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FREE VIBRATION ANALYSIS OF FUNCTIONALLY GRADED
TIMOSHENKO BEAM USING DYNAMIC STIFFNESS METHOD
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Summary: In this paper, free vibration of a functionally graded material (FGM) beam is investigated based on the
Timoshenko beam theory and dynamic stiffness method. Material properties vary continuously throughout the
thickness direction according to the volume fraction constituent defined by power law function. First, a consistent
theory of vibration is established for FGM Timoshenko beam taking into account the actual position of neutral axis
that is a useful tool for analysis of coupled vibration in the beam. Then, frequency equation obtained provides an
efficient method for free vibration analysis of FGM Timoshenko beam. The theoretical development has been
illustrated and validated by numerical examples.
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(@ 1.Introduction

Functionally graded materials (FGMs) are inhomogeneous composites characterized by smooth and
continuous variations in both compositional profile and material properties. FGMs are widely used in many
scientific and engineering fields, such as aerospace, automobile, electronics, optics, chemistry, biomedical
engineering, nuclear engineering and mechanical engineering. FGMs have been proved to be advanced materials
by their advantaged properties compared to the laminate composites and by the wide application in the high-tech
industries.

Various methods have been developed for free vibration analysis of FGM beam. The analytical methods
have been shown to be most accurate and efficient for dynamic analysis of FGM beam-like structures [1-5]. A
number of authors have developed approximate methods such as the Finite Element Method (FEM) [6-7],
Rayleigh-Ritz method [8], combined Fourier series - Galerkin method [9],...

As the FEM is established by using frequency-independent polynomial shape function, the FEM cannot
capture all necessary high frequencies [10]. An alternative approach improved the solution accuracy is to use
shape functions that depended on vibration frequency. This elegant concept led to the so-called Dynamic Stiffness
Method (DSM) [11]. The DSM uses the frequency dependent shape functions obtained from the exact solution of
the governing differential equations of motion in free vibration. The method provides exact results for all natural
frequencies and mode shapes without making any approximation on the way. The DSM is recognized as the most
accurate method in free vibration analysis, significantly superior to traditional FEM and other approximate
methods. By combining the advantaged features of the DSM with those of the spectral analysis method, the
authors of Ref. [12] introduced the fundamental concept of the Spectral Element Method (SEM) for the first time in
his 1978 work [13].

Apparently, there has been very little effort to solve the free vibration problem of FGM beams using the
DSM. The present research is based on earlier research [14-17] using DSM, but includes many additional features
with wide-ranging results for free vibration of FGM beams. It focuses on applying the DSM and investigating the
free vibration of FGM beams for different boundary conditions.
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While most of the aforementioned studies are based on the assumption that the neutral axis of FGM beam
coincides with the central one, the authors of Ref. [18] have determined exact position of the neutral axis and
investigated its effect on natural frequencies of FGM Euler-Bernoulli beams.

In this paper, the exact method developed on the DSM for dynamical analysis of FGM Timoshenko beam is
presented. Governing equations for vibration of FGM Timoshenko beam are conducted on the base of power law
distribution of FGM taking into account the actual position of neutral axis. The frequency equations obtained
provide a simple approach to analyze free vibration of FGM beam for different boundary conditions. Usefulness of
the theoretical development is validated by numerical results.

(@ 2. Governing equations
Consider a FGM beam of length L, cross section area A=bxh. It is assumed that the material properties of
FGM beam vary along the thickness direction by a power law distribution [16].
E(Z) Eb EI 7E.6 1 n
G(z)+ =G, ++1G, -G, [%ﬂ —hI2<z<h/2 (1)
P Lps) LP=Ps
where E, G and p stand for Young's, shear modulus and mass density and n is power law exponent, t and b denote

the top and bottom materials respectively; z is co-ordinate of the point from the mid plane axis at high h/2. It is
assumed that the displacement fields in the cross section at x are

NEUTRAL XS u(-xazat):uu(xat)_(z_hn)e(x:t)

A-A
/ :I w(x,z,t)=w, () (2)
184

Where u,, v, are the displacements of
neutral axis located at the high h, from

g the central axis; O is the rotation of the
Figure 1. FGM beam cross section.

