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Abstract

In this paper, the static and dynamic behaviour of sandwich beams with porous core are numerically analyzed
and validated by experimental tests. The beam consists of a thick porous core with a uniform porosity distribu-
tion over its domain and two outer face layers. For the theoretical study, the virtual work principle is employed
to derive the governing equation. A one-dimensional (1D) mesh-free approach, associated with the moving
least squares Hermite interpolation, is developed to approximate the primary variable fields and discretize the
governing equation. Additionally, a simple transformation method is applied to create Kronecker delta property
of constructed shape functions, straightforwardly facilitating the imposition of the boundary condition, similar
to the finite element method without additional techniques. The accuracy of the computational method is sub-
sequently verified against previous literature. For the experimental tests, various mechanical responses, such
as the natural frequency, static deflection, and deflection-time history of a cantilever porous sandwich beam
consisting of cemboard faces and a concrete core with Expanded Polystyrene are measured and compared with
the theoretical prediction. The outcomes of this study can be valuable for the design of sandwich beams with
porous core.

Keywords: porous sandwich beam; expanded Polystyrene concrete; mesh-free method; moving least squares
interpolation; natural frequencies; bending and vibration tests.
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1. Introduction
Sandwich structures, in which a porous core is embedded between two skin layers, are an ideal

choice for constructing efficient lightweight structures. Each layer is responsible for its own role in
the functioning of the structures. The two thin but strong face sheets resist the deflection, in-plane
axial stress, and effect of external environment. The thick porous core connects the faces and resists
the shear stress. The presence of porosity helps reduce self-weight, increase the ability of thermal
and acoustic resistance as well as vibration absorption. Thanks to the mentioned advantages, these
structures have found applications in various engineering areas, including building, transportation,
aerospace, and military, etc. As an example, Fig. 1 illustrates an application of sandwich porous
plates for a multi-story house.

Understanding in-depth the mechanical behaviour of structures is a significant task in design-
ing and utilizing them. To achieve this, analyzing the mechanical responses of structures made of
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(a) Sandwich plate with Expanded Polystyrene (EPS)
concrete core

(b) A multi-story house made of EPS
concrete sandwich plates

Figure 1. Applications of sandwich porous plates

novel materials has required efforts from scientists and engineers. Various reports on these topics,
especially porous sandwich structures and beams, have been published recently. For example, Chen
et al. [1] focused on the nonlinear free vibration of sandwich beams with porous core using Ritz
method associated with Timoshenko beam theory (TBT) and von Kármán geometric nonlinearity
assumption. Based on Chebyshev–Ritz method, Wang et al. [2] studied the nonlinear bending be-
haviour of sandwich beams with a metal foam (a metal porous material) core and two composite
face sheets reinforced with graphene platelets (GPLs). Srikarun et al. [3] investigated the linear and
nonlinear static bending of sandwich beams with porous core and homogeneous face sheets by Ritz
method. Magnucka-Blandzi [4] presented the analysis of dynamic stability of simply supported sand-
wich beams with a metal foam core by analytical solution. Wang and Zhao [5] studied the natural
frequencies of sandwich beams with a metal foam core resting on Pasternak foundation by Chebyshev
collocation method. Garg et al. [6] presented the free vibration and static bending of sandwich beams
with a metal foam core using finite element method (FEM). Recently, using functionally graded mate-
rials (FGMs) for the face sheets to promote their excellent features, such as high strength and moduli,
good weather and thermal resistance, has been proposed. The mechanical behaviour of sandwich
porous beams with FGM faces has been reported in various papers, e.g., [7–11].

Besides theoretical studies, many authors have concerned about experimental tests to have an
actual view and confirm the reliability for application. For example, Jasion et al. [12] performed
theoretical and experimental studies of the global and local buckling–wrinkling of the face sheets of
sandwich beams and sandwich circular plates with metal foam core. Sokolinsky et al. [13] carried
out four-point bending tests and analytical study of sandwich beams with aluminum face sheets and a
Divinycell foam core. The work in Ref. [13] was extended to the free vibration problem by Sokolinsky
et al. [14]. Dariushi and Sadighi [15] investigated the geometrically nonlinear bending of sandwich
beams with glass/epoxy face sheets and soft polymeric core by analytical predictions and experimental
tests. Njim et al. [16] conducted a three-point bending test for 3D printed sandwich beams with porous
core bonded with aluminum face sheets to measure the peak load and maximum deflection. In [16],
the experimental results were compared with those of numerical prediction by FEM.

