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Abstract

This paper is aimed at quickly predicting the dynamic behavior of functionally graded plates using non-
traditional computational approaches consisting of artificial neural networks (ANN) and extreme gradient
boosting (XGBoost). Through the use of ANN and XGBoost, the dynamic behavior of the plate can be di-
rectly predicted based on optimal mapping, which is found by learning the relationship between input and
output data from a data set during the training process. A data set including 1000 data pairs (input and output)
is generated by using a combination of isogeometric analysis (IGA) and third-order shear deformation plate
theory through iterations. In this model, a power index that controls the plate’s material distribution is regarded
as input, and output consists of 200 values of deflection versus time. In order to demonstrate the effectiveness
of XGBoost in terms of accuracy and computational time, results obtained by the optimal XGBoost model are
compared to those obtained by the optimal ANN model and IGA.

Keywords: functionally graded plate; isogeometric analysis (IGA); transient analysis; artificial neural network
(ANN); extreme gradient boosting (XGBoost).
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1. Introduction
Functionally graded materials (FGMs), a type of smart materials, are typically composed of two

constituents: ceramic and metal. The material properties change in directions. The outstanding prop-
erties of FGMs are derived from the ceramic’s ability to withstand high temperatures and the metal’s
remarkable fracture toughness. FGMs have the ability to completely eliminate undesired stress dis-
continuity in laminated composite layers. Therefore, FGMs are increasingly being used in a variety
of fields such as nuclear power plants [1], aircraft engineering [2], biological [2], and so on.

Dynamic analysis problems for functionally graded plates are currently attracting many researchers
around the world due to their outstanding features and practical applications in a variety of fields. For
instance, Raveen and Reddy [3] investigated the static and dynamic responses of functionally graded
plates using a simple power law distribution to vary the volume fraction of metal and ceramic. Ootao
et al. [4] investigated the transient thermoelastic problem of a functionally graded plate with piecewise
exponential law caused by a nonuniform heat supply. Tran and Thai [5] used isogeometric analysis to
investigate transient analysis of multi-directional functionally graded plates. And several other studies
as shown in [6, 7]. In the aforementioned studies, most of the studies have used traditional analyti-
cal methods. This would be time-consuming and computationally expensive. Therefore, in this study,
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an effective machine learning (ML) method named extreme gradient boosting (XGBoost) has been
proposed for the dynamic analysis of functionally graded plates to reduce computational time while
ensuring accuracy.

XGBoost [8], developed by Chen and Guestin in 2016, is a combination of several gradient-
boosted decision trees that have been specifically designed for high predictive accuracy and com-
putational efficiency. This is one of the most well-known ML algorithms, having won numerous
competitions between ML algorithms organized by Kaggle, the world’s most popular forum for data
scientists. XGBoost is frequently used to solve supervised learning problems with high accuracy and
has been used successfully in a variety of fields [9–14]. For instance, Zhang et al. [9] constructed
four models to analyze the mechanisms of radon variation under natural and seismic conditions using
XGBoost. Zou et al. [10] developed XGBoost model to assess central cervical lymph node metastasis,
consisting of positive and negative effects. However, no research has been carried out to investigate
the effectiveness of XGBoost in predicting the dynamic behavior of functionally graded plates.

In order to create a dataset for the training process in the XGBoost, isogeometric analysis [15]
(IGA) has been proposed for this data generation process to ensure the accuracy of the solution. IGA
was proposed as a method of combining CAD and FEA. IGA employs the same non-uniform rational
B-spline (NURBS) to represent both exact CAD geometry and approximate FEA solution fields.
Furthermore, the exact geometry is preserved even at the coarsest discretization level, and this method
is effective in reducing degrees of freedom (DOFs) for high-order elements. As a result, IGA has been
applied in a wide range of engineering fields [16–18]. For instance, Son and Qui [16] investigated
the static bending and free vibration behavior of multi-directional functionally graded plates with
variable thickness. The accuracy of the proposed method has been demonstrated through numerical
examples. Farahat et al. [17] presented an isogeometric method for analyzing complex Kirchhoff-Love
shells in which the shell’s mid-surface is approximated by a particular class of G1-smooth multi-patch
surfaces known as AS-G1. The numerical results demonstrated the proposed method’s great potential
for efficient shell analysis of geometrically complex multi-patch structures that cannot be modeled
without the use of extraordinary vertices.

