field model, followed by Section 3 detailing numerical implementation. Section 4
shows numerical examples and discusses the results. The last section includes conclusions and some
remarks.

2. Phase field model for crack tracking
2.1. Energy formula

In this section, a variational approach to the fracture will be introduced. Considering a cracked
body in a domain Ω ⊂ R3 containing sharp cracks denoted as Γ, the internal energy formula by
Frankford and Marigo [15] can be rewritten as:

Eint =

∫
Ω

Ψ(ε,Γ)dΩ + gc

∫
Γ

dΓ (1)

where Ψ(ε,Γ) is the elastic strain density function, gc is the critical energy release rate of materials.
In the right part of (1), the first term is called elastic energy and the second term is considered as the
dissipated energy. As the crack is unknown, computing the latter is a cumbersome task. To overcome
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Figure 2. A domain with a sharp crack (a) and a smear crack(b)

this difficulty, Bourdin et al. in [16] has proposed a smeared representation of a sharp crack. The total
internal energy is now rewritten as

Eint =

∫
Ω

Ψ(ε, s)dΩ + gc

∫
Ω

γ(s,∇s)dΩ (2)

where γ is a crack density function which can be chosen among several possible forms. In this regu-
larized framework, the crack is described by a smooth field s(x) ranging from 0 to 1, which represents
the intact state to the total damaged state respectively. A popular form for the crack density function is:

γ(s,∇s) =
1
c

[
ω(s)
`

+ `∇s · ∇s
]

(3)

where ` is called the regularized length. This parameter controls the transition zone shapes and is
interpreted as a material parameter [11, 12] or a geometry parameter in some other phase field models.
A family of crack density functions can be used in (3) written as ω(s) = ξs + (1 − ξ)s2. For the
simplicity, ξ = 0 and c = 2 herein, which yields to:

δγ(s,∇s) =
sδs
`

+ `∇s · ∇δs (4)

The total energy of the system is written as:

Etotal = Eint + Eext (5)

where
Eext = −

∫
Ω

b · udΩ −

∫
∂Ω

f∗ · ud∂Ω (6)

In the absence of the body force, the weak form of (5) is derived as:

δEtotal =

∫
Ω

(
∂Ψ

∂ε
: ε +

∂Ψ

∂s
δs

)
dΩ + gc

∫
Ω

δγ(s,∇s)δdΩ −

∫
∂Ω

f∗δud∂Ω (7)

To eliminate the appearance of an unphysical crack in the compression zone, the elastic energy
density function is separated into a positive part Ψ+ and a negative part Ψ− with a degradation function
enters the formula and affects the positive part only:

Ψ(ε, s) = g(s)Ψ+(ε) + Ψ−(ε) (8)
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It is necessary that the degradation function should monolithically increase from 0 to 1 as the
damage field vary from the damage state to the intact state while the function should reach the sta-
tionary point when the totally fracture occurs. This results in g(1) = 0; g(0) = 1; g′(1) = 0. A popular
choice of degradation function is adopted in this work:

g(s) = (1 − s)2 (9)

In implementation, to avoid singularity a small k parameter will enter (9) and the g(s) = (1−s)2+k.
Though, k is not mandatory in all the cases, in this study, it equals 1× 10−6. For an isotropic medium,
Miehe proposed to compute the positive and the negative part of elastic energy density using spectral
decomposition:

Ψ±(ε) = λ(〈Tr(ε)〉±)2/2 + µTr{(ε±)2} (10)

where

ε± =

n∑
i=1

〈Tr(ε)〉±vi ⊗ vi (11)

in which, vi are the eigenvectors of the strain tensor ε.
For implementation, the damage field and the displacement field will be solved separately in a

staggered scheme by using the Legendre transformation:

DδsEtotal = 0, and DδuEtotal = 0 (12)

where

Dδv f (u) =

{
f

dα
( f (u + αδv))

}
α=0

(13)

2.2. The mechanical problem∫
Ω

∂Ψ

∂ε
(ε, s) : ε(δu)dΩ −

∫
∂ΩF

f∗ · δudΓ = 0 (14)

where
∂Ψ

∂ε
(ε, s) = σ (15)

The strong-form associated with Eq. (11) is written as:
∇ · σ = 0 in Ω

σ.n = f∗ on ∂Ω f

u = u∗ on ∂Ωu

(16)

where n is the outward normal to the boundary.

