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Summary: This paper presents formulae and procedure fo determine geometrical properties of a mono-
symmetrical I-section beam with hollow flange; this is an opened-closed section. Then the expressions of
flexural-torsional buckling can be applied to obtain critical moments. The comparison of critical moments
between the symmetrical I-section and the mono-symmetrical I-section shows the efficiency of the hollow flange.
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( . 1. Introduction

The history of the theories of flexural-torsional buckling is already more than 100 years. The first authors are
probably Prandtl and Michell who published in 1899 the research on the flexural-torsional buckling of simply
supported beam of narrow rectangular section, which is subjected to the uniform moment. After that, in 1905,
Timoshenko established the governing equation and solved the buckling problem of the I-section beam subjected
to the uniform moment. Timoshenko continued to develop the theory of elastic stability; he presented his research
in a book written together with Gere [1]. In 1930s, Wagner developed the theory of elastic stability of the mono-
symmetrical I-section beam and introduced a formula to calculate the factor which presents the mono-symmetry of
the section. In 1940s, Vlasov [2] developed a general theory of thin-walled members in which there is the theory of
flexural-torsional buckling of the beam. Vlasov is the first author presenting the concept of the warping torsion,
sectorial coordinates and warping constant of the thin-walled section. Bleich [3] used the energy method in which
the total potential energy of the beam transversally loaded is equal to the sum of the internal energy and the
external work done by the load on the buckling displacements. Timoshenko and Gere [1] established governing
equations of the buckling when they considered the balance of an infinitesimal element in conjunction with the
balance of a part of the beam.

After the above authors, many researchers investigated the buckling of the beam on both sides theoretical
and experimental. Anderson and Trahair [4], Attard and Bradford [5] did experiences on the cantilever of mono-
symmetrical |-section. Anderson and Trahair [4], Assadi and Roeder [6], Ings and Trahair [7] studied the influence
of the loading position from experiences on the beam of doubly symmetrical |-section. Trahair [8] established a
formula calculating the normal strain which includes linear and nonlinear components. From that, the theory of
buckling beam is established based on the total potential energy which is equal to the sum of the internal linear
energy, the internal nonlinear energy done by normal stresses and the work done by the external load on second
order displacements when the beam is buckled. Zhang and Tong [9] constructed a new theory based on the
variational principle and the theory of thin shell. However, Bui [10] proved that the theory of buckling beam
proposed by Zhang and Tong coincides to the classical theory in almost cases. Among others, Djalaly [11]
proposed successfully a general formula to calculate the critical moment of flexural-torsional buckling. This formula
is adopted by Eurocode 3 and written in Annex F [12] as follow:
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where C,, C,, C, are factors depending of Ioadlng and restraint conditions; k, and k are factors of effective length
concerning flexural and torsional restraints at the ends of the beam; y, is height of load which is the distance
between the applied point of load and the shear center;

Ye=Ya— Y, 2)
where vy, is coordinate of the applied point of transversal load; y, is coordinate of the shear center with respect to
the gravity center.

v, Iy(r (3)

The coordinates y are positive when they are measured from the shear center to the compressed flange.

We approached the question of buckling member when studying the theory of thin-walled structure. A
more complete expression of total potential energy in the buckling analysis of beam is presented in [10]. Then, a
beam-type finite element program was implemented [13]. This program can analyze the flexural-torsional
buckling of isostatic and hyperstatic |-section beams. The beam section can be mono-symmetrical and we can
consider a sophisticated static loading, that is, the arbitrary position of the load along the beam and the height of
applied point of the load in comparison with the shear center of the section. Based on the procedure and formulae
developed by Murray [14], a sub-program is written to calculate automatically geometrical properties of the
section [15], the sub-program can determine the gravity and shear centers, the first and second moments, the
sectorial coordinates, the warping and uniform torsion constants of an opened mono-symmetrical |-section.
Recently, we have studied the uniform and non-
uniform torsions of closed and opened-closed
sections. The way to determine geometrical
properties of closed and opened-closed sections was
presented through examples of the study [16]. We
would like to apply the results of the previous research
to a case study, namely: flexural-torsional buckling of
mono-symmetrical I-section beam with hollow flange.
If the beam is designed in symmetrical |-section
(Figure 1a), it is unconservative under the verification
of flexural-torsional buckling. We can weld two
inclined stiffeners on the compressed part of the
beam to form a hollow flange as indicated in Figure
1b. This solution aims to increase the flexural and
torsional rigidities of the compressed part and of the
section as suggested in some books of steel
structures [17,18].

Figure 1. |-section with hollow flange

( . 2. Application of the theories of torsion in the calculation of section properties

a) Theory of uniform torsion

Saint Venant's theory of uniform torsion was presented in [14] for
the determination of the torsion constant |, of the section.