The literature review reveals that all the mentioned reports focused on exploring mechanical be-
haviour, developing theoretical and experimental models, and investigating the effects of assumptions
on the results. However, sandwich structures with porous core represent a novel and modern form of
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lightweight structures, and theoretical studies to simulate and investigate their mechanical behaviour
are limited. In addition, experimental studies on these structures are rare compared to theoretical ones.
Therefore, significant research effort is needed to comprehend their behaviour for effective applica-
tions. The literature survey also shows that various computation methods have been developed for
simulating the mechanical behaviour of these structures. Nevertheless, developing a novel and robust
computation tool still needs in order to enhance the effectiveness of simulation.

The current study will contribute two significant aspects: (i) developing for the first time a moving
least squares mesh-free method in which a 1D Hermite interpolation is adopted to construct the shape
functions for approximation of the displacement field to simulate mechanical behaviour of porous
sandwich beams; (ii) doing experiments on a porous sandwich beam to validate the simulated results
and give a view on its actual behaviour.

This paper is devoted to analyzing the static bending and vibration of sandwich beams with a
porous core using both theoretical and experimental approaches. The structure of the beam includes a
uniform porosity distribution porous core covered by two homogeneous face layers. For the theoretical
study, the virtual work principle is employed to derive the governing equation. A 1D mesh-free ap-
proach, which is based on the moving least squares Hermite interpolation to approximate the primary
variable fields, is developed to discretize the governing equation. A simple transformation technique
is used to create Kronecker delta property of the shape functions which helps impose the essential
boundary condition directly as the conventional FEM without additional techniques. The accuracy of
the computational method is verified by comparison to earlier publishes. For the experimental tests,
some mechanical responses, such as the fundamental natural frequency, static deflection, deflection-
time history of a cantilever porous sandwich beam with Expanded Polystyrene-based concrete core
are performed and compared with those of the theoretical predictions.

2. Theory and formulations
Consider a porous sandwich beam with dimensions L × b × h as illustrated in Fig. 2. The x-axis

lies on the mid-plane of the beam, and the z-axis is taken upward direction. The thicknesses of the
core and face layers are hc and h f , respectively (h = hc +2×h f ). The developed theory is based on two
assumptions: (i) the face sheets and the core are made of linearly elastic materials, and (ii) no relative
sliding between them.

Figure 2. Porous sandwich beam and geometrical parameters

2.1. Effective material property modelling

In this work, the material of the face layers is isotropic. Their mechanical properties, i.e., elastic
moduli E and G, mass density ρ, and Poisson’s ratio ν are constant, whereas those of porous material
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depend on the porosity. In the case of the uniform porosity distribution, they can be expressed as
functions of porosity coefficient as follows [1]

E (z) = E1 (1 − e0)
G (z) = E (z) / (2 + 2ν)
ρ (z) = ρ1 (1 − em)
−hc/2 ≤ z ≤ hc/2

(1)

where e0 is the porosity coefficient which is defined as [1]

e0 = 1 − E2/E1 (2)

In Eqs. (1) and (2), E1 and E2 are Young’s moduli of material without and with porosity, respec-
tively.

The coefficient of mass density is defined as [1]

em = 1 − ρ2/ρ1 (3)

where ρ1 and ρ2 are the mass densities of material without and with porosity, respectively.
The relation between Young’s modulus and the mass density of porous materials can be expressed

as [1, 17] 
E2/E1 = (ρ2/ρ1)2 for open - cell

E2/E1 =

(
ρ2/ρ1 + 0.121

1.121

)2.3

for closed - cell
(4)

Eqs. (2), (3) and (4) deduce the relation between e0 and em as em = 1 −
√

1 − e0 for open - cell
em = 1.121

(
1 − 2.3

√
1 − e0

)
for closed - cell

(5)

2.2. Displacement, strain and stress fields
In the current study, the third-order beam theory (TOBT) [3, 18] is employed. Based on TOBT,

the displacement components u(x, z, t),w(x, z, t), which are, respectively, along the x- and z-directions,
can be written as 

d =

{
u (x, z, t)
w (x, z, t)

