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Abstract

Salinity intrusion poses significant challenges to coastal regions worldwide. Reliable salinity prediction models
can provide valuable information to mitigate the impact and influence of salinity intrusion. However, their ac-
curacy relies mainly on the selected input variables and used optimal models. This study employs the Bayesian
Model Averaging (BMA) algorithm to evaluate input variable importance and select the most reliable salinity
prediction model. Based on an analysis of observed salinity data and climate data extracted from Landsat 8 OLI
in the Google Earth Engine platform, the BMA algorithm identifies the significance of critical variables and
optimal salinity prediction models. Various statistical metrics, including R-squared, Root Mean Square Error
(RMSE), and Mean Absolute Error (MAE) from the Random Forest method, were used to verify the perfor-
mance of these optimal salinity prediction models. These obtained results offer foundational knowledge and
valuable insights for future studies in determining appropriate input variables and selecting the best optimal
salinity prediction model.

Keywords: variable importance; salinity prediction model; Bayesian model averaging; Landsat 8; Google Earth
Engine; Mekong delta.
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1. Introduction
Salinity intrusion is a natural phenomenon that occurs when the salinity (salt concentration) of

the water in a freshwater system increases due to the intrusion of seawater or saline groundwater.
Salinity intrusion in East and South Asia is a critical issue that directly and indirectly contributes to
water insecurity, adversely affecting livelihoods, agricultural production, and social dynamics. The
Food and Agriculture Organization (FAO) estimated that saline soils currently cover approximately
397 million hectares of land worldwide, and these lands are projected to expand by an additional 2
million hectares annually [1].

The Mekong Delta plays a crucial role in the socio-economic development of Vietnam. Its ro-
bust agricultural sector fosters economic growth and supports millions of livelihoods in rural areas.
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In addition, it also plays an important role in facilitating trade and commerce between Vietnam and
other nations. In recent years, under the impact of the salinity intrusion, the Mekong Delta has faced
thousands of crops and agricultural land hectares that will be saltwater, threatening the livelihood
of local communities and the food security of Vietnam directly. Therefore, it is essential to properly
preserve and manage strategies in the Mekong Delta to reduce the impact of salinity intrusion and en-
sure sustainable development for this region. The salinity prediction models enable to capture spatial
distributions in salinity, help identify vulnerable areas, and prioritize resources for mitigation efforts.
The accuracy of these forecast models depends mainly on the importance of input variables and the
use of optimal prediction models [2].

Salinity intrusion is often influenced by many factors that interact in complex ways. Sea-level rise
due to climate change is one of the most crucial reasons for seawater penetrating further inland. Hu-
man activities, such as dam construction and excessive groundwater extraction, the topography and
geomorphology of coastal regions, land-use changes, and the urbanization process can also increase
the procedure of salinity intrusion [3]. Thus, capturing and understanding the interaction of these
diverse factors to salinity intrusion is essential to building and developing effective strategies to miti-
gate the impacts of salinity intrusion [4]. Multi-spectral satellite image data can be extracted from the
Google Earth Engine platform for salinity factors to serve salinity prediction models efficiently and
economically. Landsat 8 OLI in the Google Earth Engine (GEE) platform is a critical satellite image
source offering many advantages in exploiting salinity indicators and understanding salinity intrusion
processes. Its high spatial resolution facilitates the identification of changes in coastal environments,
which is crucial for monitoring salinity intrusion status over time. Many studies have utilized the salin-
ity indicators extracted from the Landsat 8 OLI in the GEE platform to build soil salinity maps [5, 6].
The development of machine learning provides a potential approach for understanding and predicting
salinity intrusion processes. By analyzing big volumes of complex data from various sources, such
as satellite imagery, hydrological measurements, and climate data, these algorithms can discover the
importance of input variables and hidden relationships between these variables and salinity intrusion.

