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OPTIMAL VOLUME DESIGN OF A WORM-GEAR DRIVE
WITH A BRANCH AND BOUND METHOD

Le Hong Chuong", Nguyen Quoc Dung’

Summary: In mechanical design, an important aspect is to keep the volume of design objects to a minimum. It
also means reduced the cost of production. So that, using optimization design method in modern designs is
necessary. In this paper, a nonlinear optimization method is presented to design a worm-gear driver. The chosen
objective function was the volume bounded by the inner surface of the worm and worm-gear as well as obtained
an optimum minimum distance between them. It can be observed that the proposed optimal design has the
potential to yield considerably better solutions than the traditional heuristics.
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(@ 1.Introduction

Designing a new mechanical product, there are a lot parameters and phases that a designer need to care,
for example the depth of design, input data, design strategy, procedures and results. Depending on the design
requirements, they prioritized to choose certain objectives for optimization such as strength, deflection, weight,
wear, and corrosion. However, design optimization for a complete mechanical assembly leads to a complicated
objective function with a large number of design variables. Therefore, designers normally chose optimization
techniques forindividual components or intermediate assemblies than a complete assembly.

A gearbox design involves computations based on tooth bending strength, tooth surface durability, tooth
surface fatigue, interference, efficiency... It also involves empirical formulas, different graphs and tables, which
lead to a complicated design. Manual design is very difficult considering the relationship of the above facts for
having the optimal parameters. With the aid of computers, design can be carried out iteratively and the design
variables, which satisfy the given conditions, can be determined. The design so obtained may not be the
optimum one, because in the above process the design variables so obtained satisfy only one condition atatime;
for example, if the module is calculated based on bending strength, the same module is substituted to calculate
the surface durability. It is accepted if it is within the strength limit of surface durability; otherwise it is changed
accordingly. So optimization methods are required to determine design variables, which simultaneously satisfy
the given conditions. As the optimization problem involves the objective function and constraints that are not
stated as explicit functions of the design variables, it is hard to solve it by classical optimization methods.
Moreover, increasing demand for compact, efficient and reliable gear forces the designer to use optimal design
methodology. Many researchers have reported solutions to optimal gearbox designs. One of the first who dealt
with this problem was Golinski [1, 2]. An optimal mass design for a single stage spur gear box by mean of
nonlinear programming and random method was presented. Huang et al. [3] developed interactive physical
programming approach of the optimization model of three-stage spur-gear reduction unit with minimum volume,
maximum surface fatigue life and maximum load-carrying capacity as design objectives and core hardness,
module, face width of gear, tooth numbers of pinion, tooth numbers of gear and diameter of shat as design
variables. In this model, tooth bending fatigue failure, shaft torsional stress, face width, interference and tooth
number are considered as constraints. The MATLAB constrained optimization package is used to solve this
nonlinear programming problem. Jhalani and Chaudhary [4] discussed the various parameters, which can affect
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the design of the gearbox for knee mounted energy harvester device and later it frames the optimization problem
of the mass function based on the dimensions of gearbox for the problem. The problem is solved using multi start
approach of the MATLAB global optimization toolbox and value of global optimum function is obtained
considering all the local optimal solutions of the problem. Padmanabhan et al. [5] investigated that in many real-
life problems, objectives under consideration conflict with each other, and optimizing a particular solution with
respect to a single objective can result in unacceptable results with respect to the other objectives. Multi-
objective formulations are realistic models for many complex engineering optimization problems. Ant Colony
Optimization was developed specifically for a worm gear drive problem with multiple objectives. Sanghvi et al. [6]
presented optimal methods for two-stage helical gear train. In the research, the volume and load carrying
capacity are optimized. For the optimization purpose, face width, module and number of teeth are taken as
design variables. Constraints are imposed on bending strength, surface fatigue strength and interference. ltis
apparent from the comparison of results that the result obtained by NSGA-Il is more superior than the results
obtained by other methods in terms of both objectives. In Vietnam, V.N. Pi [7] presented optimal calculation of
two-stage worm-gear reducer. Pi and V.Q. Dac [8] investigated optimal calculation of partial transmission ratios
of worm-helical gear reducers for minimal gearbox length by using theoretical analysis methods.

In this paper, a worm gear drive is considered. The optimization model formulated here includes these
factors in constraints. The optimization is carried out using Brand and Bound Algorithm of Mixed integer Non-
linear programming in GAMS software. This method is applied to minimize the volume. The results obtained by
this method are compared with hand calculation.

