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TRUSS SIZING OPTIMIZATION USING ENHANCED
DIFFERENTIAL EVOLUTION WITH OPPOSITION-BASED
MUTATION AND NEAREST NEIGHBOR COMPARISON

Pham Hoang Anh"

Summary: An optimization algorithm based on differential evolution (DE) is presented for optimal truss sizing
design. The algorithm applies a simple opposition-based mutation scheme and the so-called nearest neighbor
comparison method to the classical DE. The opposition-based mutation can accelerate the convergence, while
the nearest neighbor comparison, which uses neighborhood information to judge the order relation between two
solution points, can omit an unfavorable solution without evaluating it. Four well-known truss sizing problems with
continuous variables are used to examine the performance of the proposed algorithm. The results show that the
new DE algorithm can effectively obtain high quality solutions and it is competitive to some modern metaheuristic
algorithms in the literature.
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(@ 1.introduction

Truss optimization is one of the most popular design problems and has been an extensive research area
both in modeling and in development of optimization methods. Often the weight of truss structure is minimized
while subjected to stress and/or displacement constraints. This optimization task is in general difficult to solve
because of non-linear constraints and non-convex feasible region. This means that the convergence of traditional
gradient-based optimization methods cannot be ensured.

Metaheuristics such as genetic algorithms, particle swarm algorithms and evolution algorithms have been
increasingly proposed as alternative technigues for optimization of truss structures [1]. Some recent methods
which have shown good performance are harmony search algorithm [2], teaching-learning-based optimization
algorithm [3, 4], chaotic swarming of particle algorithm [5], colliding bodies optimization [6, 7], flower pollination
algorithm [8]. As a common issue in metaheuristics, most of these techniques, however, require a high number of
structural analyses to reach a near optimum. It will be computationally demanding for large-scale problems.

In this paper, a metaheuristic algorithm based on differential evolution (DE) is presented for truss sizing
problem. The motivation of using DE is that DE has simple structure, requires few control parameters and is shown
very efficient for various kind of optimization problem [9]. DE has also been utilized successfully for truss
optimization. Wang et al. [10] reported a very first study for optimization of truss with continuous and discrete
variables by DE. Wu and Tseng [11] proposed a multi-population differential evolution with a penalty-based, self-
adaptive strategy for optimization of the size, topology and shape of truss structures subjected to allowable stress,
deflection and kinematic stability constraints. Silva et al. [12] used different DE variants in a dynamic manner,
applied an adaptive constraint handling technique and proposed the DUVDE algorithm for engineering design,
including application to optimal sizing of truss structures. Krempser et al. [13, 14] introduced the SMDE, which is
the combination of surrogate models and DE for sizing optimization of truss. Recently, some new variants of DE
have been presented for truss optimization, including discrete variable handling technique combined with the

improved (p+A) - constrained differential evolution [15], adaptive differential evolution algorithm [16], adaptive
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elitist differential evolution [17] and reliability-based improved constrained differential evolution [18]. Noticeably,
modifications can enhance the performance of DE in terms of both optimum solution found and number of function
evaluations.

This paper introduces simple techniques to improve the performance of DE, including an opposition-based
mutation and a nearest neighbor comparison method and presents an opposition-based DE with nearest neighbor
comparison (ODE-NNC). The strategy is to use the order relation between design variable vectors to guide DE
toward more favorable region and to skip unnecessary function evaluations. The proposed algorithm is examined
with four classical truss sizing design problems with continuous variables. The optimization results are compared
with those of some modern metaheuristics.

The organization of the rest of this paper is as follows. In section 2, the optimization and the constraint
handling rules are presented. The new ODE-NNC algorithm is described in section 3. Section 4 gives details of the
test problems and numerical results are shown and discussed in section 5. Conclusions are given in section 6.

(@ 2. Truss optimization problem
Atruss optimization problem is typically formulated as:

Minimize f(x), X=[x,x,,",x,] 1)
subjected to g,(X) < g, ;, j=1,+,m
L<x <u
where x is a n dimension vector of design variables, f(x) is objective function (the weight of truss in this paper),
g,(x) are m constraint functions (displacement and/or stress in this paper) and g ,, are allowable values of g,(x).
Values |, and u, are the lower bound and upper bound of x, respectively.