Bayesian Model Averaging (BMA) algorithm is a technique that uses Bayesian models to integrate
information from many different models and generate a final prediction. The main idea of BMA is to
combine predictions from multiple models instead of relying on a single model [7]. In this way, the
BMA is able to minimize the effects of errors and uncertainties in a single model. BMA algorithm
also permits users and researchers to capture the importance of various models and their parameters,
leading to more reliable and robust results. The BMA algorithm was used as a single model to manage
saltwater intrusion in the “1,500-foot” sand aquifer in the Baton Rouge area, Louisiana [8], or to build
top-soil salinity maps for three coastal districts of Ben Tre province in Vietnam [9]. BMA was also
combined with chance-constrained (CC) programming to build a BMA-CC framework to design a
hydraulic barrier to protect public supply wells of the Government St. pump station from saltwater
intrusion in the “1500-foot” sand and the “1700-foot” sand of the Baton Rouge area, southeastern
Louisiana [10], or it also was employed using the combination of the Boruta–artificial neural network
(B-ANN) and the Boruta–support vector regression (B-SVR) models to predict long-term streamflow
of the Volga River [11]. Most of these studies have indicated the number of input variables having
a crucial role in assessing the salinity forecast models, and the used ML algorithms in these studies
have been applied based on scientists’experiences. The number of input variables and optimal salinity
prediction models need to be decided based on their importance assessments and the application of
robust ML algorithms [12]. In Vietnam, some studies have applied the Landsat-8 OLI data in the GEE
platform and ML algorithms in predicting the salinity intrusion in the Mekong Delta in recent years
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[13–16]. However, these studies have not used the BMA algorithm, evaluated the importance of input
variables, or mentioned the number of optimal salinity prediction models.

Salinity intrusion is a complex process influenced by various factors. In regions where salinity
intrusion models may change over time, such as the Mekong Delta, the BMA algorithm can offer a
powerful tool to solve the uncertainties and adapt to new data due to availability. Therefore, BMA
is used in this study to select the best models that reflect the potential relationships between salinity
intrusion and input variables. We first evaluate the importance of salinity variables extracted from the
Landsat 8 OLI in the GEE platform and then provide optimal salinity prediction models.

In this article, the first section provides an overview of the study. Section 2 presents information
on the materials used and the methods employed. Results and corresponding discussions are presented
in Section 3. Finally, the conclusion is shown in Section 4.

2. Materials and Methods
2.1. Study area

The Mekong Delta is the region in the south of Vietnam where the Mekong River approaches and
empties into the sea through a network of distributaries. The Mekong Delta borders Cambodia in the
North, Ho Chi Minh City to the Northeast, Thailand Bay to the Southwest, and the East Sea to the
East and Southeast. With a natural area of 39,712 square kilometers, the Mekong Delta includes 13
provinces and cities: An Giang, Kien Giang, Tien Giang, Hau Giang, Ben Tre, Bac Lieu, Ca Mau,
Can Tho, Long An, Dong Thap, Tra Vinh, Soc Trang, and Vinh Long (Fig. 1).

Figure 1. The study area and salinity monitoring stations

The Mekong Delta is a key economic region in Vietnam. With an average elevation of less than
1.5 m and a size of about 41,000 square kilometers, the Mekong Delta produces more than 50% of the
rice and more than 65% of the seafood in Vietnam. However, the Mekong Delta has faced significant
climate and environmental changes in recent decades. These challenges come from global climate
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change [17] and human activities living in the Mekong Delta [18] or at the Mekong Basin level
[19] leading to the Mekong Delta being threatened by storms, erosion, floods, land subsidence, and
saline intrusion [20]. The salinity issue poses significant challenges to humans, agriculture, livelihood,
freshwater availability, and the delicate ecosystem of the Mekong Delta.