}
=

[
1 0 −z ξ (z)
0 1 0 0

]
︸                    ︷︷                    ︸

Θ1

A1 = Θ1A1

ξ (z) = z − 4z3/
(
3h2

)
AT

1 =
{
u0 (x, t) w0 (x, t) w0,x (x, t) φ0 (x, t)

}
,

(6)

where u0, w0 and ϕ0 are the axial displacement, transverse displacement and the transverse shear
strain on the mid-plane (i.e., z = 0), respectively. They are three primary variable functions of the
problem, t denotes the time.

The strain-field is derived from the displacement field by
ε =

{
εx

γxz

}
=

[
1 −z ξ (z) 0
0 0 0 ξ′z (z)

]
︸                          ︷︷                          ︸

Θ2

A2 = Θ2A2

AT
2 =

{
u0,xw0,xxφ0,xφ0

} (7)

42



Hung, T. Q., et al. / Journal of Science and Technology in Civil Engineering

The stress-strain relationships obey Hook’s law and can be written as

σ =

{
σx

τxz

}
=

 E (z) /
(
1 − ν2

)
0

0 G (z)

︸                           ︷︷                           ︸
Eb

ε = Ebε (8)

In Eqs. (6) and (7), the notations (•),x and (•),xx imply the first and second derivatives of (•) with
respect to x, respectively; (•),z implies the first derivative of (•) with respect to z. The superscript (•)T

implies the operation of matrix transposition.

2.3. Energy expressions
The virtual variation of internal energy (δU) of the beam can be expressed as follows

δU =

∫
V

σTδεdV =

∫
V

εT EbδεdV (9)

By substituting the strains from Eq. (7) into Eq. (9), the virtual variation of internal energy can be
described as

δU =

L∫
0

AT
2 HEδA2dx (10)

where HE is the matrix of stiffness coefficients which is defined as

HE(4×4) = b

0.5h∫
−0.5h

ΘT
2 EbΘ2dz (11)

The virtual variation of external work (δS) done by the applied load q0(x,t) and concentrated load
Q at coordinate xP can be expressed as

δS = −

L∫
0

q0 (x, t) δw0 (x, t) dx − Qδw0 (xP, t) (12)

The virtual variation of the kinetic energy of the beam can be expressed as follows

δK =

∫
V

ρ (z) d̈TδddV (13)

Substituting the displacements from Eq. (6) into Eq. (13), the virtual variation of the kinetic
energy can be described as

δK =

L∫
0

ÄT
1 HRδA1dx (14)

In Eqs. (13) and (14), the two over dots (•̈) indicate second derivative of (•) with respect to time;
HR is a matrix of size 4×4 depending on ρ (z). It is defined as

HR(4×4) = b

0.5h∫
−0.5h

ΦT
1 ρ (z)Φ1dz (15)
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The virtual work principle for the system can be stated as follows to derive the governing equation
[19]

δU + δK + δS = 0 (16)

2.4. Mesh-free approach

There are various computational methods that have been developed for simulating the mechanical
behaviour of structures. However, there is still a need to develop a novel and robust computational tool
to enhance the effectiveness of mechanical model. Mesh-free method (MFM) is the next generation
of numerical ones beyond FEM [20]. 1D MFM based on the point interpolation and polynomial
basis proves its effectiveness for modelling sandwich beams in previous works [8, 21–23]. To enrich
computational models, 1D MFM with moving least squares (MLS) Hermite interpolation will be
developed in this study.

The MFM using the MLS interpolation was first proposed by Belytschko et al. [24]. Although the
limitation of the method is the MLS shape functions do not have the Kronecker delta function property
[20, 25, 26], this method is gradually becoming a mature and practical computational approach in the
field of computational mechanics [26]. This is due to the stability in the function approximation and
the discretized global system equations [26]. On the other hand, the Kronecker delta function property
for the MLS shape functions can be easily recovered by using the simple transformation technique,
which was proposed by Atluri et al. [27].