Al

For a section with some closed parts in Figure 2, we can establish b
an equation for each closed part:
1 s ds Ceds B D
— =y |—+y. d— -y, |— =1
24[ w,flf_’[t v W,HBII] (@) .

in which A, is the area enclosed by the part i, t is the thickness of the

considered segment. i )
) ) ) Figure 2. Section of closed parts
Hence, a system of equations is obtained for all closed parts of

the section. Resolving these equations, we obtain the value of \,and the
torsion constantis calculated: /7, =23y, 4, (5)
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The demonstration of Equations (4)+(6) can be found in[14,16].

(6)

When the section has only a closed part: /, =

Ifthe section includes closed and opened parts, we make a sum:

1 3
I, = Qli )dmea' + Qli )npmed = 22‘”14 +§Zlktk (7)
b) Theories of non-uniform torsion

Vlasov's theory is applied for opened section while Karman and Christensen's theory is used to closed
section. These theories were presented in [14] fc_:rthe determination of sectorial coordinates w .

For opened parts of the section: w,(s)= Ip 5 (8)ds (8)
0

For closed parts of the section: @, (s) = ]|:p3 (s) —w'}ds (9)
{
0

where ps () is the sectorial radius corresponding with the pole B.

The derivation of Equations (8) and (9) can be found in[14,16].

Once having the sectorial coordinates, the sectorial properties of the section can be calculated, namely:
the shear center and the warping constant |,

( . 3. Geometrical properties of thin-walled opened-closed section

In a study [16], we based on the formulae developed by Murray [14] to present a procedure determining
geometrical properties of a thin-walled section. This procedure can be utilized for both opened and closed sections.

Considering an opened-closed section as indicated in Figure 3,
there are 3 systems of coordinates in use:

i) Initial axesf,_;with the origin A; the sectorial pole B and starting
pointV are arbitrarily chosen. Of course, we have:

[osdF=5_#0.

F 28

ii) Intermediate axes x*, y* with the origin C being gravity center of
the section; the x*, y* are parallel to the initial x, y, respectively. The
sectorial pole B is preserved the initial location but the starting point V is

chosen so that: Iw,;dF =S,. =0.
F

iii) Principal axes x, y with the origin C; the axes x, y are rotated an
angle vy from the x*, y* and the sectorial pole B is moved to the location of
the principal sectorial pole M.

|
Y
Figure 3. An opened-closed section

The steps of calculation can be performed as follow:
a) Intheinitial axes},}_;, calculating respectively geometrical properties of the section:
2

S,:j}dF S,:j;?dF f_:f} dF f_:jfdp 17,:];?de (10)
*OF YOF Y F YoOF wor

With the sectorial pole B and starting point V, drawing the diagram of sectorial coordinates ® and
determining sectorial properties of the section:

S =S =[odr I =1 _=[oydF I
o P ox F

g Opx

[OF: B3

S =!(T)a?dF I

g

=1_=[owadr (11)
oo P

The coordinates of gravity center C in the axesE,}Tare specified according to the condition:

«=85,=0
S, =8, (12)
S S
s = P
Fromthat: x. = 7 DE- (13)
These are well-known formulae determining the gravity center C of any section.
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b) The intermediate axe x*, y* are obtained by translating the initial axes x, )_zfrom the origin A to the origin
C. The coordinates of any pointin the axes x*, y* can be specified:
X =x-x. i (14)
The initial location of the sectorial pole B is preserved but the starting point V is moved to V* so that:

S

Sy = _I.(D*dF =0, which can be realized if we chose: ©, = Gp (15)
F

And the sectorial coordinates are calculated according to the pole B and starting point V*:
S
F
Evidently: S . = [w,dF = |[(@,~—22)dF =0
LORIS J B J =

=W,

The formula (15) is of the same meaning with the formulae (13).

The geometrical properties in the axes x*, y* are now determined: ss

1., = [G=X -5 )dF =l =% (S —FeF) =y (S ~Xo F)=Xoyo F=1 ——2
Xy J( = ye) i e = YeF)=ye( P )—Xc Ve 5 F (17)
Identically, we have:
N ) s? : S’
=1 -0 7o ] LA Y 3 . y . __o  (18)
F L oy F T s F oy o F
c¢) The principal axes x, y are received by rotating the intermediate axes x*, y* an angle y so that:

I, = Ixde =0 (19)
F

The relation between the coordinates x, y and x*, y* of any point is expressed:

x=x cosy —y siny y=—x"siny + y" cosy (20)

2.
5 (21)

Using the condition (19) to getthe angle : tan2y = 7. 11,
X‘ y‘

The angle v is positive when the rotation is clockwise.
Now, the shear center M can be located by annulling sectorial products of area:
e _l.(’)M}’dF =0 1, ., = IU)deF =0 (22)
F F