2.2. Data used

In this study, in-situ salinity data during the day (2 hours/time) were collected from 68 salin-
ity monitoring stations that belong to the management of the Department of Agriculture and Rural
Development and the Hydrometeorological Center of Southern provinces. In addition, 67 Landsat 8
OLI satellite images with 1T levels with the 30 m spatial resolution were acquired in 6 months, from
January 1st, 2020, to June 30th, 2020. These images were corrected by irradiance measurement, topo-
graphic correction, and map projection registration in the Google Earth Engine platform. The spatial
resolution of used bands in Landsat 8 OLI satellite image is represented in Table 1.

Table 1. Description of the spatial resolution of bands in Landsat 8 imagery

Spectral bands
Wavelength

(micrometers)
Spatial resolution

(meters)
Repeat cycle

(days)
Sensor

Band 1 (Coastal aerosol) 0.43-0.45 30 16 OLI
Band 2 (Blue) 0.45-0.51 30 16 OLI
Band 3 (Green) 0.53-0.59 30 16 OLI
Band 4 (Red) 0.64-0.67 30 16 OLI
Band 5 (Near Infrared-NIR) 0.85-0.88 30 16 OLI
Band 6 (Shortwave Infrared-SWIR1) 1.57-1.65 30 16 OLI
Band 7 (Shortwave Infrared-SWIR2) 2.11-2.29 30 16 OLI
Band 8 (Panchromatic) 0.50-0.68 15 16 OLI
Band 9 (Cirrus) 1.36-1.38 30 16 OLI
Band 10 (Thermal Infrared-TIRS1) 10.6-11.19 100 16 TIRS
Band 11 (Thermal Infrared-TIRS2) 11.50-12.51 100 16 TIRS

Table 2. Collected data in this study

No Data Sources Year
Data format
and spatial
resolution

1 In-situ salinity
data during
the day (2
hours/time)

68 salinity monitoring stations - De-
partment of Agriculture and Rural De-
velopment, Hydrometeorological Cen-
ter of Southern provinces

January 1st,
2020 to June
30th, 2020

Point

2 67 Landsat 8 OLI
satellite images
with 1T levels

Google Earth Engine January 1st,
2020 to June
30th, 2020

Grid, 30×30 m

3 MERIT Digital
Elevation Model

MERIT DEM [21] 2018 Grid, 90×90 m
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This study used 337 in-situ salinity data that were collected from 68 monitoring stations in the 6
first months of 2020, from January 1 to June 30, 2020. In this study, input data were collected from
different resources and in different formats (Table 2).

To determine the relationship of salinity with spectral channels of satellite images, twenty-eight
salinity factors were extracted from Landsat 8 OLI, including five bands from band 1 to band 5, five
principal component analyses of band 1, 2, 3, 4, 5, and eighteen ratio bands (Table 3).

Table 3. Factors extracted from Landsat 8 imagery

Spectral bands/Ratio bands Formula Sources

Coastal Aerosol, Blue, Green, Red, NIR bands B1, B2, B3, B4, B5 [22]

PCA of bands 1, 2, 3, 4, 5 (Principal Component Analyses) PCA1, PCA2, PCA3, PCA4, PCA5 [23]

NDVI (Normal Difference Vegetation Index) NDVI =
NIR − R
NIR + R

[24]

NDSI (Normalized Difference Salinity Index) NDS I =
R − NIR
R + NIR

[24]

NDWI (Normalized Difference Water Index) NDWI =
G − NIR
G + NIR

[25]

ND47 (Normalized Difference between TM4 and TM 7) ND47 =
NIR − S WIR2
NIR + S WIR2

[26]

NDMI (Normalized Difference Moisture Index) NDMI =
NIR − S WIR1
NIR + S WIR1

[25]

COSRI (Combined Spectral Response Index) COS RI = NDVI
B +G

R + NIR
[27]

CRSI (Canopy Response Salinity Index) CRS I =

√
(NIR × R) − (G × B)
(NIR × R) + (G × B)

[28]

MSI (Moisture Stress Index) MS I =
S WIR1

NIR
[29]