Therefore, the normal strain g, and shear strain y,, can be expressed as follows

£, =0u,/ox—(z—hy)00 [y, =0w,/dx—8 (3)

And the normal stress o, and shear stress 1., are given by linear elastic constitutive law as

O, = E(2)e,;T,, =yG(2)y . (4)
Suppose thatthe beam is subjected to distributed loads: axial n(x,t), flexural p(x,t) and bending moment

m(x,t). Based on the Hamilton's principle, the equations of motion can be established in the time domain [7,17]
asfollows

Bty < (1diy — Aul) = (1.0 — 4,0" = n(x,t)
80 1 (1,10, — Aul) = (1,0 — 4,0") + Ay, (w), —0) = m(x,1) )
Bwy 1 4,y — Ay (wy —0") = p(x,1)
where
(Ayy> A3, ) = /{E(Z)(LZ —hy.(z —ho)z)dAS Ay =y JG(Z)CM

6
(1“,112,122):gp(z)(l,z—ho,(z—hg)z)dA. ©)

Using the power law distribution (1) for FGM material, the above constants (6) can be calculated as

A =bh(Er+nEb).I =bh(pr+npb).A =bh2 2E1+nEb_Er+nEb
& l+n " l+n " 22+n)  (1+n)

E

I =bh2[2p, +np, p,+np, a} o =bh3[3E, +nE, 2E,+nE, . E +nE, az}

22+n)  (1+n) 33+n) 2+n) (1+n)
I, _bh3|:3p; tp, 20, +np, P, +np,,0tz}A33 _ iy (G +1Gy)
33+n) Q2+n) (1+n) 1+n
o=1/2+hy/h
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Actual position of the neutral axis h, (Fig. 1) is defined as A,,=0 [18], one gets
__ nlg =Dh _E
T+ Dmtr) EE, (8)
Introducing the amplitudes of axial displacement, rotation, transverse displacement and loads

.0} = [luy(x.00 (0w, ()} ™d

V(). M), o)) = [inCe0mCen), ps.)e

Equations (5) become
(@1, U+A4,U"-0"1,0-4,0"=-N
((’32122@ +4,0") - mzlle AU+ 4,(W'-0) = -M (10)
o I W+ A, (W' -0 =-P
Using the following matrix and vector notations

A4, -4, 0 0 0 0 o’l, -o0’l, 0
A=|-4, 4, 0 [;II=0 0 Ay |3 C@) = _(’)2112 (’)2122_/433 0 (11)
0 0 A, 0 -4, 0 0 0 o’l,
z={U,0,W} ,q={N,M,P}" (12)
Equations (10) are rewritten in form
Az"+Mz'+Cz=—q (13)

3. Frequency equation
Equation of motion (13) in the case of free vibration is
Az"+Iz' +Cz=0 (14)

Acontinuous solution of Eq. (14) can be sought in the form z,= de** that yields

[VA+AIT+Cld =0 (15)
This equation would have nontrivial solution with respect to constant vector d under the condition
det[A’A + A +C) =0 (16)

Itis in fact a cubic algebraic equation with respect to n= A" that can be elementarily solved and gives three

roots n,, n,, M. Therefore, solutions of Eq. (16) are

where

Mg =thhys = 2hyihy = 2ky 5 k; = fn;, /=123 (17)
Now, general continuous solution of Eq. (14) can be represented as
6
z,(x,0)= Y. d;"”" (18)
J=1

Or in the matrix form
dyy dp . d M
zg=|dy dy . dyl|q:
dy dy e dy] €
Taking into account the second and last equations in (10) one gets

dy dyp ... dyg dy dy e dyg
dy dyp e da S| ody Gadin e Oedig (19)
dy dy o di Bidii Badin - Bedis