2.3. The phase field problem
Minimizing (5) according to s leads to:∫

Ω

∂Ψ

∂s
δsdΩ + gc

∫
Ω

δγ(s,∇s)dΩ = 0 (17)

or ∫
Ω

{
∂Ψ

∂s
δs + gc

( sδs
`

+ `∇s · ∇(δs)
)}

dΩ = 0 (18)

51



Nhu, N. T. H., Binh, T. A. / Journal of Science and Technology in Civil Engineering

with regarding (10) and (11), leading to∫
Ω

{(
−2(1 − s)

[
Ψ+] +

gc

`
s
)
δs + `gc∇s · ∇(δs)

}
dΩ = 0 (19)

or ∫
Ω

(
2
[
Ψ+] +

gc

`

)
sδs + gc`∇s · ∇(δs)dΩ =

∫
Ω

2
[
Ψ+] δsdΩ (20)

Using the divergence theorem∫
Ω

gc`∇s · ∇(δs)dΩ =

∫
∂Ω

gc`δs∇s · ndΓ −

∫
Ω

gc`∆s δsdΩ (21)

(18) becomes ∫
Ω

(
2
[
Ψ+] +

gc

`

)
sδs − lgc ∆sδsdΩ =

∫
Ω

2
[
Ψ+] δsdΩ (22)

which is the weak form of the following strong form:
(
2
[
Ψ+] +

gc

`

)
s − `gc∆s = 2

[
Ψ+]

∇s · n = 0 on ∂Ω,

s = 1 on Γ

(23)

where ∆s denotes the Laplacian operator. Enforcing the irreversibility condition using a history func-
tionH has been introduced by Miehe [12] to substitutes to handle loading and unloading and defined
as:

H(x, t) = max
τ∈[0,t]

{
Ψ+ (x, t)

}
(24)

which leads to: (
2H +

gc

`

)
s − `gc∆s = 2H , ∇s · n = 0 on ∂ΩG, s = 1 on Γ (25)

3. Numerical implementation
We denote as the relative error, calculated by

R (a1, a) =

√
(a1−a) × (a1−a)
√

a × a
(26)

The Quasi-Newton method will be utilized for the staggered scheme of the coupled problem. The
discretized form of displacement field and damage field is written as: u(x) = Nuu; δu(x) = Buu and
s(x) = Nss; δs(x) = Bss, where N and B is the matrix of shape functions and its derivatives.

4. Numerical tests
In this section, numerical tests will be presented using the simplified model where fracture pa-

rameters of the mortar-interface are pseudo. This thick interface has the thickness of the mortar as in
Fig. 1(c)). It should be noted that, according to this approach, the interface combines with the mor-
tar to form a new phase. Consequently, the properties of this phase no longer correspond to those
of mortar in experiments. The units in masonry structures can be isotropic or anisotropic depending
on factors such as shape (with or without holes) or material composition (concrete block, clay brick,
etc.). Herein, it is assumed that the unit phase is isotropic. For the case of anisotropic material, other
phase field models can be employed to investigate. Plane stress is assumed in the following tests.
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Figure 3. Solving the phase field coupling with mechanics problem using quasi-Newton method

4.1. Bending beam tests
We first study crack patterns of a masonry beam whose structures are similar as the three-point

bending test in [14, 17]. The elastic properties of units (bricks) are picked up from [14], while those of
the mortar-interface are assumed and to be interpreted as pseudo. The beam is composed of 230 mm
× 76 mm × 110 mm bricks. The thickness of the mortar-interface layer is 10 mm. As we consider if
the crack pattern changes when the correlation of materials properties varies, the result will not be
compared with that of experiments in [17]. The size total geometry of the test is depicted in Fig. 4(a)).
Discretization of the beam employs 85,707 triangle elements of the size h = 2 mm (� 0.5l) in the
middle zone where cracks are predicted to appear and of the size 5 mm for other regions. Three
cases of materials (B1, B2, B3) are examined (see Table 1). The load is applied by controlling the
displacement field at the midpoint on the upper edge of the beam. The internal length equals the
thickness of the mortar in all the bending tests.