EVI (Enhanced Vegetation Index) EVI = g ×
NIR − R

(NIR + c1 × R − c2 × B + l)
[30]

VSSI (Vegetation Soil Salinity Index) VS S I = 2 ×G − 5 × (R + NIR) [31]

SI1 S I1 =
√

G2 + R2 [32]

SI2 S I2 =
√

G × R [33]

SI3 S I3 =
√

B × R [34]

SI4 S I4 =
R × NIR

G
[35]

SI5 S I5 =
B
R

[36]

SI6 S I6 =
B − R
B + R

[36]

SI7 S I7 =
G × R

B
[36]

SI8 S I8 =
B × R

G
[35]

SI9 S I9 =
NIR × R

G
[35]

Note: R (Red band), G (Green band), B (Blue band), NIR (Near-Infrared band), SWIR (Short-Wave infrared), SI (Salinity
Index)), g = 2.5, c1 = 6.0, c2 = 7.5, l = 1.0 [37].
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After calculating in the GEE platform, these salinity factors would be used to update the salinity
data for each monitoring station. Because the Landsat 8 images were taken at 10 am, the salinity
values at the monitoring stations would be taken at the same time as the satellite images were taken
for analysis.

In this study, the location (Longitude, Latitude), altitude, and monitoring time of the salinity
monitoring stations were added as input variables to analyze and select optimal salinity prediction
models. On the other hand, because the Landsat 8 OLI image data are affected by clouds, scenes cov-
ered by clouds will be removed. As a result, time variables were acquired and coded for 23 days as
follows: x06Th01, x13Th01, x15Th01, x22Th01, x07Th02, x14Th02, x23Th02, x01Th03, x03Th03,
x10Th03, x17Th03, x19Th03, x26Th03, x04Th04, x11Th04, x18Th04, x27Th04, x04Th05, x13Th05,
x29Th05, x07Th06, x14Th06, and x21Th06. Therefore, in this study, there will be a total of 54 vari-
ables as input data to evaluate the importance as well as serve for the selection of optimal salinity
prediction models, including 28 factors extracted from Landsat 8 OLI imagery, 23-time variables,
and 3 variables representing the coordinate location and the elevation

2.3. Methodology

In this study, the in-situ salinity data were collected from 68 salinity monitoring stations together
with the Landsat 8 OLI satellite images exploited from the Google Earth Engine platform from Jan-
uary 1st, 2020, to June 30th, 2020. First, the correlation relationship between the in-situ salinity data
was checked to ensure their positive correlation and accuracy. Second, 28 climate data were extracted
from the Landsat 8 OLI satellite images in the Google Earth Engine platform. The location (Longi-
tude, Latitude), elevation, and time variables were also utilized to assess. A total of 54 factors were
selected to assess the importance and serve for selecting optimal salinity prediction models. Third, all
these factors were used as input data for the Bayesian Model Averaging model to estimate the variable
importance and select optimal salinity prediction models. Finally, various statistical indexes consisted
of R-squared (R2), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) exploited from
the Random Forest method, which was used to verify the fit to the input data of the models as well as
to confirm the performance of these optimal salinity prediction models. The research methodology is
presented in Fig. 2.

Figure 2. The methodology used in this study
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2.4. Methods used

a. Pearson correlation coefficient

The Pearson correlation coefficient is a statistical measure that quantifies the strength and direc-
tion of the linear relationship between two continuous variables [38]. This coefficient often ranges
from −1 to +1, where −1 indicates a perfect negative correlation, +1 reflects a perfect positive corre-
lation, and 0 denotes no linear correlation [39]. In this study, in-situ salinity data were collected from
different salinity monitoring stations and at different estuaries, so the Pearson correlation coefficient
was used to assess the correlation relationship between in-situ salinity data. The variables used to
evaluate are in-situ salinity data and monitoring station locations. This correlation coefficient test can
help understand and confirm spatial salinity variations [40].