O T, + 124, 2 Ao, +224,)

o, = ,I_)), =
T, AN (07, 0 A o L, + A0

);j =12,..6 (20)
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Using the notations introduced in (17) itis easy to verify that
Oy =030 =030 =033 By =—P3Bs =—PiBg =B
And expression (18) can be now rewritten in the form
Z,(x,0) =G(x,0)C
With C=(C,...Cs)" =(d,,,..d )" and
G(x,0) =[G, (x,0) G,(x,0)]
e P T ek et e
G (x,0)=|ae" ™ o, [G,(xo)=| ae™ a,e™ o, (22)
B B, P, —Be™ —Poe —Be™
Decomposing the constant vector C = {C,,C, }" with C, ={C,,C,,C,}', C,={C,.C,,C, }' and letting nodal
displacements at the beam ends be denoted by
D,= {U0=®0=W0}T =z,(0,0);D, = {C4>C5=C6}T =2y(L,0) (23)
One gets
G C +G,C, =D, G, C +G,C, =D (24)
where
G (@)=G,(0,0);G,(@)=G,(0,0);G |, (@)=G,(L,0);G (@) =G, (L,0)

Obviously, Eq. (24) allows one to find

Cl =H,,D, +H1LDL;C2 =H,D, +H, D,
where

G -G, -G G,
H = L2 ;H - 02 ;H — Ll ;H - 0l
v GUIGLZ . GLIGUZ * GUIGLZ - GLlGUZ » GU]GLZ . GL1G02 * GUIGLZ - GL1GL|2

So that the solution z,(x) can be expressed as

z,(x,0)=0I(x,0)D, +I'| (x,0)D_

With

[(x,0)=G,(x,0)H +G,(x,0)H,y; I', (x,0)=G,(x,0)H,, +G,(x,0)H,,
Furthermore, suppose that vector of internal forces is defined by
P(x,0)={N,M,0}" =3z, (x.0)} =F, (x,0)D, + F (x,0)D;

F,(x,0)=3{,(x,0)}:F (x,0)=3{_(x,o)}.

Therefore, nodal force vectors would be calculated as

P, ={N,.M;.0,}" =F,(0,0)D, +F, (0,0)D, ;

P, ={N;, M0} =Fy(L,0)D, +F (L,0)D,

And can be rewritten in the form

{PO } _[FD(O,m) F, (o,m)} ) {DD}

P | |F,(Lo) F (Lo |D

The matrix

F,(0,0) F_ (0,m)

[K(‘”)]'[Fou,w) F, (L)

}—[ky(m),f,j_l,z,...ﬁ] (31)

is usually called dynamic stiffness matrix for the FGM beam element. The Eq. (30) can be used for
establishing frequency equation for beam with different boundary conditions as follows:

a) In the case of simply supported (SS) where boundary conditions are

Up=Wy =W, =M, =N, =M =0 (32)
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Eq. (30) yields
k1@ + kU +550 =0k0,00 + kU + k550 =0,k,0, +k5,Up +k5s0 =0

Hence frequency equation for SS beam gets the form

klz kl4 le
fss@)=det| ks, kg ks [=0 (33)
kSZ k54 kSS
b) Similarly, for cantilever (CF) beam where
U():W():G)U:NL:ML:QL:O (34)
Frequency equationis
k44 k45 k46
Jor@)=detl ks, kss ksg [=0 (35)
kﬁ4 k65 kﬁﬁ

c) Frequency equation for clamped end (CC) beam is obtained as special case as follows. Since nodal
displacements equal to zero, equations (24) yield
G, C, +G,,C, =0,G,,C, +G,C, =0 (36)

Sothat it must be satisfied condition

foc (@)= deL|:Gm @) Gy (m)} -0 (37)

G, G,
Eq. (37) is desired frequency equation for CC beam.

Thus, roots of the frequency equations established above provide natural frequencies o, of FGM beam. In
order to compare the results, the non-dimensional natural frequency A, is calculated as

2
i, :% I% (38)
b

@ 4. Numerical results and discussion

4.1 Comparison of natural frequencies of homogeneous beam

Consider a homogeneous SS beam made of pure Aluminum (Al) with following material properties:
E=70GPa, p=2700kg/m’, u=0.3, and cross sectional dimensions: b=0.1m, h=0,1m [16]. In this degenerated case
E=E,=E, the powerlaw exponent in the equation (1) is n=0.

The comparison of non-dimensional natural frequencies i for homogeneous Timoshenko SS beam for three
values of L/h is presented in Table 1 where present results are compared to analytical solution [19] using
Timoshenko beam theory (TBT) and those given Ref.[16] (using TBT). A good agreement between them is
observed.