‘ @ 2.Mixed Integer Nonlinear Programming
2.1Introduction

Mixed-integer nonlinear programming (MINLP) problems combine the combinatorial difficulty of
optimizing over discrete variable sets with the challenges of handling nonlinear functions. MINLP is one of the
most general modeling paradigms in optimization and includes both nonlinear programming (NLP) and mixed-
integer linear programming (MILP) as sub-problems. Following [9], the MINLPs are conveniently expressed as:

minimize  f(x),

subjectto  ¢(x) <0,
xeX
x.eZ Viel

(1)

where f: R" — R and c: R" — R" are twice continuously differentiable functions; X C R"is a bounded polyhedral
setand | € {1, ..., n}is the index set of integer variables. Note that it can readily include maximization and
constraints, such as equality constraints or lower and upper bounds LB < ¢(x) < UB, where LB and UB are the

lower and upper bounds. More general discrete constraints that are not integers can be modeled by using so-
called special-ordered sets of type | [10], [11].

Problem (2.1) is an NP - hard combinatorial problem, because it includes MILP [12] and its solution
typically requires searching enormous search trees; see Fig. 1. Worse, non-convex integer optimization problems
are in general un-decidable by Jeroslow [13]. He provides an example of a quadratically constrained integer
program and shows that no computing device exists that can compute the optimum for all problems in this class.

Figure 1. Branch-and-bound tree without pre-solve after 360 s CPU time has more than 10,000 nodes.
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2.2 MINLPAIlgorithm

Some major algorithms for solving the MINLP problem include the following: Branch and bound;
Generalized Benders Decomposition; Outer-Approximation.

In this section, present a branch-and-bound algorithm for MINLP models is implemented by Kalvelagen
[14]. Branch-and-bound methods are used extensively for mixed-integer linear programming models and go
back to [16]. The basic method is directly applicable to models with nonlinear functions in which case a nonlinear
solver needs to evaluate the relaxed sub-problems (Fig.2).

Theroot node is the problem with all integer restrictions relaxed.

Branch-and-bound methods are based on the concept of relaxations: sub-problems with one or more of
the discrete variable relaxed to continuous variables. The number of relaxations to explore is often very large for
problems with many integer variables. Mixed-integer linear programming branch-and-bound solvers put much
emphasis on solving relaxations very fast (e.g. by using dual methods). Modern solvers also do lots of work on
preprocessing: resolving the model to make it smaller and adding cuts to make the feasible region smaller
(although this makes the problem larger in terms of number of constraints).

Original discrete problem

v

Equivalent relaxed problem

v

Choose a node from the waiting node list |
Remove it from the waiting node list

v

Solve the LP equivalent sub-problem

If optimal Fathom this node
A

If all the Create two new nodes with x, = 0 and x, = 1
x=0or1 and add to the waiting node list

If obj < UB

UB: = obj
Remove nodes j with LB, > UB

If waiting node
list is emty

Opt=LB = UB =minLB,
End

Figure 2. Flow chart of Branch and Bound Algorithm
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( . 3. Design problem formulation

Using an example was presented in [16]. The optimal model of one-way rotation worm gear drive is
formulated in this section, with the minimum volume as a design object. The schematic illustration of itis shown in
Fig. 3 with the following data:

Maximum torque on the worm-gear: T, = 670 Nm; Transmission ratio u = 19; Rotation speed of worm:
n, =930 rpm; Gear necessary life: L= 10000 hours.

The materials chosen for the worm and worm-gear are:

-Worm: 40 steel, quenched and tempered at HRC 45;

- Worm-gear: opAwH 10-4-4; Allowable
Hertzian stress: [c,] = 206.4 MPa; Allowable
bending stress: [o.] = 129.5 MPa; Maximum
allowable Hertzian stress: [c.],., = 1200 MPa;

Maximum allowable bending stress: [o.]... =
480 MPa.

(@ 4. Optimization of worm-gear drive
In order to perform the optimal design, it 3
is necessary to set up: the variables that
uniquely describe the problem, the parameters, 3
the objective function and the constraint " -
functions. The following design equations and -
constraints are adopted from design book [16].
4.1 Design variables Y. . |4 === ==
The design problem variables are
presentedin Tab 1. Figure 3. Schematic illustration of worm and worm-gear
Table 1. Variables of optimization problem
No Variables Range No Variables Range
1 | Number of worm threads (Z1 ) 1,20r4 11 | Pitch diameter of worm-gear (dz), mm
2 | Number of worm-gear (Z2) 26...80 12 | Outside diameter of worm-gear (damz)» mm
3 | Worm diameter ratio (q) 6.3...25 13 | Throat diameter of worm (da1), mm
4 | Load factor (K) 11..1.3 14 | Throat diameter of worm-gear (d,2), mm
5 | Working centre distance (a), mm 15 | Root diameter of worm (di1), mm
6 | Module (m), mm 2...20 16 | Root diameter of worm-gear (diz), mm
Normal addendum modification
7 cogmicisnt (el mim 0.7..07 17 | Tooth form factor (Y) 1.24...1.98
8 Face width of worm (b4), mm 18 | Over load factor (Ko) 17...40
9 | Face width of worm-gear (bz), mm 19 | Lead angle (y), radian
10 | Pitch diameter of worm (d), mm
4.2 Objective function
For the optimization, the volume of the worm-gear drive is minimized. Calculation formula of the volume is:
V= g(dfbﬁ db,), mm® (2)
4.3 Constraint functions
The solutions of the optimization program have to satisfy the following constraints listed below according
to[16].
- The number of worm-gear (Z,) and the number of worm threads (Z, ) should be related:
2,=0Z, (3)
- The relationship between worm diameter ratio (q) with number of worm-gear (Z,):
g =(0.25...0.3)2Z, (4)
- Value of working centre distance (a) was calculated following:
3
170 | T.K.
a=(Z,+q) [m} ZT (5)
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- The normal addendum modification coefficient (x) related to worm-gear parameters:
x=2-059+2,) (6)