In order to facilitate the new techniques proposed in this paper, the constraints are rewritten as in Eq. (2)
and constraint violation is determined by Eq. (3):

c;(x)=g;(x)—g,; =0 (2)
C(x) = imax{o,cj ) (3)

To solve the above constrained optimization problem, in this study the Deb's constraint handling rules [19]
are applied. Oftwo solutions x, and x,:

J(x)< /(%) for C(x)=C(x,) (4)
C(x,)<C(x,).for C(x,)=C(x,)

where f(-)and C(-) are the objective function values and the constraint violation of a solution, respectively. Eq. (4)
is equivalent to the lexicographic orders in which the constraint violation precedes the function value.

X, is better than x, if {

For handling bound constraints, cutting-off technique [20] is adopted, i.e. the generated violating value is
substituted by the bound value, since in many cases the optimum solution is located at one of the bounds of a
given design variable.

(@ 3.Enhanced differential evolution
3.1 Differential evolution

Differential evolution (DE), which is introduced by Storn and Price in 1995, is a population-based
optimizer. DE uses a population of NP vectors (individuals) x(k =1,2,...NP) of the design variables. The
population is then restructured by survival individuals evolutionally. The initial population is generated as

X =L +rand[0,1)(u, 1), i=1,..,n (5)

where rand [0,1] is a uniformly distributed random real value in the range [0,1]. Each individual x, of the current
population is compared with a trial individual generated by the operations of “mutation” and “crossover”. The
better one will be selected as the member for the next population. The basic procedure (DE/rand/1/bin) is as
follows.

For each individual x, of the current population,

Step 1: *“Mutation” is performed and a mutant vector y is given by
y=x, +F(x, -x, ©
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with », r,, v, are randomly chosen integers and 1<r, #r, 2, # k < NP; Fis areal and constant factor usually
chosen in the interval [0,1], which controls the amplification of the differential variation (x,, - x,). In Eq. (6), x, is
called the base vector, while the others are called the difference vectors.

Step 2: “Crossover” with x, is then introduced to increase the diversity. The trial vector z are determined by:

{ v, if (rand[0,11 < Cr)or (r =1) e

x, ;if (rand [0,1]1>Cr ) and (r # 1)

Here, risrandomly chosen integer in the interval [ 1,n]; Cris user-defined crossover constantin [0, 1].

Step 3: “Selection”: the vector z is compared with x, . If z is better than x,, then z becomes a member in the
population of the next generation; otherwise, x, is retained.

Traditionally, the evolution in DE bases on random mutation, i.e. the base and difference vectors for
mutation are randomly selected from the current population. Thus, the beneficial information of the population
cannot be fully exploited to guide the search of DE through mutation [21]. Moreover, every new trial solution is
evaluated and many of them do not survive in selection. The evaluation of such trial solutions is useless and
should be avoided.

To enhance the performance of DE, the present paper introduces a simple opposition-based mutation
scheme and the so-called nearest neighbor comparison, which can increase the convergence and reduce
possibly useless function evaluations.

3.2 Opposition-based mutation

The scale difference is determined based on the order relation of the two difference vectors, which has the
same concept of the well-known opposition based method presented for improving DE search performance in
literatures [22, 23]. By that, the mutant vector is created as following:

F(x, —x,.), if x better thanx ,
Y = Xy + e : ’ (8)

F(xr] i e ), otherwise
This mutation guarantees that the scaled difference vector directs toward the better vector. Thus, there is

50% chance of improving a solution. In the conventional DE, the probability to improve the solution cannot be
figured depending on the location of the base vector.

In addition, the base vector is selected randomly from the whole population as traditional DE only in the
early generations. At later generations when all the solutions in the population are feasible, a base vector, x .., is
selected randomly among p x NP (p<(0,1]) top-ranked solutions, where the rank is based on the fitness value.
The concept of using several top-ranked solutions in mutation was introduced in JADE by Zhang and Sanderson
[24] and successfully implemented in some other DE variants, such as LMDE [25] and ADEA [16]. The difference
of the proposed DE in this paper is the use of random base vector at the beginning to maintain the diversity of the
population and prevent premature convergence.

3.3 Nearest neighbor comparison
The ideais to use the nearest neighbor solution in the search population to judge whether a trial solution is
worth evaluating, so that useless evaluation can be avoided. A trial vector z obtained after crossover by Eq. (7) is

skipped when its nearest neighbor x,, is worse than the compared vector. This nearest neighbor vector of the trial
vectoris searched in the current population using normalized distance measure:

i, - Z[;] ©

= I'I]le X —]'l}(ln X

where d(x.,z) is distance between two vectors x and z. The search will move to the next parent vector in the
population. Otherwise, z is evaluated and selection (as in step 3 in section 3.1) is carried out.