Table 1. Comparison of non-dimensional natural frequencies i for homogeneous SS beam

Freg. L/h=10 L/h =30 L/h =100

i Present Ref. [19] Ref[16] Present Ref. [19] | Ref.[16] Present Ref. [19] | Ref.[16]

1 2.8023 2.8132 2.8023 2.8436 2.8451 2.8439 2.8451 2.8487 2.8496
2 10.7087 10.8530 - 11.3111 11.3320 - 11.3748 11.3906 -
3 22.5612 23.1117 - 25.2191 25.3192 - 25.5717 25.6124 -
4 37.1424 38.3823 44.2819 | 44.5802 45.4071 45.4925
5 53.4963 55.5937 68.1368 68.8173 70.8414 71.0004
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4.2 The influence of the position of neutral axis

Based on the equation (8), the effect of elasticity ratio E/E, and material power law exponent n on the
position of neutral axis is presented in Fig. 2. The neutral axis is shifted from mid-plane as the power law exponent
nincreases from n=3 to n=5 but decrease after that when n is higher. They coincide together when n==.

Fig. 3 presents the deviation between the calculated 1% non-dimensional frequency (X,) using neutral axis
(NA) and using mid-plane axis (MA) corresponding to the different elasticity ratios E/E, and power law exponent
n. The FGM SS beam has the following material properties [17]: E,=210GPa, p,=7800kg/m®, 1,=0.31 and
geometric dimensions: b=0.1m, h=0.1m, L/h=10. The figure shows that, as the elasticity ratio increases,
difference between fundamental dimensionless frequencies calculated using NA and MA increases. Also, as the
power law exponent n increases from 0 to 4 the error increases, after that, the increasing in graduation tends to
reduce error. When n is smaller than 1 (n<1), the deviation of frequency %, using NA and MA is small and lightly
dependent of elasticity ratio E/E,.

The relation h0 and n The relation of lambda1 and n

0.2

i /"‘\ i I ‘ 1-n:(:.2
018 1 -

2-n=0.

\ : 3-n=1

™~

0.14
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Figure 2. Effect of elasticity ratio E/E, and power law Figure 3. Deviation between the calculated
exponent n on the position of the neutral axis 1" non-dimensional frequency (\,)

using NA and MA with the different ratios E/E, and n

4.3 The influence of boundary conditions

A FGM beam with the following cross sectional dimensions: b=0.1m, h=0.1m; material properties:
Alumina (AL,Q,) in the top surface: E=390GPa, p=3960kg/m’, 1,=0.25; Steel in the bottom surface: E,=210GPa,
p,=7800kg/m’, 1,=0.31[16].

Table 2 shows the non-dimensional natural frequencies X, calculated by present study and by Su,
Banerjee (S&B) [16] for FGM beam using NA, MA with the different ratios L/h, power law exponent n=10 and
boundary conditions: SS, CC, CF. It is observed that the discrepancy between the results from this study with
thosein [16]is quite small.

Tables 3-5 present the non-dimensional natural frequencies X, calculated by the study and by S&B [16] for
the beam using MA with the different ratios L/h, power law exponent n and boundary conditions: SS, CC, CF. ltis
seen that the discrepancy between the sets of results from present study to those given by S&B is quite small.

Table 2. Comparison of non-dimensional natural frequencies 2, of FGM beam using NA and MA

Power law exponent (n) — n=10

SS-FGM beam CGC-FGM beam CF-FGM beam
S&B[16]  (NA) (MA) S&B[16]  (NA) (MA) S&B[16]  (NA) (MA)