In this study, the dynamic behavior of the FG plate is first examined using a combination of isoge-
ometric analysis (IGA) and third-order shear deformation plate theory (TSDT). The accuracy of the
method is validated by comparing the obtained results to those in the literature. The above combina-
tion then generates a data set consisting of 1000 data pairs, each of which includes a power index that
controls the plate’s material distribution as input, and output consisting of 200 values of deflection
versus time through iterations. This data set is used in the training process of ML methods such as ar-
tificial neural networks (ANN) and XGBoost to determine optimal weights. Based on these weights,
outputs will be predicted directly from the input without the use of any analysis tools. Furthermore,
the effect of parameters on the accuracy and computational time of ANN and XGBoost will be inves-
tigated in order to find optimal models. The results of these optimal models and IGA are compared to
validate the effectiveness and robustness of XGBoost.

2. Isogeometric analysis of functionally graded plates
2.1. Plate formulation

In this study, third-order shear deformation plate theory (TSDT) proposed by Reddy [19] is used
to describe the displacement field of any point in the plate, as given below:
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(1)

where u, v, and w denote the spatial translations; θx and θy represent the angular deformations; f (z)
and g (z) are described as follows

f (z) = z −
4z3

3h2 ; g (z) =
4z3

3h2 (2)

in which z represents the coordinate in the direction of thickness, while h denotes the thickness of the
plates.

According to the infinitesimal elasticity theory, the strain-displacement relations are described as
follows:

εxx =
∂u
∂x

+ f (z)
∂θx

∂x
− g (z)

∂2w
∂x2 (3)

εyy =
∂v
∂y

+ f (z)
∂θy

∂y
− g (z)

∂2w
∂y2 (4)

γxy =
∂u
∂y

+
∂v
∂x

+ f (z)
(
∂θx

∂y
+
∂θy

∂x

)
− g (z)

(
∂2w
∂x∂y

+
∂2w
∂x∂y

)
(5)

γxz = f ′ (z) θx +
(
1 − g′ (z)

) ∂w
∂x

(6)

γyz = f ′ (z) θy +
(
1 − g′ (z)

) ∂w
∂y

(7)

The linear elastic constitutive equation for the plate issue is provided by

σxx = Q11εxx + Q12εyy (8)

σyy = Q21εxx + Q22εyy (9)

σxy = Q44γxy; σyz = Q55γxy; σxz = Q66γxy (10)

in which

Q11 = Q22 =
E

1 − ν2 ; Q12 = Q21 =
Eν

1 − ν2 ; Q44 = Q55 = Q66 =
E

2 (1 + ν)
(11)

where E = E (z) and ν = ν (z) are the Young’s modulus and Poisson’s ratio, respectively. In this study,
it is assumed that these quantities and the mass density (ρ) vary throughout the thickness of the plate
and are defined as follows:

E (z) = EcVc + EmVm (12)

ν (z) = νcVc + νmVm (13)

ρ (z) = ρcVc + ρmVm (14)

in which c and m represent ceramic and metal constituents, respectively; Vc (z) and Vm (z) are the
volume fractions of ceramic and metal, respectively; and Vc + Vm = 1.
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By employing Hamilton’s principle, the equation of motion for the given problem can be ex-
pressed as follows: ∫ h/2

−h/2
(δT − δU − δWe) dt = 0 (15)

where T denotes the kinetic energy, U represents the elastic energy, and We denotes the work done by
external forces. The formulations for the variational form of these terms are provided by

δT =

∫
V

ρu̇iδu̇idV (16)

δU =

∫
V

σi jδεi jdV (17)

δWe = −

∫
Γ

t̂iδuidΓ (18)

in which V is the volume of the plate; t̂i denotes the external loads acting on the area Γ; and the dot
superscript represents the derivative with respect to time t.