Note that the MFM which is based on the point interpolation using polynomial or radial basis
functions possesses the Kronecker delta function property of the shape functions [20, 26].

a. Moving least squares interpolation for approximation of the displacement field

Consider a support domain Ωs at a point of interest [20], which is a subdomain of the beam
domain Ω. Distribute arbitrarily N nodes along the x-axis in Ωs (1D modelling). A function û0 (x, t),
which is represented for the displacement fields u0(x,t), w0(x,t) and ϕ0(x,t) within the support domain
Ωs, can be approximated based on the MLS interpolation [24, 28] as

û0 (x, t) ' ûh
0 (x, t) =

M∑
i=1

pi (x)ai (x, t) = pT (x) a (x, t) (17)

where ûh
0 (x, t) is the approximate function of û0 (x, t); pT (x) is the vector of monomial basis functions,

which can have the common form for 1D interpolation as follows

pT (x) =
{
1, x, x2, . . . , x(M−1)

}
(18)

where M is the number of terms in the basis; a(x, t) is the vector of unknown coefficients which
depends on coordinate x and time t

a (x, t) = {a1 (x, t) , a2 (x, t) , . . . , aM (x, t)}T (19)

In this study, Hermite interpolation type [29], which uses both the values of function and its
first derivative at the nodes (nodal coordinate), is adopted. Basing on this interpolation type, the
coefficients ai (x, t) are determined by minimizing a functional J(x,t) defined as [28]

J (x, t) =

N∑
I=1

wI (x, t)
[
pT (xI , t) a (x, t) − uI

]2
+

N∑
I=1

wI (x, t)
[
pT
,x (xI , t) a (x, t) − θI

]2
(20)
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in which, xI is the coordinate of node I in the support domain Ωs; uI , θI represent the nodal parameters
for node I (they are actually not the nodal values of function û0 (x, t) for node I, i.e., û0 (xI , t) and
û0,x (xI , t), respectively); wI(x) denotes the weight function associated with node I such that wI(x) ≥
0 for all x in the support domain Ωs of wI(x) and zero otherwise.

The matrix form of Eq. (20) can be expressed as

J (x, t) =

[{
P
Px

}
a (x, t) −

{
u
θ

}]T [
W 0
0 W

] [{
P
Px

}
a (x, t) −

{
u
θ

}]
(21)

where
uT = {u1, u2, . . . , uN} ; θT = {θ1, θ2, . . . , θN} (22)

W =


w1 0 0 0
0 w2 0 0
0 0 . . . 0
0 0 0 wN


N×N

(23)

PT =
{
pT (x1) ,pT (x2) , . . . ,pT (xN)

}
; PT

x =
{
pT
,x (x1) ,pT

,x (x2) , . . . ,pT
,x (xN)

}
(24)

The stationarity of the functional J(x, t) with respect to the coefficients a(x, t) leads to the follow-
ing relation [28]:

A (x) a (x, t) = C (x) qΩs (t) (25)

where
A (x) = PT WP + PT

x WPx (26)

C (x) =
{
PT W,PT

x W
}

(27)

qΩs (t) = {uθ}T = {u1, u2, . . . , uN , θ1, θ2, . . . , θN}
T (28)

From Eq. (25), the vector of coefficients a is determined by

a (x, t) = A−1 (x) C (x) qΩs (t) (29)

By substituting back vector a from Eq. (29) into Eq. (17), leading to

ûh
0 (x, t) = pT (x) a (x, t) = pT (x) A−1 (x) C (x) qΩs (t) = η (x) qΩs (t) (30)

In Eq. (30) η (x) is the vector of nodal shape functions of approximated function ûh
0 (x, t) which is

determined by
η (x) = pT (x) A−1 (x) C (x) (31)

b. Weight function

In the MLS approximation, there are various kinds of weight functions that can be adopted. In
this work, the weight function proposed by Atluri [28] in the following equation is employed

wI (x) =


(
1 − ‖x − xI‖

2 /R2
I

)3
‖x − xI‖ ≤ RI

0 ‖x − xI‖ > RI
(32)

where RI = α × ds, denotes the radius of support domain of the weight function; ds is the average
nodal spacing in the support domain Ωs; α is the scaling parameter.