2.9513 2.9369 2.9375 | 5.6680 5.6484 5.6484 | 1.0867 1.0813 1.0814
10.176 10.1299 10.1282 | 12.896 12.8530 12.8530 | 5.8159 5.7888 5.7919
16.686 16.6648 16.6796 | 16.686 16.6727 16.6727 | 8.3430 8.3503 8.3526
19.331 19.2538 19.2532 | 21.428 | 21.3620 21.3620 | 13.776 13.7143 | 13.7172
29.194 | 29.0943 29.0958 | 30.559 | 30.4735 30.4735 | 22.783 | 22.6916 | 22.6952
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1 | 3.0959 3.0805 3.0806 | 6.6638 6.6339 6.6339 | 1.1130 1.1074 1.074
2 | 11.805 | 11.7476 11.7474 | 17.014 | 16.9432 16.9432 | 6.6562 6.6236 6.6247
10 | 3 | 24.799 | 24.6834 | 246839 | 30.647 | 30.5295 30.5295 | 16.686 | 16.6779 | 16.6779
4 | 33.371 | 33.3619 | 33.3641 | 33.371 | 33.3620 33.3620 | 17.459 | 17.3766 | 17.3791
5 | 40.700 | 40.5218 | 40.5287 | 46.401 | 46.2376 46.2376 | 31.575 | 31.4296 | 31.4518
1 | 3.1363 3.1206 3.1206 | 7.0116 6.9776 6.9776 | 1.1199 1.1143 1.1143
2 | 12.383 12.3218 12.3218 | 18.892 18.8040 18.8040 | 6.9324 6.8979 6.8982
20 | 3 | 27291 | 27.1584 | 27.1587 | 35.987 | 35.8250 35.8250 | 19.394 | 18.9503 | 18.9512
4 | 47.214 | 46.9903 | 46.9890 | 57.504 | 57.2555 57.2555 | 33.372 | 33.3679 | 33.3690
5 | 66.743 | 66.7400 | 66.7451 | 66.743 | 66.7407 66.7407 | 36.345 | 36.1714 | 36.1745
1 | 3.1440 3.1282 3.1282 | 7.0825 7.0476 7.0476 | 1.1212 1.1156 1.1156
2 | 12502 | 124399 | 124399 | 19.319 | 19.2257 19.2257 | 6.9876 6.9528 6.9529
30 | 3 | 27.861 | 27.7241 27.7243 | 37.355 | 37.1805 37.1805 | 19.394 | 19.2986 | 19.2991
4 | 48.888 | 48.6527 | 48.6525 | 60.718 | 60.4428 60.4428 | 37.532 | 37.3503 | 37.3518
5 | 75163 | 74.8060 | 74.8108 | 88.946 | 88.5575 88.5575 | 50.058 | 50.0599 | 50.0612
Table 3. Comparison of non-dimensional natural frequencies ., for SS beam
n=0.1 n=0.5 n=1 n=5 n=10
L/h | Fg| Present S&B[16]| Present S&B[16]| Present S&B[16]| Present S&B[16]| Present S&B[16]
1 4.7807| 4.784| 4.0256| 4.0590| 3.6334| 3.6890| 3.0954| 3.1088| 2.9369| 2.9513
2 16.6399| 16.652| 14.0095| 14.128 | 12.6270| 12.818| 10.6124| 10.721| 10.1299| 10.176
S 3 281772 | 28.189 | 23.9367| 24.022| 21.5052| 21.621| 17.4741| 17.526 | 16.6648| 16.686
4 | 31.9007| 31.924 | 26.8653| 27.085| 24.1855| 24.531| 20.1835| 20.366 | 19.2538| 19.331
D 48.5456 | 48.579 | 40.9073| 41.215| 36.7950| 37.269| 30.5188| 30.757 | 29.0943| 29.194
1 4.9977( 5.001 4.2086 | 4.2432| 3.8004 | 3.8586| 3.2251| 3.2608| 3.0805| 3.0959
2 | 19.1228| 19.136| 16.1021| 16.235| 14.5331| 14.755( 12.3013| 12.434| 11.7476 | 11.805
10 | 3 40.3570| 40.385| 33.9801| 34.261| 30.6491| 31.110 | 25.8533| 26.122| 24.6834| 24.799
4 56.3731 | 56.379 | 48.0050| 48.044 | 43.1884| 43.242| 35.0281| 35.052| 33.3619| 33.371
5 | 66.5611| 66.608 | 56.0479| 56.502| 50.5213| 51.256 | 42.4555| 42.873| 40.5218| 40.700
i 5.0579| 5.0613 4.2594 | 4.2943 3.8468 | 3.9058 3.2669 | 3.3032 3.1206 | 3.1363
2 19.9907 | 20.004 | 16.8343| 16.972| 15.2015| 15.433| 12.9004| 13.042| 12.3218| 12.383
20 | 3 441262 | 44156 | 37.157/7 | 37.460| 33.5463| 34.052| 28.4358| 28.743 | 27.1584 | 27.291
4 76.4911 | 76.542 | 64.4085| 64.928 | 58.1323| 58.997| 49.2052| 49.725| 46.9903| 47.214
5 | 112.7558| 112.76 | 96.0780| 96.090| 86.4691| 86.486| 70.0965| 70.104| 66.7400 | 66.743
1 5.0694 | 5.0727 | 4.2691| 4.3041 3.8557 | 3.9147| 3.2749| 3.3113| 3.1282| 3.1440
2 20.1682( 20.181 | 16.9841| 17.123| 15.3384| 15.572| 13.0235| 13.167 | 12.4399( 12.502
30 | 3 449790 | 45.009 | 37.8773| 38.184| 34.2035| 34.719| 29.0258| 29.342| 27.7241| 27.861
4 79.0067 | 79.058 | 66.5306| 67.063| 60.0693| 60.962| 50.9395| 51.484 | 48.6527 | 48.888
5 1121.6210| 121.70 | 102.4129| 103.22| 92.451 93.801| 78.3316| 79.149 74.806 | 75.163
Table 4. Comparison of non-dimensional natural frequencies i, for CC beam
n=0.1 n=0.5 n=1 n=5 n=10
L/h | Fq | Present S&B[16]| Present S&B[16]| Present S&B[16]| Present S&B[16]| Present S&B[16]
1 9.3334| 9.3380 | 7.8761 | 7.9241 7.0980( 7.1772| 5.9244| 5.9699| 5.6484| 5.6680
2 21.4415( 21.455 | 18.0842| 18.206| 16.2684| 16.459| 13.4826| 13.585| 12.8530| 12.896
5 & 28.1816( 28.189 | 23.9661 | 24.022( 21.5450| 21.621| 17.4937| 17.526| 16.6727| 16.686
4 35.8024| 35.825 | 30.1987 | 30.399| 271480 27.456| 22.4161| 22.573| 21.3620| 21.428
& 51.2185| 51.248 | 43.2147 | 43.484| 38.8398| 39.251| 31.9895| 32.193| 30.4735| 30.559
No. 31
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10.8205
27.7924
50.3343
56.3731
76.5667