b. Google Earth Engine platform

Google Earth Engine (GEE) is an advanced cloud computing platform that helps to preprocess
and analyze satellite imagery and other geospatial data. Google Earth Engine platform has a vast and
up-to-date repository of satellite imagery from various sources, allowing users to access historical and
current data for comprehensive analysis. Additionally, this platform provides a wide range of built-
in analysis tools and algorithms, simplifying complex geospatial computations and enabling users
to focus on their research instead of coding at the beginning step [41]. In this study, Landsat 8 OLI
image data were exploited from the GEE platform, and the salinity factors extracted from Landsat 8
OLI were also calculated in this platform (Fig. 3).

Figure 3. The salinity factors extracted from Landsat 8 were calculated in the GEE platform

After calculating in the GEE platform, these salinity factors would be used to update the salinity
data for each monitoring station. Because the Landsat 8 images were taken at 10 am, the salinity
values at the monitoring stations would be taken at the same time as the satellite images were taken
for analysis.
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c. Bayesian Model Averaging (BMA) algorithm

Bayesian Model Averaging (BMA) is a statistical algorithm used for model selection and predic-
tion in the context of Bayesian statistics [42]. This algorithm is particularly useful when dealing with
multiple competing models, each of which may have different strengths and weaknesses in explaining
the observed data. In this study, the BMA technique was applied to evaluate the input data’s impor-
tance and select optimal salinity prediction models. Mathematically, this algorithm can be described
briefly as follows [42]:

1. Let a set of n models M = M1,M2, . . . ,Mn. Each model Mi is related to a set of parameters θi
with i = 1, 2, . . . , n;

2. Assign prior probabilities P to each model Mi, denoted as P(Mi). The likelihood of observing
the data D for each model Mi, denoted as P (D|Mi, θi). This index quantifies the fit level of each model
to the observed data;

3. The posterior probability of each model Mi given the observed data D, denoted as P (Mi|D) and
it is calculated by using the following equation:

P (Mi|D) =
P (D|Mi) P (Mi)∑n

i=1 (P (D|Mi) P (Mi))
(1)

4. A quantity ∆ is present in all models, such as a covariate or a future observation. Then, using
Bayes’ theorem to calculate the posterior probability of a quantity ∆ as below:

P (∆|D) =
n∑

i=1

P (∆|Mi,D) P(Mi|D) (2)

where P(∆|Mi,D) is the posterior probability of ∆ with the known model Mi; P(Mi|D) is the posterior
probability of the model Mi with the observed data D.

This algorithm can build prediction models efficiently, and each prediction model has a predeter-
mined probability. This method can identify variables that have a close relationship with the outcomes
based on the actual data [42].

d. Random Forest method

Random Forest is an ensemble learning method that combines multiple decision trees [43]. This
technique can provide a more robust and accurate verification of forecast models by reducing the
variance and potential errors associated with individual trees. This technique also supplies feature im-
portance measures to enhance the verification process of prediction models and ensure more accurate
and reliable predictions [44]. Thus, in this study, various statistical metrics consisted of determination
coefficient (R2), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) from the Ran-
dom Forest method, which was used to verify the performance of these optimal salinity prediction
models. These indicators were calculated by using the following equations:

R2 =

∑n
i=1(yp

i − yp) ×
(
ym

i − ym
)

√∑n
i=1

(
yp

i − yp
)2
×
(
ym

i − ym
)2 (3)

RMS E =

√√
1
n
∗

n∑
i=1

(
yp

i − ym
i

)2
(4)
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MAE =
1
n

n∑
i=1

∣∣∣yp
i − ym

i

∣∣∣ (5)

where yp
i and ym

i are salinity values received from models and from monitoring stations of sample
i, respectively; yp and ym are mean values received from prediction models and from monitoring
stations; n is the total sample.

Normally, a higher R2 value indicates a better fit of the model to the input data; meanwhile, lower
RMSE and MAE values reflect better model performance.