- Face width of worm-gear (b,) should be less or equal to 0.75 times of the throat diameter of worm (d,,):
b, £0.75d, (7)

- The outside diameter of worm-gear (d,,,,) has to satisfy the following condition:

oz = (d,, +2m) (8)

- The values of Hertz stress and bending stress should be less or equal to the corresponding allowable
stresses.

oy <[o,]. o <[04] (9)
- The values of over load of Hertz stress and bending stress should be less or equal to the corresponding

maximum allowable stresses.

csHmax = [GH]max ! UFmax = [GF]max

4.4 Results and Discussion

(10)

The optimization problem is solved by using the Branch and Bound algorithm of MINLP method in Gams
software. [17] shown that the General Algebraic Modeling System (GAMS) is specifically designed for modeling
linear, nonlinear and mixed integer optimization problems. GAMS allows the user to concentrate on the modeling
problem by making the setup simple. It is especially useful for handling large, complex, one-of-a-kind problems
which may require many revisions to establish an accurate model. The user can change the formulation quickly
and easily, can change from one solver to another and can even convert from linear to nonlinear with little trouble.
Using GAMS, data are entered only once in familiar list and table form. Models are described in concise algebraic
statements which are easy for both humans and machines to read. Whole sets of closely related constraints are
entered in one statement. GAMS automatically generates each constraint equation and lets the user make
exceptions in cases where generality is not desired.

The obtained values of all considered variables are presented in Tab. 2. To note that according to the
design standards [16], values of Z,, K, were selected following the initial conditions. Whereas, the face width of
worm (b,) was calculated following value of x.

Table 2. Variable values were solved by B&B method and Traditional method

Variable

Method

MINLP

Hand

No

Variable

Method

MINLP

Hand

No

Variable

Method

MINLP

Hand

2

2

10

d,, mm

125

78.75

19

K,

21

21

38 39 11 d,, mm 190 | 245.7 | 20 Y

25 12 | daM,, mm 205 [ 2733 | 21

19 13 da,, mm 135 | 91.35 | 22

14 da,, mm 200 |(263.85| 23

B : 15 df,, mm 113 | 63.63 | 24

0 16 df,, mm 178 |236.13| 25

b,, mm 78 94 17 4.59 8.5

v, degree

b,, mm 67 69 18 K 1.241 1)

Tab. 2 also shown side-by-side the corresponding values were calculated by hand in [16]. Comparative
study of two solutions shown in this table leads to the following conclusions:

- The optimal design solution did not change the transmission ratio, while the traditional method changed it.

- The volume of worm-gear drive calculated with the classical method is 3.7x10° mm’ while the optimal
design solution offers a smaller volume, equal to 2.9x10° mm’, i.e. a 21.6% reduction. It indicates that the
geometric parameters of this transmission were calculated more rationally while ensuring the requirements of
design standards.
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- The stress values such as 6,,, 6,,, , o, increases closer to the allowable stress values respectively. This
more demonstrates that the drive was calculation designed to be better and it avoids wasting materials.
@ 5. Conclusions

From the discussions above demonstrates that the optimal methods will be brought better results than
the traditional calculation. Besides, it also helps the designer to easily adjust the parameters, variables to suit the
design requirements; it also helps to reduce computation times. However, a requirement set out for the
Designers must have knowledge about the optimal methods for selecting the constraints, the consistent
parameters... in the calculation process.

The problem can be extended to more than minimization of volume, it could be combined maximum of
load. Other recently developed evolutionary algorithms can also be tried to solve this problem. A similar approach
can be followed in case of other mechanical applications, such as minimization of weight of crane tower and
minimization of weight of pulley system.
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