The equation of motion can be rewritten as follows by replacing Eq. (15) with Eqs. (3)–(7) and
(16)–(18), and making some arrangements:∫

Ω

δε̂T D̂ε̂dΩ +

∫
Ω

δūT m¨̄udΩ =

∫
Ω

q (t) δwdΩ (19)

where Ω represents the reference plane of the plate; q (t) is the distributed load exerted on the upper
surface of the plate and is dependent on the variable of time t. Readers can consult Ref. [5] for specific
information about the quantities mentioned in the equation above.

2.2. Isogeometric analysis

In this study, the IGA method [15] is employed to model the plate. The equation of motion is dis-
cretized using the NURBS basis function Rp,q

i, j (ξ, η). The displacement u of the eth NURBS element
is given by

u =

ncp∑
i=1

Ri (ξ, η) di (20)

where u =
{

u v θx θy w
}T

symbolizes the displacement vector, di =
{

ui vi θxi θyi wi
}T

denotes the corresponding variables for displacement associated with the ith control point.
By substituting Eq. (20) into Eq. (19), the equation for the system is reformulated as follows:

Md̈ + Kd = q (t) (21)

where M and K are the mass and stiffness matrices, respectively; and q (t) symbolizes the load vector.
More information on these quantities can be found in [5].

Only structural damping of the plate is taken into account in this study. The damping is modeled
using the Rayleigh damping method, with the proportional damping matrix defined by

C = a0M + a1K (22)
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where
a1 =

2ζ
ω1 + ω2

; a0 = ω1ω2a1 (23)

in which ζ is the damping ratio of the first and the second vibration modes; ω1 and ω2 are the natural
frequencies of the first and the second vibration modes, respectively.

The equation of the system in Eq. (21) incorporating the damping matrix is rewritten as follows:

Md̈ + Cḋ + Kd = q (t) (24)

To address the time-dependent issue as explained in Eq. (24), the Newmark technique [20] is
utilized. Readers can refer to Ref. [5] for the general procedure for solving the transient problem.

3. Extreme gradient boosting (XGBoost)
XGBoost is an implementation of gradient boosting machines, which is known as one of the best-

performing supervised learning algorithms. It can be employed for regression as well as classification
problems. XGBoost has received a lot of attention from researchers, especially data scientists, because
of its fast execution speed and core computing capabilities. The implementation of an XGBoost model
begins with a dataset of n observations with independent variables xi, each of which has m unique
features, and thus xi ∈ Rm. There is a dependent variable (desired value) yi that corresponds to each
row of xi variables, as yi ∈ R. XGBoost model will predict ŷi based on the independent variables
(input values) as follows:

ŷi =

K∑
k=1

fk (xi), fk ∈ F (25)

where K symbolizes the number of trees in the model; fk denotes the kth tree; and F symbolizes the
space of regression trees.

To solve the aforementioned equation, the best set of functions needs to be found by minimizing
the loss and regularization objective as follows:

L (ϕ) =
∑

i

l (ŷi, yi) +
∑

k

Ω ( fk) (26)

in which l stands for the loss function, which is the difference between the predicted output ŷi and the
actual output yi; and Ω is a measure of the model’s complexity, which helps prevent over-fitting of the
model and is derived by:

Ω ( fk) = γT +
1
2
λ ‖wi‖

2 (27)

where T and wi are the number of leaves and the scores or weights of ith leaf, respectively.
From Eqs. (25)–(27), the optimal weights w∗j and the corresponding values can be gained as

follows:

w∗j = −

∑
i∈I j

∂ŷt−1 l
(
yi, ŷt−1

)
∑
i∈I j

∂2
ŷt−1 l

(
yi, ŷt−1) + λ

(28)