In this study, the ML models including BMA and Random Forest algorithms were run in the
R software because it is a popular selection to address the problems of statistical computing and
data analysis. Moreover, the R software can supply a flexible analysis environment, a wide range of
available libraries, and high accuracy.

3. Results and discussions
3.1. Correlation relationship between in-situ salinity data

In this study, the in-situ salinity data from 68 salinity monitoring stations were checked for the
correlation relationship based on the Pearson correlation coefficient. Since in-situ salinity data were
collected from different salinity monitoring stations and at different estuaries, the Pearson correlation
coefficient was used to assess the correlation relationship between in-situ salinity data. The variables
used to evaluate are in-situ salinity data and monitoring station locations. The calculated results in-
dicated that the Pearson correlation coefficients of these data ranged from 0.756 to 0.971 (Fig. 4).
These obtained values reflected the good positive correlation between these in-situ salinity data and
ensured the objectivity of the input data.

Figure 4. Testing of correlation relationship between in-situ salinity data

3.2. Measuring variable importance and selecting optimal salinity prediction models

There are a total of 54 input variables, including 28 factors extracted from Landsat 8 OLI imagery,
23-time variables, and 3 variables representing the coordinate location and the elevation. We ran the
BMA package in R for selecting the optimal salinity prediction models.

The obtained results are presented in Fig. 5, in which the vertical axis denotes the number of
used variables, and the horizontal axis describes the number of received models. The results in
Fig. 5 show that the variables in the blue band mean that the regression coefficient is negative,
the red band is the positive regression coefficient, and the yellow color band does not participate
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in any model. Variables such as time variables (x06Th01, x22Th01, x07Th02, x23Th02, x10Th03,
x26Th03, x11Th04, x13Th05, x29Th05, x14Th06), coordinate variables (Latitude, Longitude) of
salinity monitoring sations, NDMI, MSI, and PCA2 appear 100% in all selected models. These re-
sults prove the highest importance of these input factors in the proposed models. Followed by vari-
ables such as SI5, COSRI, NDVI, DEM, VSSI, and B5 with appear frequencies of 61.2%, 49.8%,
49.6%, 48.6%, 45.7%, and 42.8%, respectively. Variables with the appear frequencies less than 25%
are EVI, NDWI, ND47, SI3, SI4, SI6, SI7, B2, and B3. Remaining variables such as time vari-
ables (x13Th01, x15Th01, x14Th02, x01Th03, x03Th03, x17Th03, x19Th03, x04Th04, x18Th04,
x27Th04, x04Th05, x07Th06, x21Th06), B1, B4, PCA1, PCA3, PCA4, PCA5, S1, S2, S8, S9, and
NDSI that are not statistically significant in the proposed models.

Figure 5. Appear frequency of input factors based on BMA analysis result

There were 147 established salinity prediction models (Fig. 5), but only five best salinity predic-
tion models based on the above-analysis results of the BMA algorithm. The result showed the five
best salinity prediction models out of 147 selected models (Fig. 6).

Fig. 6 indicates the five best salinity prediction models with the number of corresponding input
variables, of which the vertical axis describes intercept, the order of input variables (from X06Th01 to
PCA2), the number of variables (nVar), R-squared or coefficient of determination (r2), the Bayesian
Information Criterion (BIC) value, and the post-probability (post prob) values; the horizontal axis
reflects p factorial (p!), Expected Value (EV), Standard Deviation (SD), and the name of the best
prediction models. These models could determine 66% salinity values (r2 = 0.66) based on selected
input variables. The best salinity prediction models were selected from the calculated results of the
post-probability values and the Bayesian Information Criterion (BIC) value, so there were five se-
lected optimal models. The first optimal model consists of 18 input variables, r2 = 0.662, BIC value
is −259.6748, and the post-probability value is 0.048; followed by the second optimal model with 19
input variables, r2 = 0.667, BIC value is −259.0558, and the post-probability value is 0.036; the third
optimal model with 20 input variables, r2 = 0.672, BIC value is −258.7030, and the post-probability
value is 0.030; the fourth optimal model with 19 input variables, r2 = 0.667, BIC value is −258.4910,
and the post-probability value is 0.027; and the last optimal model with 18 input variables, r2 = 0.661,
BIC value is −258.4546, and the post-probability value is 0.026 (Fig. 6 and Table 4).
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Figure 6. Selection of salinity factors and 5 optimal salinity prediction models using
the BMA package in R software