The nearest neighbor comparison has been recently introduced by Pham [26] for unconstrained
optimization problems. Using this method, trial vectors which are likely worse than the target vector will be often
omitted. Thus, itis expected that useless function evaluation will be reduced during the searching process.
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( : 4. Test problems

Four classical test problems of truss sizing optimization widely used in literature are employed in this paper.
The design problems are to minimize the weight of truss subjected to stress and displacement constraints. The
design variables are cross-section areas of the truss members. The descriptions of the problems are given in below.

Ten-bar planar truss

The truss layout is illustrated in Fig. 1. The structure is subjected to a vertical load P=-100 kips at node 2
and node 4. The design variables are the bar cross-section areas in the range [0.1, 40] in’. The modulus of
elasticity and material density are 10 ksiand 0.1 Ib/in’, respectively. The allowable stress is 25 ksi for both tension
and compression in each member. The allowable displacement of nodes in x and y directions is 2 in.

Twenty-five-bar space truss

The truss layout is illustrated in Fig. 2. The material density equals to 0.1 Ib/in® and the modulus of elasticity
equals to 10* ksi. The cross-section areas are categorized into eight member as shown in Fig. 2. The
displacement constraints require that the maximum displacements at nodes 1 and 2 be limited within 0.35in, in
both the x and y directions. The constraints for stress are listed in Table 1. The loading data are listed in Table 2.
The cross-section areas are in the interval [0.01, 3.5]in".

Seventy-two-bar space truss Table 1. Member groups for 25-bar truss

The truss layout is depicted in Fig. 3. and allowable stress values

The cross-section areas are categorized into Allowable Allowable
sixteen groups as shown in Fig. 3 and have the e tensile stress| compressive stress
minimum value of 0.1 in’. The constraints 1 40.0 35.092
involve a maximum allowable displacement of 3,4, 40.0 11.590
0.25 in at nodes from 5 to 20 along the x and y , 7,8, 40.0 17.305
directions, and a allowable stress in each 10, 11 40.0 35.092
member of 25 ksi. The density of the material is 12,13 40.0 35.092
0.1 Ib/in® and the modulus of elasticity is equal 14, 15, 16, 17 40.0 6.759

to 10" ksi. Two load cases are given in Table 3. 18, 19, 20, 21 40.0 6.959
22,23,24,25 40.0 11.082

&
6

0N WN[—

Two hundred-bar plane truss

The truss structure layout is shown on Table 2. Loading conditions for 25-bar truss
the Fig. 4. The structure is subjected to three Gonaion Node Fy (kips) | F, (kips) | F. (kips)
loading conditions: (1) 1.0 kip acting in the 1 1 0 20 =
positive x-direction at nodes 1, 6, 15 20, 29, 34, 0 20 5
43, 48,57,62and 71; (2) 10.0 kip acting in the 2 1 10 5
negative y-direction atnodes 1-6, 8, 10, 12, 14, 0 10 5
16-20, 22, 24, 26, 28-34, 36, 38, 40, 42-48, 50, 05
52, 54, 56-62, 64, 66, 68, and 70-75; and (3) 0.5
conditions 1 and 2 acting together. The design
variables include all bar cross-section areas, Table 3. Loading conditions for 72-bar truss
which are categorized into 29 groups as Load case Node Fx (kips) | Fy(kips) | F: (kips)
showed in Fig. 4. Material density and 1 5 o)
modulus of elasticity are 0.283 Ib/in® and 2
30000 ksi, respectively. The sizing design
problem is to minimize structural mass subject
to stress constraints (allowable stress of 10
Ib/in®). The cross-section areas are in the
interval [0.1, 15]in”.

The proposed ODE-NNC was used to solve each problem with 20 random runs. The parameter setting for
DE in all tests is: F=0.5, Cr=0.9, NP=50. The rate of top-ranked solutions for selecting the base vector is p=0.2
[24-25] (ADEA [16] used p=0.1). Finite element method using two-node tension/compression linear element is
applied to calculate the stresses and displacements. All codes are implemented in MATLAB R2012a.
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Figure 2. Twenty-five-bar truss layout
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evaluations, the proposed DE obtained the best results. Figure 4. Two-hundred-bar truss layout