In use of (22), the coordinates of the shear center M can be calculated from the initial pole B in the x*, y* system:
R ST e B

b - = e x‘)" m‘y‘ =
. - . (23)

Yu—Vg =
A L 1.1.-1%,
Xy STy Ty

Xy

When transforming from the pole B to the principal pole M, the sectorial coordinate changes:

@, =05 =y —xp)¥" +(Vy —yp)x’ (24)

Coordinating with (22), it can be seen that the sectorial coordinate ,, above is principal because:

Suy = J0udF = [l0F -G 520" + G~ y)xldF =S, ~( —52)S . + Ol —¥)S,, =0 (25)
F F

Finally, in the principal axes, the geometrical properties can be yielded:

e ;lktk (26)

I = IyzdF e J.(fx* siny +y" cosy ) dF = 1, sin*y +1_cos’y —1..sindy
2 2 i ;

1, = IxzdF = J‘(x* cosy +y siny ) dF =1, cos®y + 1 sin*y +1 . sindy
F F ’

1,,, = foidr =[lo; —@, —xp)w + 0~y dF =1, —(x =X)L+ =V,
F F

No. 31

10—_ 2016 JOURNAL OF SCIENCE AND TECHNOLOGY IN CIVIL ENGINEERING




D AR » "‘l! /) ' @

(. 4. Flexural-torsional buckling of mono-symmetrical I-section beam with hollow flange

In this section, we consider a case study: a beam of I-section which has the dimensions and section
properties shown in Figure 4a. When the beam is designed in symmetrical |-section, it is unconservative under
the verification of flexural-torsional buckling. We can weld two inclined stiffeners on the compressed part of the
beam to form hollow flange as indicated in Figure 4b. This solution aims to increase the flexural and torsional
rigidities of the compressed part and of the section. All steps of the procedure presented in Sections 2 and 3 are
carried-out to receive section properties. Then the expression of flexural-torsional buckling of beam (1) can be

applied to obtain critical moments.
300
t=

9 pa—

| — T
;ts=6
F=17800 mm’ gi: \><6‘ g: :
1,117.18e+07 mmi* 100 115
= o 1,79.0e+07 mm
3 10 @  1,21.79¢+06 mni t,=10
T [=7.57e+12 mm’
E=2.05e+05 N/mm®
: G=0.79e+05 N/mnt S _
=
é 300
(a) (b) (c)

Figure 4. Sections of the beam before and after stiffening
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Figure 5. Gravity center, shear center, Cartesian and sectorial coordinates of the section
a) Section properties
The I-sectionin Figure 4b can be considered as a thin-walled section, that is, the section may be interpreted
by median lines of segments (Figure 4c). The calculation of section properties is performed on this interpretation. It
is noted that for the uniform torsion, Saint-Venant's theory is used while concerning the non-uniform torsion,

Vlasov's theory is applied for the opened parts and Karman and Christensen's theory is used for the closed parts of
the section. The presentation of these theories for the determination of sectorial properties can be found in [14,16].

No. 31

JOURNAL OF SCIENCE AND TECHNOLOGY IN CIVIL ENGINEERING —10 - 2016

150 580 + +\ 580 + 150
- —_— 4

928

29304

@ @ - | 87000 @ @ @ ~| 45758
(9) ()



RESEARCH RESULTS AND APPLICATIONS

The initial axes J_C, }7 with the origin A, the sectorial pole B and the initial starting point V are chosen as indicated
in Figure 5a. Firstly, we need to draw diagrams of Cartesian coordinates J_r, }7 and sectorial coordinate ©. The diagram

of xand J; coordinates are shown in Figures 5b and 5c. The sectorial coordinates o are calculated below:
For each triangle hollow part of the section: {ﬁ:E+E+@:4435
or each triangle hollow part of the section: ===+ 6 s

ds 115
Forthe segment between two hollow parts : IT? T 11.5

In use of Equation (4), equation for each hollow part is established.

Forthe hollow partin the left : — [44.35\”1 —11.5412]= 1

2x—x115x115
2

Forthe hollow partin the right : ;[—11.5111 +4435y, |=1
2x5x115x115

Resolving these equations, we have : v, =y, =402.588

From Equation (9), sectorial coordinates of closed parts are obtained:

115,
FromVto1: 1= j(0—4022‘388Ja(v:—2315

0

162.6
From1t03: @3 =-2315+ J' [81.327 402(‘)588qu=0
0

_ 115 0
From3toV: y=y2-y1=0 oy =0+ I[O—E)dvzo
0

From Equation (8), sectorial coordinates of opened parts are obtained:
463

35
From1to2: (732:72315+I0ds:—2315 From3tod: ©s=0+ j()ds:o
0

0
150

From4to5: ©s=0— jSSOa‘s:—S?OOO
0

The o diagram Figure 5d is antisymmetrical about the vertical centerline. The formulae of numerical
integrals presented in [14] can be used to calculate the section properties (Equations (10) and (11)).