45



Hung, T. Q., et al. / Journal of Science and Technology in Civil Engineering

c. Transformation technique

Due to the feature of MLS interpolation, the approximated function does not pass through the
nodal data, i.e., qΩs of Eq. (28), which is used to interpolate it. For this reason, the nodal data qΩs are
also called fictitious values [28] at nodes. This leads to the constructed shape functions do not satisfy
the Kronecker delta property and the essential boundary conditions cannot be imposed directly [27].

To overcome the drawback, a simple transformation technique was proposed by Atluri et al. [27]
to transform the fictitious nodal values qΩs to the actual nodal values q̂Ωs . Following is the procedure.

From the approximated function ûh
0 (x, t), Eq. (30), the values of this function at node K with the

coordinate xK can be calculated by{
ûK = ûh

0 (xK , t) = η (xK) qΩs

θ̂K = ûh
0,x (xK , t) = η,x (xK) qΩs

(33)

Carrying out for all the N nodes in the support domain Ωs, we have
û1 = η (x1) qΩs

û2 = η (x2) qΩs

. . .

ûN = η (xN) qΩs


θ̂1 = η,x (x1) qΩs

θ̂2 = η,x (x2) qΩs

. . .

θ̂N = η,x (xN) qΩs

(34)

The matrix form of Eq. (34) can be written as

q̂Ωs =
{
û1 û2 . . . ûN θ̂1 θ̂2 . . . θ̂N

}T
= RqΩs

(35)

R =
{
η (x1) η (x2) . . . η (xN) η,x (x1) η,x (x2) . . . η,x (xN)

}T
(36)

Eq. (35) expresses the relation between the actual nodal values q̂Ωs (function values) and the
fictitious nodal values qΩs of the nodes in the support domain Ωs.

By inverting Eq. (35), we have:
qΩs = R−1q̂Ωs (37)

where R−1 is called transformation matrix [27].
Substituting back Eq. (37) into Eq. (30) results in the approximated function ûh

0 (x, t), which ex-
pressed through the actual nodal values q̂Ωs

û0 (x, t) = η (x) qΩs = η (x) R−1q̂Ωs = Ξ (x) q̂Ωs (38)

where Ξ (x) is the matrix of constructed shape functions of ûh
0 (x, t) which is modified from matrix

η (x) so that the function values coincide with the actual nodal values. This means that constructed
shape functions satisfy the Kronecker delta property. The matrix can be written in the explicit form as

Ξ (x) =
{
Ξ(1) Ξ(2) . . . Ξ(N) Ξ

(1)
θ Ξ

(2)
θ . . . Ξ

(N)
θ

}
1×2N

= η (x) R−1 (39)

Substituting back Eq. (39) into Eq. (38) leads to:

û0 (x, t) = Ξ (x) q̂Ωs =
{
Ξ(1) Ξ(2) . . . Ξ(N) Ξ

(1)
θ Ξ

(2)
θ . . . Ξ

(N)
θ

}
q̂Ωs (40)
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d. Discrete formulations

Dividing the beam into a set of non-overlapping sub-domains which are called background cells
[26]. Because each of background cell (e.g., Ωc) can be pertain to an influence domain (e.g., Ωs).
Therefore, the field variables in Ωc is also the field variables in Ωs which are approximated by
Eq. (40). Hence, by substituting Eq. (40) into Eqs. (10), (12), and (14), the energies are then expressed
through the unknown nodal values. After that, applying the virtual work principle, i.e., Eq. (16), the
governing equation for problem in the domain Ωc is discretized into a set of algebraic equations with
the matrix form as

MΩcÜΩs + KΩcUΩs = FΩc (41)

where MΩc is the mass matrix, KΩc the stiffness matrix, and FΩc is the load vector; UΩs is the vector
collecting all the nodal values of all the field variables in the influence domain Ωs, which has the
form of

UΩs =

{
u01 u•01 w01 w•01 ϕ01 ϕ

•
01 . . .

. . . u0N u•0N w0N w•0N ϕ0N ϕ•0N

}T

(1×6N)
(42)

In Eq. (42), (•)i and (•)•i , respectively, stand for the values of the field variable (•) and its first
derivative at i-th node. Due to the beam is modeled with three displacement fields, there are a total of
six degrees of freedom per node.