Table 4. Comparison on optimal weights (Ib) of 10-bar truss

Size of members (in’) ODE-NNC SAHS [2] TLBO [4] ADEA [16]
1 30.53407525 30.394 30.6684 30.5139
2 0.1 0.100 0.1000 0.1000
& 23.21132872 23.098 23.1584 23.2052
4 15.22821542 15.491 15.2226 15.2084
& 0.1 0.100 0.1000 0.1000
6 0.552468879 0.529 0.5421 0.5318
7 7.456968561 7.488 7.4654 7.4585
8 21.03644835 21.189 21.0255 21.0512
9 21.50740940 21.342 21.4660 21.5391
10 0.1 0.100 0.1000 0.1000
Best weight (Ib) 5060.8568 5061.42 5060.973 5060.8949
Average weight (Ib) 5060.8916 5061.95 5064.808 5062.5965
Standard deviation 0.03500 0.71 6.3707 3.9401
Number of analyses 7000 7081 13767 10000
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25-bartruss

Table 5 gives the statistical results after 20 runs. With respect to the average weight, ODE-NNC shows
the best performance among the compared optimizers, which are CBO [6], CSP [5], TLBO [4], FPA[8] and ADEA
[16]. The proposed algorithm also uses a lower number of structural analyses and it provides much smaller
standard deviation of weight, i.e. it is more stable than the other algorithms. In addition, no constraint violation
occurred for the best optimum result found (only TLBO and ADEA also produced feasible best optima, which are
slightly higher than those obtained by ODE-NNC). The best solution by CBO, CSP and FPA violate the stress or
displacement constraints.

Table 5. Comparison on optimal weights (Ib) of 25-bar truss

CBO | CSP | TLBO | FPA
[6] [5] [4] [8]
0.0100 | 0.010 | 0.0100 [ 0.0100
21297 | 1.910 | 1.9878 [ 1.8308
2.8865 | 2.798 | 2.9914 | 3.1834
0.0100 | 0.010 [ 0.0102 [ 0.0100
0.0100 | 0.010 [ 0.0100 [ 0.0100
0.6792 | 0708 | 0.6828 [ 0.7017
1.6077 | 1.836 | 1.6775 | 1.7266
26927 | 2645 | 2.6640 | 2.5713

ADEA
[16]
0.0100
5.6406
8.5941
0.0100
0.0100
1.9368
4.7857
7.5921

Size of grouped
members (in?)

ODE-NNC

0.01
1.9870825181
2.9934723860

0.01

0.01
0.6836859318
1.6768853783
2.6624969662

Best weight (Ib)

545.16303235

544.310

545.09

545.175

545.159

545.1657

Average weight (Ib)

545.16487915

545.256

545.20

545.483

545.730

545.2200

Standard deviation

0.0025168864

0.294

0.487

0.306

0.59

0.0730

Number of analyses

5000

9090

17500

12199

8149

10000

72-bar truss

The optimization results for 72-bar truss are given in Table 6. The proposed ODE-NNC shows better
results and uses less function evaluations than 2D-CBO [7], CSP [5], TLBO [4], and ADEA[16]. Only FPA[8] has
better optimal weight with smaller number of analyses, but its best optimal solution violates the displacement
constraint about 0.2% (calculated from the given results). It is noted that the group order in this study is different
fromthatin the other studies.

Table 6. Comparison on optimal weights (Ib) of 72-bar truss

Size of grouped

ODE-NNC

2D-CBO
[71

CSP
[5]

TLBO
[41

FPA
[8]

ADEA
[16]

|___members (in)
1

0.156483260607825

1.892462

1.94459

1.8807

1.8758

1.8861

0.54481218991688

0.510027

0.50260

0.5142

0.5160

0.5231

0.40971397227306

0.100000

0.10000

0.1000

0.1000

0.1000

0.568839232361355

0.100000

0.10000

0.1000

0.1000

0.1000

0.525079174028263

1.266465

1.26757

1.2711

1.2993

1.2576

0.515172597743923

0.509992

0.50990

0.5151

0.5246

0.5043

0.100000127683359

0.100000

0.10000

0.1000

0.1001

0.1000

0.1

0.100000

0.10000

0.1000

0.1000

0.1000

1.26684996919847

0.524176

0.50674

0.5317

0.4971

0.5200

0.513608433102961

0.517540

0.51651

0.5134

0.5089

0.5235

0.1

0.100000

0.10752

0.1000

0.1000

0.1000

0.1

0.100000

0.10000

0.1000

0.1000

0.1000

1.88493087136548

0.156420

0.15618

0.1565

0.1575

0.1568

0.513976704 396166

0.546158

0.54022

0.5429

0.5329

0.5394

0.100001034903325

0.414840

0.42229

0.4081

0.4089

0.4083

0.1

0.569529

0.57941

0.5733

0.5731

0.5734

Best weight (Ib)