10.827
27.809
50.364
56.379
76.611

9.1182
23.4254
42.4315
48.0050
64.5588

9.1864
23.594
42.727
48.044
64.989

8.2292
21.1256
38.2389
43.1884
58.1469

8.3437
21.404
38.721
43.242
58.840

6.9493
17.7560
32.0050
35.0282
48.4886

7.0184
17.909
32.279
35.0562
48.873

6.6339
16.9432
30.5295
33.3620
46.2376

11.3264
30.5823
58.3934
93.5495
112.7561

11.334
30.602
58.430
93.607
112.76

9.5401
25.7612
49.1912
78.8087
96.0796

9.6159
25.961
49.565
79.395
96.090

8.6146
23.2565
44.3954
71.1008
86.4714

8.7425
23.593
45.019
72.072
86.486

7.3059
19.6918
37.5224
59.9769
70.0980

7.3844
19.896
37.898
60.554
70.104

6.9776
18.8040
35.8250
57.2555
66.7407

11.4287
31.2055
60.4151
98.3411
144.2895

11.326
31.225
60.453
98.402
144.38

9.6253
26.2825
50.8856
82.8310

121.5346

9.7027
26.490
51.280
83.458
122.43

8.6926
23.7329
45.9425
747714

109.6874

8.8232
24.083
46.605
75.822
111.18

7.3786
20.1300
38.9324
63.2962
92.7468

7.4591
20.345
39.337
63.933
93.646

7.0476
19.2257
37.1805
60.4428
88.5575

Table 5. Comparison of non-dimensional natural frequencies X, for CF beam
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S&B[16]

n=5
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n=10

Present

S&B[16]