F =19751.2mm" S =35274194mm’ S =O0mnt S =0mm’ I =0mm’
B

x ® xy

1 =267.737487x10" mm* I =9.860154x10" mm"* I =0mm’

Y ox

1 =-27.110797 x10°mm’ I =15.157206x10"mm"

@y
The coordinates of the gravity center are specified by Equation (13):
Xo= LA Omm Vo= e . 267mm
19751.2 19751.2
R
19751.2
It signifies that the starting point V* coincides to the initial V: @, =o,-», =0,

From Equation (15): @

From the transformation formulae (17) and (18):
o 5ux0 o 0x5274194
X 197512 LE 197512

1. =126.899855x10"mm" 1. =9.860154x10" mm’* 1. =15.157206x10" mm*

li 1., =-27.110797x10° mm’

The coordinates of the shear center M are found from Equation (23):
. 0x9.860154x107 —(=27.110797 x10%)x 0
A 7 gz =0
126.899855x10" x9.860154%10" —0

oy _ 0x0—(-27.110797x10”)x126.899855% 107
Moo 126.899855%107 x9.860154x107 —0°
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(0; (= (_93) can be transformed to ®,, by using Equation (24): ®,, =) +275x"

And this is plotted in Figure 5j.

The product section properties are found from Equations (27)+(29), whence:
1,=1.=126899855x10"mm* I, =1.=9.860154x10" mm" 1, =7.703092x 10" mm°
The torsion constant |, is obtained from Equation (7):

1, :2x2x402.588x%x115x115+%x[2x35x203 +465x10° +2x150%20°]

=10.648453x10° +1.141667x10° =11.79012x10° mm®
The last calculation shows that the torsion constant of closed parts is much more important than of opened
parts (10.648453x10° mm°® vs 1.141667x10° mm®). The formation of closed parts improves much the torsion
rigidity of the section. Comparing to the initial symmetrical I-section, the torsion constant |, of the stiffened section
11.79012x10°

increases to =6.6
1.79x10° B
Table 1. Critical moment (k=1.0, k,=1.0)
Me1 Tm n_lqrc;lz
. . wgn MchIM
Restraint and loading conditions Ci Cz Cs Initial Section with &
section hollow flange
MX MX
O 5 1.0 - 1.0 732 1415 1.93
25 A
M, M, /2
N = 132 | - | 099 | 966 186.9 1.94
P Ay
My
(_\ 1.88 - 0.94 137.6 266.7 1.94
P Ay
Mx(_\ M, /2
2.70 - 0.68 197.7 386.9 1.96
553 »
My My
(\ (‘w 275 - 0.00 201.3 404.7 2.01
P Ay
qy
; * * ‘ * * ‘ * { 1.13 0.46 0.53 59.7 137.4 2.30
55 Ay
dy
; ‘ ‘ ‘ ‘ ‘ ‘ ‘ k 1.28 1.56 0.75 35.6 105.7 2.97
Ry
136 | 055 | 1.73 67.6 152.9 2.26
5> e
Py
. N 156 | 127 | 264 50.3 132.6 264
v _|°
,9% JrAN 1.05 0.43 1.12 56.6 126.2 2.23
Li4 L2 /4
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b) Critical moment

Using the formula (1), we can compare the critical
moment of the beams of symmetrical section (Figure 4a)
and mono-symmetrical section with hollow flange (Figure
4b) in Table 1. The length of the beam is 10m. It is noted
that for the symmetrical section y,=0, y=0, y,=290mm
while for the mono-symmetrical section y.=267.03-
274.95=-7.92mm, y=-28.8mm, y,=275mm. Figure 6. Flexural-torsional buckling shape

We can see in Table 1 that the critical moment of of the beam in uniform bending

the mono-symmetrical section with hollow flange is

greatly increased, from 1.93 to 2.97 in comparison to the initial symmetrical section while the areais only increased
19751.2
of

=1.11 . The flexural-torsional buckling shape of the beam in uniform bending is presented in Figure 6.

17
(@ 5.conclusions

The article presents concretely the formulae and procedure to determine the section properties of a mono-
symmetrical |-section with hollow flange. The calculation of critical moment of the beam with various loading types
shows the much more rigidity of the mono-symmetrical section with hollow flange. Moreover, the two inclined
stiffeners welded on the compressed part of the I-section enhance also the local stability of the flange and web of
the section. So, this technical solution is efficient and the formulation implemented in the article can be practically
applied to the design of the beam subjected to the flexural-torsional buckling condition.
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