Table 1. Properties of materials in 3-point bending tests

Test Eb (Mpa) Em/Eb vb = vm gcb (N/mm) gcm/gcb Internal length l (mm)

B1 3360 1 0.15 0.06 0.1 10
B2 3360 1 0.15 0.06 0.5 10
B3 3360 0.5 0.15 0.06 0.5 10
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(a) Geometry of there bending tests B1, B2, B3

(b) The mesh

Figure 4. Geometry of the test: (a) the structure and the geometry of the beam, the size is in mm and (b) the
discretization using finer mesh is applied in the middle zone of the beam where cracks is predicted to appear

(a) Damage field s (b) Zoom-in of damage zone A in (a)

(c) F-CMOD (d) Propagation of cracks

Figure 5. B1 test: (a) from top to bottom: evolution of damage field s, (s = 1 indicates totally damaged);
(b) a closed look of damage field (crack pattern) at the end of the simulation; (c) the red arrows

at the middle bottom show the initial cracks and, (d) the corresponding F-CMOD curve
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In test B1 and B2, 250 load steps have been applied. The load increment ∆u is 2 × 10−4 mm
for the first 100 steps and 1 × 10−4 mm for the 150 following steps. As the analysis is quasi-static,
the load step relates to the convergence of the nonlinear problem only. The fracture toughness of the
mortar-interface is 10 times smaller than that of the units (gcm/gcb = 0.1) in test B1 while it is a
half of the units in B2 test (gcm/gcb = 0.5). Fig. 5(a) shows the crack field s of the beam from the
onset to the end of the simulation (top to bottom) for test B1. When the fracture toughness of the
mortar-interface is extremely weaker (B1), the crack initiates at the middle bottom and then branches
along this phase, see Fig. 5(b) for a closer look. The direction of cracks is shown in Fig. 5(d) where
cracks penetrate units in the third layer from the bottom. The behavior of F-CMOD curve in Fig. 5(c)
reflects a complicated post-peak behavior of the test. Meanwhile, in B2, where the mortar is harder
in comparison with B1, after appearing in the mortar-interface phase at the middle bottom, the crack
penetrates the unit phase and finally forming a straight crack at the end of simulation as can be seen
in Fig. 6(a). It can be observed that when crack evolution straightly to the top, the F-CMOD curve
show a smooth degradation.

For test B3, the load increment ∆u is 5 × 10−4 mm for the first 50 steps and 2 × 10−4 mm for 250
the following steps. In this test, both the fracture and elastic properties of the mortar-interface are half
of those of the units. As shown in the top image of Fig. 6(a), cracks initiate in the same positions as in
B1 and B2. However, after branching, a new crack starts in the brick phases and two other cracks start
in the mortar-interface separately in the second bottom layer of the beam. It is observed that multiple
cracks can be captured, they propagate and connect each other to produce a complex crack in the
middle zone of the beam. The load-crack mouth opening displacement (F-CMOD) relation is plotted
in Fig. 6(c) shows a double-pick curve. In smeared modes, the CMOD cannot be measured directly
but through the displacement of the two lowest points on the left and the right of the beam. Note that,
B3 shares the same fracture toughness of material with B2 but using low-strength units.

The results of these tests show that: both elastic properties and fracture toughness significantly
affect the propagation of cracks in masonry. The correlation of the stiffness between materials can
create a diversity of crack mechanisms

(a) Damage field s (b) F-CMOD

Figure 6. B2 test: (a) from top to bottom: damage field s from the initiation to the end of simulation,
and (b) corresponding F-CMOD curve
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(a) Damage field s

(b) Zoom-in of Damage zone B in (a)

(c) F-CMOD

(d) Propagation of cracks

Figure 7. B1 test: (a) from top to bottom: evolution of damage field s, (s = 1 indicates totally damaged); (b) a
closed look of damage field (crack pattern) at the end of the simulation; (c) the F-CMOD relation is a double

peak curve; (d) the red arrows at the middle bottom show the initial cracks

4.2. Tensile tests

Figure 8. Geometry and configuration of tensile
tests (the dimension is in millimet)