For the whole problem domain, the system of global discrete equations is formed by assembling
Eq. (41) for all the background cells

MÜ + KU = F (43)

where M is the global mass matrix, K is the global stiffness matrix, F is the global load vector, U is
the global nodal value vector.

In general, the procedure to results in the discrete governing equations, i.e., (41) and (43), is
similar to the one applied for the standard FEM.

3. Convergence study theoretical validation
This section is devoted to verifying the convergence and correctness of the established mathe-

matical solution. Both the convergence and validation are conducted in each numerical example for
convenience. Two examples, selected from the studies of Chen et al. [1] for free vibration and of
Srikarun et al. [3] for static bending, are illustrated. The sandwich beams consist of two steel face
sheets and a steel foam core which is the open-cell foam. Material properties are: E f = E1 = Esteel

= 200 GPa, ρ f = ρ1 = ρsteel = 7850 kg/m3, Poisson’s ratio is constant, ν = νsteel = 1/3 [1]. Subscript
(•) f denotes the face sheets. Two typical types of boundary edge for the beam are considered. They
are clamped-clamped (CC), simply-supported (SS) edges. The deflection and fundamental natural
frequency of the beam are considered. Their dimensionless forms are used to present the results as
follows [1, 3].

ŵ (x) = w (x) /h; ω̂ = ωL
√
ρsteel

(
1 − ν2

steel

)
/Esteel (44)

To compatibility with the studies of Chen et al. [1] and of Srikarun et al. [3] for comparison

purpose, the porosity coefficient e0 in Eqs. (1) and (5) needs to be replaced by e∗0 × χ, χ =
1
e∗0
−

1
e∗0

(
2
π

√
1 − e∗0 −

2
π

+ 1
)2

[3]. This is because the study of Chen et al. [1] and of Srikarun et al. [3]

defined e∗0 for the case of symmetric/asymmetric porosity distribution with the cosine rule. Then, for
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the case of uniform porosity distribution, the porosity coefficient is deduced by multiplying e∗0 by χ
to satisfy the equivalent mass condition of the beams with the different types of porosity distribution.

Throughout the mesh-free analysis, the uniform nodal distribution along the beam is adopted for
convenience. The scaling parameter (α) to determine the radius of the support domain for constructing
the shape functions as well as for the weight function is chosen to be 3 times the nodal spacing (4-6
nodes per domain). This parameter is recommended to be from 2.0 to 3.0 [20, 26]. The number of
terms M in the basis is taken to be 3. M must not be larger than the number of nodes in the support
domain to ensure the existence of a well-conditioned matrix for constructing the shape functions
[20, 26]. These two parameters (α and M) should be assumed by the analyst before analyzing and
then determined appropriately by carrying out the numerical experiments. Besides, four-point Gauss
quadrature scheme is selected to compute the matrices MΩc , KΩc and vector FΩc .

The results presented in Tables 1 and 2 show that the MLS mesh-free analysis with Hermite
interpolation achieves a fast convergence rate; the solution can converge to 6 digits after the decimal
point within the 21-node scheme. In addition, the current results completely agree with those of Chen
et al. [1] and of Srikarun et al. [3].

Table 1. Convergence and theoretical validation of ω̂1 (e∗0 = 0.5, hc/h f = 10, L/h = 20)

BCs
Number of nodes

[1]
5 11 21 31 41

SS 0.1383 0.1383 0.1383 0.1383 0.1383 0.1383
CC 0.3100 0.3084 0.3083 0.3083 0.3083 0.3084

Table 2. Convergence and validation of ŵ (L/2) (L = 1 m, h = b = 0.1 m, e∗0 = 0.5, hc/h f = 8)

BCs
Number of nodes

[3]
5 11 21 31 41

SS 0.004337 0.004343 0.004343 0.004343 0.004343 0.004343
CC 0.000970 0.000978 0.000980 0.000980 0.000980 0.000980

4. Experimental tests and validation
4.1. Specimen preparation

One beam specimen whose dimensions (L × b × h) are (1200×206×90) mm, within ± 0.5 mm
tolerances, are cut from an Expanded Polystyrene (EPS) concrete sandwich panel supplied by NUCE
wall manufacturer. The two outer layers of the panel are the cement cemboards and the porous light
weight core is the concrete with EPS which has closed-cellular structure [30]. The thickness of the
core (hc) and each face sheet (h f ) are: hc = 80 mm and h f = 5 mm, respectively. Material properties
of the cemboard include: mass density ρ = 1260 kg/m3, Young’s modulus E = 4500 MPa. Young’s
modulus of the EPS concrete core E = E2 = 3349 MPa. The properties are supplied by NUCE wall
manufacturer. Poisson’s ratio (ν) of the materials is assumed equal to 0.3. The sandwich beam speci-
men with a porous core is shown in Fig. 3.