379.61746300

379.6217

379.97

379.632

379.095

379.6851

Average weight (Ib)

379.64216812

379.6446

381.56

379.759

379.534

379.9205

Standard deviation

0.0238141413

0.251520

1.803

0.149

0.272

0.1842

Number of analyses

10000

12000

10500

21542

9029

10000
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Table 7. Comparison on optimal weights (Ib) of 200-bar truss

Size of grouped CSP | TLBO | FPA JADE ADEA
members (in?) R 5] [4] 8] [16] [16]

1 0.1009407066 | 0.1480 0.146 0.1425 0.1093 0.1020

2 0.9713329039 | 0.9460 0.941 0.9637 1.2775 1.1193

3 0.1137715559 0.1010 0.100 0.1005 0.1344 0.1000

7} 0.1048564579 | 0.1010 | 0.101 | 04000 | 0.1492 0.1223

5 10744803988 | 1.9461 | 1941 | 19514 | 26144 1.9622

6 0.2279566799 | 0.2979 0.296 0.2957 0.3510 0.2693

7 0.1026704064 | 0.1010 | 0.100 | 0.1156 0.2125 0.1719

8 3.1194375266 | 3.1072 | 3421 | 3.1133 41176 3.0690

9 0.1025627515| 0.1010 0.100 0.1006 0.1012 0.1004

10 4.1244558843 | 4.1062 4173 41100 5.4221 4.1509

11 03066377259 | 0.4049 | 0401 | 04165 |  0.5540 04317

12 0.1 0.1944 | 0181 | 01843 | 0.1159 0.2122

13 5.4036370804 | 5.4299 5423 5.4567 7.2124 5.3974

1 0.1689822306 | 0.1010 | 0100 | 01000 | 0.1067 0.1102

15 6.4082016517 | 6.4299 | 6.422 | 64559 | 85517 6.3959

16 0.4813379325| 0.5755 0.571 0.5800 0.6902 0.6141

17 0.1493274843 | 0.1349 0.156 0.1547 0.6228 0.2666

18 70196312178 | 7.0747 | 7.9586 | 8.0132 | 10.6379 7.0408

19 0.1526482562 | 0.1010 0.100 0.1000 0.1172 0.1471

20 8.9165133323 | 8.9747 8.958 9.0135 11.9860 8.9445

21 0.6528020015 | 0.70648 | 0720 | 0.7391 11944 0.8141

22 0.1913866147 | 04225 | 0478 | 07870 | 0.2338 11050

23 10.768132810 | 10.8685 10.897 11.1795 14.8917 11.2893

24 0.1014667543 | 0.1010 | 0100 | 01462 | 0.1739 0.1004

25 11.776343351 | 11.8684 | 11.897 | 12.1799 | 16.2167 12.2891

26 0.8002239775 | 1.035999 1.080 1.3424 1.3311 1.4742

27 7.0077729842 | 6.6859 6.462 5.4844 8.1343 5.3417

28 11.359710091 | 10.8111 | 10799 | 10.1372 | 14.0876 9.8931

29 13.537282086 | 13.84649 | 13922 | 145262 | 18.8163 14.9127
Best weight (Ib) 25169.687529 | 25467.9 | 25488.15 | 25521.81 | 25610.2086 | 25800.5708
Average weight (Ib) 25510.124193 | 25547.6 | 25533.14 | 25543.51 | 25985.05665 | 26851.1460
Standard deviation 355.54955260 135.09 27.44 18.13 177.03358 1,038.1452

Number of analyses 20000 31700 28059 10685 20000 20000

200-bar truss

The statistical results of optimal weight are given in Table 7. The proposed algorithm is the best optimizer
when compared with CSP [5], TLBO [3], FPA [8], JADE and ADEA [16]. The proposed algorithm also uses an
equal or lower number of structural analyses (except for FPA).

(@ 6.Conclusions

An optimization algorithm based on differential evolution, ODE-NNC, is presented for truss sizing
optimization. The opposition-based mutation and the nearest neighbor comparison are introduced to the
conventional differential evolution. The opposition-based mutation biases the search direction while the nearest
neighbor comparison omits likely worse solutions without evaluation. Numerical results show that ODE-NNC
outperforms various modern metaheuristic algorithms. The optimizer in this study is based on DE with fixed
parameters. There is still potential for further improvement, e.g. integrating the techniques with adaptive
parameters.
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