1.7562
9.4924
14.0990
22.6642
37.7176

1
2
&
4
5

1.7574
9.5110
14.095
22.682
37.747

1.4789
7.9815
12.0400
19.0756
31.7521

1.4911
8.0609
12.012
19.243
32.022

1.3352
7.1906
10.8494
17.1764
28.5691

1.3557
7.3164
10.811
17.441
28.989

1.1321
6.0562
8.7814
14.3710
23.7865

1.1446
6.1274
8.7633
14.516
24.009

1.0813
5.7856
8.3503
13.7147
22.6900

1.0867
5.8159
8.3430
13.776
22.783

17954
10.7744
28.1583
28.4174
51.5826

a A W N =

1.7966
10.782
28.190
28.404
51.618

1.5120
9.0719
23.7474
24.1860
43.4392

1.5244
9.1477
24.024
24.098
43.787

1.3655
8.1884
21.3649
21.8317
39.1649

1.3864
8.3146
21.623
21.886
39.732

1.1594
6.9351
17.5049
18.2274
32.9360

1.1722
7.0111
17.527
18.391
33.2625

1.1074
6.6234
16.6779
17.3874
31.4357

1.1130
6.6562
16.686
17.459
31.575

1.8058
11.1886
30.7797
56.3733
58.8655

1.8070
11.196
30.800
56.379
58.897

1.5207
9.4220
25.9185
47.9898
49.6308

1.56332
9.4992
26.130
48.048
49.962

1.3734
8.5084
23.4003
43.1764
44.8203

1.3945
8.6383
23.755
43.246
45.402

1.1665
7.2217
19.8408
35.0424
37.8941

1.1795
7.3014
20.057
35.053
38.278

1.1143
6.8979
18.9501
33.3679
36.1786

1.1199
6.9324
19.394
33.372
36.345

1.8077
11.2710
31.3047
60.6407
84.5695

O s W N=2O W N =

1.8089
11.278
31.325
60.681
84.569

1.5223
9.4916
26.3620
51.0631
72.0760

1.5348
9.5691
26.576
51.475
72.072

1.3749
8.5720
23.8056
46.1043
64.8758

1.3960
8.7027
24165
46.795
64.870

1.1679
7.2789
20.2045
39.1038
52.5843

1.1809
7.3594
20.425
39.525
52.580

1.1156
6.9528
19.2986
37.3497
50.0599

1.1212
6.9876
19.394
37.532
50.058

4.4 The influence of the material distribution exponent n and the slenderness ratios L/h

Figures 4, 5, 6 show the changes of first three non-dimensional natural frequencies i of the FGM beam
with 8S, CC and CF boundary conditions with respect to different power law exponent n and ratio L/h. It is seen
that all the frequencies decrease with the increase of n. Especially when n<1 all the frequencies decrease rapidly.
Also, the natural frequencies increase when the ratio L/h increases for the fixed value of n. Change in the second
and the third frequencies with respect to the ratio L/h is more pronounced than the change in the first frequency.
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Figure 4. Changes of first three non-dimensional natural frequencies of FGM beam for SS boundary condition
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Figure 5. Changes of first three non-dimensional natural frequencies of FGM beam for CC boundary condition

on the different power law exponent n and ratios L/h
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on the different power law exponent n and ratios L/h

(.: 5.Conclusions

In this paper, free vibration of FGM beam is investigated based on Timoshenko beam theory and power
law distribution of FGM material using DSM. The DSM is recognized as the most accurate method in free
vibration analysis, significantly superior to traditional FEM and other approximate methods. The method provides
exact results for all natural frequencies and mode shapes without making any approximation on the way.

A consistent theory of vibration is established for FGM Timoshenko beam taking into account actual
position of neutral axis that is a useful tool for analysis of coupled vibration in the beam. It is emphasize that when
using neutral axis, the coefficients related to the mutual stiffness of axial and bending deformation are eliminated.
Thence, the governing differential equations are in simpler form, which are similar to homogeneous beam. It

allows one to propose an efficient method for free vibrations analysis of FGM Timoshenko beam from lowest
natural frequencies.

The exactness of theoretical development has beenillustrated and validated by numerical examples.
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