The concrete matrix is the mortar grade M100 with Young’s modulus E1 = 14500 MPa and mass
density ρ1 = 1800 kg/m3. Using Eq. (2) and the relation of Eq. (5), the porosity coefficient and the
coefficient of mass density of EPS concrete core can, respectively, be calculated: e0 = 0.7690 and em

= 0.5282. Thus, using Eq. (1), the mass density of EPS concrete core is determined as ρ = ρ2 = 849.26
kg/m3.
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Figure 3. Sandwich beam specimen

4.2. Procedure setup

The test beam is conducted for the case of cantilever beam with clamped-free (CF) edges. This
beam type is selected because it is a simple mechanical model to install as well as basis for complex
structures. In addition, measured values of the beam are easier to set up to stay in the measuring range
of the device of the laboratory than the beams with other boundary conditions. 200 mm length of the
test beam is spent to fix to the pedestal.

Figure 4. Graphical user interface of the DCS-100A software

Two types of tests are conducted for some primary mechanical behaviour. The first one is to
investigate the flexural bending via the deflection under static load. The second one is to examine the
fundamental frequency and deflection-time history. The position to measure the deflection is in the
distance 100 mm from the free end. For static tests, ten step incremental loads are applied from the
initial load of 5 kG (5×9.81 N) with the increment of 1 kG (9.81 N) per step. Data are recorded at
each step load after the deflection is in stable condition. For the vibration test, the beams are excited
by a rubber hammer (in the vertical direction) or cutting a 10 kG (10×9.81 N) weight hanging by a
string at the same position of the static test. Note that, for the fundamental frequency test, the excited
position may be freely to choose.

A linear variable displacement transducer (LVDT) is placed on the top mid-surface and 100 mm
from the free end. In addition, an accelerometer is installed on the free end of the beam to record the
acceleration. Both the LVTD and accelerometer are KYOWA’s product. The displacement range of
LVTD is up to 50 mm, and the frequency range of the accelerometer is from 0 to 70 Hz. The two
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devices are connected to a personal computer through EDX-10A/B using the DCS-100A software of
KYOWA. The DAS-200A data analyzing software, of KYOWA, is also integrated with the computer
to convert the analog into digital signals and transform them into frequency domain by Fast Fourier
Transform (FFT). The graphical user interface of the DCS-100A software is shown in Fig. 4. The
schematic of the tests is illustrated in Fig. 5. The installed beam is shown in Fig. 6.

Figure 5. Schematic of the tests (unit of length: mm)

Figure 6. Installed beam and devices

4.3. Experimental results and mesh-free prediction
a. Static bending

The measurement results of three sets of the test for the beam under different applied load levels
and comparison with the theoretical prediction are presented in Table 3 and plotted in Fig. 7. In the
presentation, the downward deflection is positive.

Table 3. Static deflection (mm) at x = 0.9 (m) from the left end (P = 9.81 N)

Test/theoretical prediction
Applied loads

6×P 8×P 10×P 12×P 14×P

1st measurement 0.2530 0.3510 0.4420 0.5290 0.6250
2nd measurement 0.2598 0.3623 0.4527 0.5409 0.6341
3rd measurement 0.2619 0.3582 0.4520 0.5410 0.6364

Average 0.2582 0.3572 0.4489 0.5369 0.6319
Theoretical prediction 0.2843 0.3791 0.4738 0.5686 0.6634

∆ (%) 10.09 6.13 5.56 5.90 4.99

Discrepancy ∆ (%) = |Theoretical prediction – Average |/Average × 100%
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Figure 7. Comparison of the deflection between the theoretical prediction and experimental test

It is obvious from Table 3 and Fig. 7 that the test results are stable. The measurement results match
well with the theoretical prediction.

b. Fundamental frequency

The measurement of the fundamental frequency for two cases of the test, i.e., excited by a rubber
hammer or excited by cutting a weight hanging, is reported in Table 4. The FFT analysis to estimate
the natural frequencies is illustrated in Fig. 8. It is clear that the test results are stable; the measurement
results of the sets are nearly the same. The predicted frequency is also reported in Table 4. Notably,
the discrepancy between the theoretical prediction and the average measurement results is just 5.24%.