Lt = −
1
2

T∑
j=1

∑
i∈I j

∂ŷt−1 l
(
yi, ŷt−1

)2

∑
i∈I j

∂2
ŷt−1 l

(
yi, ŷt−1) + λ

+ γT (29)

30



Do, D. T. T., Thai, S. / Journal of Science and Technology in Civil Engineering

Because it is complicated to solve the aforementioned equations for all possible tree structures, the
exact greedy algorithm [8] is frequently used to produce a more generalized and simplified formula,
which is described as follows:

Lsplit =
1
2


( ∑

i∈IL

∂ŷt−1 l
(
yi, ŷt−1

))2

∑
i∈IL

∂2
ŷt−1 l

(
yi, ŷt−1) + λ

+

( ∑
i∈IR

∂ŷt−1 l
(
yi, ŷt−1

))2

∑
i∈IR

∂2
ŷt−1 l

(
yi, ŷt−1) + λ

−

(∑
i∈I
∂ŷt−1 l

(
yi, ŷt−1

))2

∑
i∈I
∂2

ŷt−1 l
(
yi, ŷt−1) + λ

 − γ (30)

in which I = IL ∪ IR; IL and IR symbolize the instances sets of left and right nodes after the split,
respectively.

4. Numerical examples
In this study, the dynamic behavior of isotropic square plate is investigated to verify the accuracy

of the combination of IGA and TSDT. Following that, XGBoost and ANN are used in place of IGA to
quickly analyze the behavior of the FG plate. In which the plate is composed of Al2O3/Al components
with material properties as follows:

Ceramic Al2O3: Ec = 380 GPa, vc = 0.3, ρc = 3800 kg/m3

Metal Al: Em = 70 GPa, vm = 0.3, ρm = 2707 kg/m3

The material distribution varies in the direction of the Al2O3/Al plate’s thickness as follows:

Vc =

(
z
h

+
1
2

)nz

(31)

in which Vc denotes the ceramic volume fraction; h is the thickness of the plate; nz represents the
power index in the z-axis.

A data set consiting of 1000 data pairs in XGBoost and ANN is generated by the combination of
IGA and TSDT. In which nz is considered as input with value changes from 0 to 10; output comprises
200 values of deflection versus time which is described as follows:

t̄ = t

√
Em

a2ρm
; w̄ =

103D0

q0a4 w; D0 =
Ech3

0

12
(
1 − v2

c

) (32)

This data set is divided into two small groups: 900 data pairs used for the training process; and
the remaining 100 data pairs used for the testing process in XGBoost and ANN. To select an optimal
model for ANN, the influence of the optimizer, activation function, epoch, and the number of hid-
den layers and nodes on ANN effectiveness is examined. Besides, the effect of the number of trees
(n_estimators), maximum depth of a tree (max_depth) and learning rate (eta) on the effectiveness of
XGBoost is investigated to choose an optimal model of XGBoost. The optimal models for ANN and
XGBoost are then contrasted with one another in terms of accuracy and computational efficiency.

The process of the training is performed by Python 3.7 and carried out via programs on laptop
with Intel®CoreTM i7-8550U CPU @ 1.80 GHz 2.00 GHz, 12.0 GB RAM of memory, and Windows
11 with 64-bit operating system.
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4.1. Verification
The dynamic problem of a square isotropic plate that Kant et al. [21] and Lei et al. [22] addressed

is first reviewed to verify the accuracy of the present method. The thickness and side length of the
plate are h = 0.05 m and a = 0.25 m, respectively. The material properties of this plate are Young’s
modulus E = 2.1 × 1010 N/m2, Poisson’s ratio ν = 0.25, and density ρ = 800 kg/m3. This plate is
subjected to a sudden uniformly distributed dynamic load with q = 0.1 × 105 N/m2 under simply
supported (SSSS) boundary condition which is given as follows:

u = θx = w = 0 at y = 0, y = b

v = θy = w = 0 at x = 0, x = a
(33)

A comparison of results gained by the present method and those of referenced studies is presented
in Fig. 1. From the figure, it can be seen that the present results agree well with those of previous
studies.