Considering a wall of size 505 mm × 495 mm
as depicted in Fig. 8, which comprises four lay-
ers of units measuring 240 mm × 115 mm × 110
mm each. We adopt the same configuration as de-
scribed in literature [18]. Tensile tests are con-
ducted by increasing the displacement equally and
simultaneously on both the left and right sides of
the wall. The discretization utilizes 56081 trian-
gular elements with a size of 3 mm, as shown in
Figs. 9(a), (b). Since the stress-strain curves is out
of scope of this study, on the other hand, there is
not enough material properties for the model, we
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use some properties of bricks Eb, gcb and νb in [14] and varies other values.

(a) The mesh (brick phase) (b) Zoom in of the mesh

Figure 9. Discretization of the tensile tests

In test T1, the load increment of ∆u = 0.0005 mm for the 50 first step and ∆u = 0.0001 mm for
the next 250 steps. The crack pattern is shown in Fig. 9(a) for the end of simulation. Considering the
material properties in Table 2, both elastic and fracture properties of mortar-interface is extremely
smaller than that of units. Again, we can observe that cracks appear in the mortar-interface and create
the zig-zag one, which was captured in a literature experiment, showed in Fig. 10(a) for the case
SB-WM.

Table 2. Material properties for 3 tensile tests

Test Eb (Mpa) Em/Eb vb = vm gcb (N/mm) gcm/gcb Internal length l (mm)

T1 16700 0.5 0.15 0.06 0.1 10
T2 16700 1 0.15 0.06 0.1 10
T3 16700 1 0.15 0.06 0.5 10

(a) Zig-zag crack (b) Straight crack

Figure 10. Crack pattern in tensile test: for SB-WM (a) and SM-WB (b) [16]

For test T2, the load increment is u = 0.0005 mm for the 100 first steps, ∆u = 0.0002 mm for the
next 100 steps, ∆u = 0.0001 mm for the next 100 steps. The elastic properties in this case are harder
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compared to the T1 test. The simulation captures a straight crack that traverses the weaker and the
harder phases at the bottom of the sample. Based on the images, it is predicted to join with two other
cracks on the top of the sample, forming a zig-zag line in the final simulation as shown in Fig. 11(b).

For test T3, the load increment of ∆u = 0.0005 mm for the 50 first steps, ∆u = 0.0002 mm for the
next 50 steps, ∆u = 0.0001 mm for the next 200 steps. The fracture toughness of the mortar-interface
is the hardest among three cases. This results in a straight line as can be seen in Fig. 10(c). We can
state that the straight crack in Fig. 5(b) (SM-WB) is captured in the case of test T3, when the fracture
property of brick is not too larger than that of the mortar-interface.

(a) T1 (b) T2 (c) T3

Figure 11. Crack patterns of tensile test in 3 cases of material properties:
(a) T1 test (Em = 0.5Eb,Gb = 10Gm); (b) T2 test (Em = Eb,Gb = 10Gm); (c) T3 test (Em = Eb,Gb = 2Gm)

5. Conclusions
This study has presented a simplified micro approach for tracking cracks in masonry-like struc-

tures which are described as a two-phase material including the units and the mortar-interface. The
interface between these two phases is accounted for by pseudo fracture parameters of the mortar-
interface. Though this paper cannot cover all the strategies of materials, the results in numerical ex-
amples have demonstrated the advantages of the phase field method when studying complex fracture:
(i) the phase field method can capture the onset of masonry-like structures without the presence of a
notch or prior definition of cracks; (ii) cracks can branch and connect naturally; (iii) in both media,
units and the mortar-interface, cracks can appear simultaneously without additional criteria. To the
author’s knowledge, limited works can capture cracks in both blocks and joints. This is the beauty
of the model that encourages more studies. Future works may put efforts on (i) the determination
of pseudo properties for the mortar-interface so that the force-displacement curve can be fitted with
experiments, (ii) how the difference between characteristic length l between the two phases affect the
crack pattern as it is interpreted a as material property, (iii) structures using the anisotropic material
can studied using another phase field model, e.g. a stress-based phase field model.
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