Table 4. Comparison of the fundamental natural frequency between the theoretical prediction and
experimental test ( f1 = ω1/(2π) Hz)

Excited by a hammer Excited by cutting a weight hanging
Average

Theoretical
prediction

∆ (%)

1st 2nd 3rd 1st 2nd 3rd

32.47 32.47 32.47 32.47 32.23 32.47 32.43 30.73 5.24

Discrepancy ∆ (%) = |Theoretical prediction – Average |/Average × 100%

c. Time history response

Finally, the deflection-time history of the beam at position x = 0.9 m (from the fix), excited by
cutting a weight hanging of 10 kG, is measured and plotted in Fig. 9. Meanwhile, mesh-free analysis is
also conducted to simulate the test for comparison. To capture more actual the response, the structural
damping needs including in the analysis. Hence, Eq. (43) may be rewritten as [31]

MÜ + CU̇ + KU = F (45)

in which C is the damping matrix and U̇ is the velocity vector.
In this work, Rayleigh damping is adopted to estimate the structural damping. Thus, the damping

matrix C can be expressed through the stiffness matrix K and mass matrix M by [31]

C = a0M + a1K (46)
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Assuming that vibration modes have the same damping ratio ξ, the coefficients a0 and a1 can then
be determined via the first two frequencies of the beam by [31]{

a0
a1

}
=

2ξ
ω1 + ω2

{
ω1ω2

1

}
(47)

In addition, the damping ratio of the studied beam is ξ ≈ 5.93%. This value of the damping ratio
is determined from the data of experiment results by the following equation [31]

ξ =
1

2π j
ln

wi

wi+ j
(48)

where wi and wi+ j are the deflection amplitude data of i-th and (i + j)-th cycles of the vibration,
respectively.

Figure 8. FFT analysis for the natural frequencies for the last test

Figure 9. Comparison of the deflection-time history at x = 0.9 (m) between the theoretical prediction
and experimental test

Eq. (45) is solved by the Newmark method [31] with constant acceleration and the time step
0.001 (s). The deflection-time history is plotted in Fig. 9. As shown in Fig. 9, the measurement of
the vibration amplitudes matches well with the theoretical prediction. The time intervals between the
peaks of the test are slightly shorter than those of the theoretical prediction. This feature is consistent
with the frequency value given in Table 4. In other words, the greater frequency value results in the
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shorter time period of the vibration and vice versa. Consequently, in later cycles, the distances the of
the peaks in the figure become wider.

In summary, the static and dynamic behaviour of the porous sandwich beam measured by the
experimental tests and those predicted by the mesh-free analysis are in good agreement. The relative
difference between them is assessed and can be acceptable. These mismatches may be due to (i) the
error in the measurements, and (ii) the discrepancy between the physical model for the theoretical
prediction and the actual porous sandwich beam specimen.

5. Conclusions
In this paper, we investigate the static bending and vibration of sandwich beam with a porous

core through the theoretical prediction and experimental tests. Mesh-free method based on moving
least squares Hermite interpolation is developed to model 1D beams. To recover the Kronecker delta
property of the constructed shape functions, a simple transformation method is employed. This al-
lows us to impose the boundary conditions directly, similar to the FEM, without requiring additional
techniques. The reliability of the developed method was verified with previous data in the literature.
Subsequently, experimental tests were conducted on a cantilever porous sandwich beam to validate
the theoretical predictions based on various mechanical responses, including natural frequency, static
deflection, and deflection-time history. The obtained results indicate that (i) the developed mesh-free
method is efficient, characterized by a high convergence rate in the solutions; (ii) the theoretical pre-
dictions align well with the experimental tests. Furthermore, the study results can serve as benchmarks
for further research on the mechanical problems of porous sandwich beams.
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