Figure 1. Comparison of centre deflection versus time of square isotropic plates with previous studies

4.2. Applying ANN and XGBoost for predicting dynamic behaviors of the FG plate
In this section, dynamic behavior of the Al2O3/Al square plate with h = a/20 is examined. The

plate is subjected to a sudden uniformly distributed dynamic load with q0 = −0.5 × 108 N/m2 under
CCCC boundary condition that is shown as follows:

u = v = θx = θy = w =
∂w
∂n

= 0 at all edges (34)

In this example, the damping ratio ζ of 0.05 is taken into account. The data set including 1000
data pairs is generated by the combination of IGA and TSDT through iterations.

The application of ANN for predicting the FG plate’s deflection center versus time is first in-
vestigated. An ANN architecture which consists of two hidden layers with 50 neurons each hidden
layer, 1 input, and 200 outputs is considered in the first investigation to find an optimal combina-
tion of optimizer and activation function. In particular, 5 optimizers are examined, including Adam,
RMSprop, Adagrad, SGD, and Adadelta, as well as 6 activation functions, including linear, sigmoid,
softmax, softplus, tanh, and ReLU. The results are shown in Table 1. Mean square error (MSE), mean
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absolute percentage error (MAPE), and computational time for training and testing processes after
1000 epochs are used to evaluate the effectiveness of various combinations of optimizers and activa-
tion functions. According to the table, the combination of Adam optimizer and ReLU function gives
the lowest MSE (1.37E-5 for training and 3.60E-5 for testing) and MAPE (0.4550% for training and
0.9773% for testing). This combination takes around 16 seconds to train and test. Fig. 2 depicts the
convergence history of the Adam and ReLU combination. The graph indicates that the loss (MSE)
of both the training and testing processes converges to zero. As a result, this combination is used in
subsequent investigations.

Table 1. Comparison of the effect of various optimizer and activation function combinations on the accuracy
of the training and testing processes in ANN

Optimizer

Adam RMSprop Adagrad SGD Adadelta

Training Testing Training Testing Training Testing Training Testing Training Testing

A
ct

iv
at

io
n

fu
nc

tio
n

Linear
MSE 0.0005 0.0009 0.0005 0.0008 0.0006 0.0015 0.0036 0.0063 0.0005 0.0011

MAPE 3.1521 5.5602 3.1506 4.9649 3.1994 7.3267 8.5631 15.6713 3.0856 6.2279
Time (second) 13.2803 12.4348 13.9109 14.7382 18.6366

Sigmoid
MSE 0.0001 0.0002 0.0003 0.0003 0.0005 0.0008 0.0018 0.0019 0.0016 0.0015

MAPE 1.1934 2.1061 2.3094 2.8185 3.0490 5.0270 5.8368 8.2550 5.5188 7.2935
Time (second) 19.2116 19.2316 19.4978 18.2508 19.8407

Softmax
MSE 0.0001 0.0001 0.0001 0.0002 0.0009 0.0003 0.0261 0.0151 0.0018 0.0019

MAPE 1.0261 1.9580 1.2263 2.7306 3.6372 2.9887 28.9558 23.8606 5.8382 8.2601
Time (second) 19.5292 19.1123 18.2047 19.0603 20.6348

Softplus
MSE 0.0001 0.0005 0.0006 0.0003 0.0005 0.0009 0.0019 0.0021 0.0005 0.0011

MAPE 1.5143 3.7556 3.6047 3.2394 3.0296 5.5363 5.9485 8.5972 3.0304 6.0401
Time (second) 32.8799 27.9835 30.6368 28.2664 29.1650