Table 4. Five optimal salinity prediction models and the number of selected variables

Variables
Optimal salinity prediction models

Model 1
(18 variables)

Model 2
(19 variables)

Model 3
(20 variables)

Model 4
(19 variables)

Model 5
(18 variables)

Time variables (x06Th01,
x22Th01, x07Th02, x23Th02,
x10Th03, x26Th03, x11Th04,
x13Th05, x29Th05, x14Th06)

X X X X X

Elevation (m) - - X X -
Latitude X X X X X

Longitude X X X X X
NDMI X X X X X
NDVI - X X - -
VSSI X - - X X

COSRI - X X - -
MSI X X X X X
SI5 X X X X -
SI6 - - - - X
SI7 - X X - -
B5 X - - X X

PCA2 X X X X X
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3.3. Verification of 5 optimal salinity prediction models
In this study, the Random Forest model only validated the obtained optimal models from the BMA

technique, including model 1 (18 variables), model 2 (19 variables), model 3 (20 variables), model 4
(19 variables), and model 5 (18 variables) based on determination coefficient (R2), Root Mean Square
Error (RMSE), and Mean Absolute Error (MAE). Since 337 in-situ salinity data are continuing input
variables, so several statistical indexes, including determination coefficient (R2), Root Mean Square
Error (RMSE), and Mean Absolute Error (MAE) exploited from the Random Forest method were
utilized to validate the performance of 5 optimal salinity prediction models, including model 1 (18
variables), model 2 (19 variables), model 3 (20 variables), model 4 (19 variables), and model 5 (18
variables).

Figure 7. Statistical indexes of 5 optimal salinity prediction models

The calculated results demonstrated that the R-squared values ranged from 0.839 to 0.858, the
RMSE values ranged from 3.405 (%o) to 3.612 (%o), and the MAE values ranged from 2.672 (%o)
to 2.851 (%o) (Fig. 7). The obtained values generally denoted five optimal salinity prediction models
that fit the input data and have good performance.

4. Conclusions
By analyzing observed salinity data and climate data extracted from Landsat 8 OLI in the Google

Earth Engine platform, this study uses the BMA algorithm to identify the significance of relevant
input variables and filter optimal salinity prediction models. The analysis results from the BMA algo-
rithm show that only about 23 input variables play an important role in the total 54 input variables and
only five optimal salinity prediction models out of 147 synthesized models. In addition, various statis-
tical metrics consisted of determination coefficient (R2), Root Mean Square Error (RMSE), and Mean
Absolute Error (MAE) from the Random Forest method, which was used to verify the fit to the input
data of the models and to confirm the performance of these optimal salinity prediction models. The
results indicated these five best salinity prediction models that fit the input variables and had a good
performance. These findings of this study can supply foundational knowledge and a basis for future
studies, determining appropriate input variables and selecting the most suitable salinity prediction
model to ensure the efficiency of salinity mitigation strategies. In this study, we add the coordinate
and elevation as input variables; these variables have not been used in any of the published studies
before. The results of this study can provide valuable information and basic background for further
studies in shaping the selection of suitable input variables and optimal salinity prediction models to
save time and effort. This research only focuses on studying the application of machine learning mod-
els in evaluating the importance of input variables and selecting the optimal salinity prediction model.
The construction of salinity prediction maps will be conducted in further studies in the future.
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