Tanh
MSE 0.0001 0.0001 0.0001 0.0003 0.0004 0.0006 0.0030 0.0046 0.0005 0.0011

MAPE 0.9636 1.3040 1.7097 1.7097 2.5858 4.2623 7.7766 13.2956 3.0751 6.2054
Time (second) 15.9581 13.7303 14.3317 12.5754 14.4344

ReLU
MSE 1.37E-05 3.60E-05 4.17E-05 5.99E-05 1.04E-04 1.52E-04 3.63E-03 6.21E-03 4.68E-04 8.02E-04

MAPE 0.4550 0.9773 1.0948 1.3951 1.1507 2.0508 8.6151 8.6151 2.9421 5.1056
Time (second) 16.1840 13.4401 12.9469 11.7047 14.0394

Figure 2. The convergence history of the loss
function generated by combining Adam and

ReLU for the FG plate

The impact of the number of epochs in ANN
with Adam optimizer and ReLU function is then
examined. The obtained results are tabulated in
Table 2. As shown in the table, the ANN with
3000 epochs gives the best results. Thus, ANN
with Adam optimizer, ReLU function, and 3000
epochs is used to find the optimal number of hid-
den layers and nodes at each. According to the ta-
ble, an ANN with two hidden layers and 50 nodes
at each produces the greatest results, with accu-
racy rates of 99.6276% for training and 99.4023%
for testing. This procedure requires about 46 sec-
onds.

Following that, an initial XGBoost model with a maximum tree depth (max_depth) of 2 and a
learning rate (eta) of 0.3 is investigated. First, the effect of the number of trees (n_estimators) on the
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Table 2. The effect of the number of epoch on the accuracy of the training and testing processes in ANN

epoch 100 500 1000 3000 5000

MSE
Training 4.17E-04 4.80E-05 1.37E-05 1.63E-05 5.81E-06
Testing 3.90E-04 4.68E-05 3.60E-05 1.48E-05 1.60E-05

MAPE
Training 2.5200 0.6838 0.4550 0.3724 0.2398
Testing 3.0516 1.1380 0.9773 0.5977 0.6001

Time (second) 2.0874 7.7083 16.1840 46.1856 83.6125

Table 3. The effect of the number of hidden layers and nodes at each on the accuracy of the training
and testing processes in ANN

1-hidden layer 2-hidden layer 3-hidden layer

Number of nodes 10 50 100 10 50 100 10 50 100

MSE
Training 5.16E-04 5.05E-05 3.56E-05 5.15E-04 1.63E-05 7.67E-06 5.19E-04 5.48E-06 4.44E-06
Testing 1.01E-03 3.41E-04 1.51E-04 9.37E-04 1.48E-05 3.12E-05 8.51E-04 2.01E-05 2.42E-05

MAPE
Training 3.0998 0.6932 0.5666 3.1128 0.3724 0.2881 3.1517 0.2734 0.2123
Testing 5.9001 2.8518 1.9775 5.6237 0.5977 0.8206 5.2975 0.6978 0.7470

Time (second) 34.5629 39.4934 48.0315 36.4842 46.1856 59.3647 36.2287 49.7412 76.2092

Table 4. The effect of the number of trees on the accuracy of the training and testing processes in XGBoost

n_estimators 10 30 50 100 150 200 500 1000

MSE
Training 1.67E-05 2.66E-06 1.61E-06 7.33E-07 4.61E-07 3.72E-07 3.44E-07 3.44E-07
Testing 1.69E-05 3.26E-06 2.11E-06 1.10E-06 7.79E-07 6.67E-07 6.27E-07 6.27E-07

MAPE
Training 0.5197 0.2001 0.1513 0.0984 0.0761 0.0684 0.0659 0.0659
Testing 0.5303 0.2213 0.1725 0.1184 0.0965 0.0889 0.0865 0.0865

Time (second) 0.7166 2.0292 3.2557 6.4880 9.4724 11.8802 23.2319 47.5805

Table 5. The effect of maximum depth of a tree on the accuracy of the training
and testing processes in XGBoost

max_depth 1 2 3 5 7 10

MSE
Training 5.75E-06 3.72E-07 3.85E-07 2.88E-07 2.24E-07 2.00E-07
Testing 6.49E-06 6.67E-07 7.14E-07 5.81E-07 5.08E-07 4.77E-07

MAPE
Training 0.2711 0.0684 0.0729 0.0584 0.0489 0.0448
Testing 0.2945 0.0889 0.0938 0.0794 0.0709 0.0670

Time (second) 7.7124 11.8802 11.1105 11.1861 12.0319 12.7157

accuracy of the training and testing processes will be explored. The obtained results including MSE,
MAPE, and computational time are shown in Table 4. From the table, it can be seen that XGBoost with
n_estimators of 200, 500, and 1000 give the best results; however, XGBoost with n_estimators of 200
takes just 11.8802 seconds, while those of 500 and 1000 take 23.2319 and 47.5805 seconds, respec-
tively. Therefore, XGBoost with the number of trees of 200 is utilized to investigate the max_depth,
and eta parameters on the accuracy of XGBoost for predicting dynamic behaviors of the FG plate.
Table 5 shows the influence of the max_depth on the accuracy of the present method. The table shows
that a max_depth of 5 is sufficient to guarantee the precision of the training and testing processes.
Finally, XGBoost with n_estimators of 200 and max_depth of 5 is utilized to find an optimal learning
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rate (eta) for XGBoost in this study. Table 6 shows that, in comparison to other values of eta, 0.1
provides the best accuracy (99.9706% for training and 99.9474% for testing).

Table 6. The effect of learning rate on the accuracy of the training and testing processes in XGBoost

eta 0.1 0.2 0.3 0.5 0.7 1

MSE
Training 8.89E-08 2.13E-07 2.88E-07 3.06E-07 2.87E-07 2.57E-07
Testing 2.57E-07 4.46E-07 5.81E-07 5.85E-07 5.69E-07 5.44E-07

MAPE
Training 0.0294 0.0486 0.0584 0.0633 0.0627 0.0617
Testing 0.0526 0.0701 0.0794 0.0824 0.0828 0.0838

Time (second) 15.6894 11.8815 11.1861 10.2114 10.0426 9.7932

Figure 3. XGBoost model for predicting dynamic
behavior of the FG plate

As can be seen from the investigations above,
XGBoost with n_estimators of 200, max_depth of
5, and eta of 0.1 is the optimal model for predict-
ing dynamic behavior of the FG plate. Deflection
center versus time of the FG plate under sudden
load predicted with input nz of 10 by the opti-
mal XGBoost model is presented in Fig. 3. From
the figure, it can be seen that results obtained by
the XGBoost agree well with the exact ones. In
comparison to the optimal ANN model, the opti-
mal XGBoost model performs better for this prob-
lem. With regard to accuracy, XGBoost reaches
99.9706% for training and 99.9474% for testing,
while ANN achieves 99.6276% for training and 99.4023% for testing. Additionally, while ANN needs
46.1856 seconds for training and testing, XGBoost just needs 15.6894 seconds.

5. Conclusions
In this paper, ANN and XGBoost have been successfully developed for transient analysis of func-

tionally graded plates with variations in material properties along the thickness direction. This study
has examined a data set with one input, the power index, and 200 output values representing deflec-
tion versus time. Based on the data set, optimal weights for ANN and XGBoost have been found to
predict the behavior of the plate without using any analysis tool. Moreover, the effect of parameters
on the accuracy and computational time of two models have been investigated to find optimal models.
The results of these optimal models and IGA have been compared. Based on the results, it is clear that
XGBoost is not only superior to ANN in terms of accuracy and computational time, but it also ensures
accuracy when compared to IGA. The current method can be applied to more complex engineering
problems such as multi-directional functionally graded plates or shells. Moreover, optimization also
awaits further attention.
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