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Abstract

Using a data-driven approach to study and predict the shear strength of slender steel fiber reinforced concrete
beams has great applicability for the design and construction process. Based on the data-driven approach, an
Artificial Neural Network (ANN) model with some hyperparameters optimized by Particle Swarm Optimiza-
tion (PSO) algorithm is successfully built. The hidden two-layer ANN model with the number of neurons
(5; 6) predicted shear strength with higher accuracy than the models proposed previously in the literature, with
R? =0.9727 and RMSE = 31.9822 kN for the control dataset. By interpreting the results of the ANN model by
the values of SHAP, including the Global SHAP value and SHAP independence plot, the order of influence of
the variables on the shear strength value and the predictability of the ANN model can be arranged according
to effective depth of section > beam width > longitudinal reinforcement ratio > steel fiber content > concrete
compressive strength > shear span/effective depth ratio > fiber tensile strength > aggregate size. Fiber tensile
strength and aggregate size almost do not affect the shear strength value. An increase in the shear span-to-
effective depth ratio reduces shear strength, which can be increased by increasing the value of effective depth
of section, beam width, longitudinal reinforcement ratio, steel fiber content, and concrete compressive strength.
The results of this paper are meaningful in the initial assessment of the shear strength of SSFRC, which helps
to speed up the design process and reduce the cost of designing and testing SSFRC beam:s.

Keywords: concrete beam; slender steel fiber reinforced concrete; shear strength; data-driven; machine learning;
data-driven approach.
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1. Introduction

The shear behavior of slender steel fiber reinforced concrete (SSFRC) beams with cracks that have
formed on slanted portions is challenging to predict. This is a result of the fact that the shear behavior
of SSFRC beams is influenced by a variety of variables [1-5]. Therefore, it is necessary to model the
interconnectedness of these several components in order to calculate shear strength. Accurate shear
capacity prediction is essential because shear failure typically occurs suddenly and without warning
[4]. Shear strength tests were carried out on thin beams without girders to assess the shear strength
of SSFRC beams using a number of methodologies [6-9]. Key factors affecting the shear resistance
of SSFRC beams, such as the beam width, effective depth of section, longitudinal reinforcement
ratio, shear span-to-effective depth ratio, aggregate size, concrete compressive strength, fiber tensile
strength, and steel fiber factor, are simultaneously estimated [10]. Therefore, there are many factors
affecting the shear resistance of SSFRC, and the experimental effort is time-consuming and expensive.
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Different empirical models built on regression analysis based on experimental data have been
proposed to solve this problem [11-13]. Based on empirical data, actual design standards like ACI
544 [14] are all statistically supported. However, in order to get a simplification of the nonlinear re-
lationship between shear strength and associated variables, these models are utilized in combination
with specific hypotheses. There are also reliable computational methods for tackling challenging is-
sues, including modeling fractures [15—17]. In order to forecast the shear resistance of SSFRC beams,
some investigations have also looked into models based on the finite element approach [18, 19]. How-
ever, due to the difficulty of the issue in general or the complexity of SSFRC beams in particular,
anticipating its shear behavior requires substantial skill and highly programmable computers.

Machine learning (ML) algorithms have acquired appeal in many areas of life due to their effec-
tiveness in tackling a wide range of extremely complicated issues, which is attributed to the rapid
development of ML techniques [20-22]. Several researchers have utilized the ANN model, one of the
ML techniques, to calculate the shear strength of SSFRC beams. One hundred fifty-five data samples
and five input variables were used to create the ANN model in Oreta’s work [23] to predict the strength
of slender beams. An ANN was used in the study of Mansour et al. [24] to predict the shear strength of
RC beams using a dataset of 176 data points and nine input variables. The results show that the ANN
model can accurately forecast the shear strength of SSFRC beams. Shatnawi et al. [25] used the Gra-
dient Boosting model for predicting the shear strength of SSFRC beams based on 330 data samples
and eight input variables, such as beam width, effective depth of section, longitudinal reinforcement
ratio, shear span-to-effective depth ratio, aggregate size, concrete compressive strength, fiber tensile
strength, and steel fiber factor. The Gradient Boosting model can predict the shear strength of SSFRC
with the performance metric R*>=0.963 by Shatnawi et al. [25]. Shariati et al. [26] developed a hybrid
ML model artificial neural network-particle swarm optimization (ANN-PSO) to predict the channel
shear connectors embedded in normal and high-strength concrete. Therefore, the ANN algorithm is
selected for investigating the shear strength of SSFRC beams in this study.

While certain ML-based strategies may successfully address regression issues, it can be chal-
lenging to understand how they work because these models are sometimes referred to as “black-box”
models. In order to assist researchers in better understanding the underlying mechanisms, such as how
input parameters affect outputs and increase the persuasiveness of the developed models, ML-based
models should thus be better explained or interpreted. To comprehend ML models, one might use the
Shapley additive explanations (SHAP) framework developed by Lundberg and Lee [27]. In SHAP,
characteristics are rated according to how they affect the predictions. By examining how the features
affect the outputs for a single sample, SHAP can explain the ML models locally in addition to globally.

In this paper, an ML-based method for forecasting the shear strength of SSFRC beams is proposed.
Additionally, input variables affecting the shear strength of the SSFRC beams are quantitatively ex-
amined by interpreting the ML model using SHAP. This study has two major goals, which are to
build a high-performance ML model to predict the shear strength of SSFRC beams, and this ML
model used as a foundation to assess the effects of input variables on the shear strength of SSFRC
beams by SHAP independence plot technique, this has not been specified in previous studies of lit-
erature. Therefore, in order to achieve reliability when analyzing the influence of input variables on
shear strength, a high-performance ML model with specific parameters needs to be established and
strictly controlled. In order to achieve this, 330 shear strength samples of SSFRC beams with eight
input variables, including aggregate size, concrete compressive strength, fiber tensile strength, steel
fiber factor, longitudinal reinforcement ratio, and shear span-to-effective depth ratio, were collected
from the literature. In addition, Particle Swarm Optimization and 10-Fold Cross Validation (CV) are
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used to fine-tune the ideal hyperparameters of ANN. Finally, the SHAP approach, which contains the
global SHAP value and SHAP independent plot, was used to understand the built-in ANN model. The
effects of various factors on the predicted value “shear strength” of the ANN model are also examined.

2. Database description and analysis

In order to build a high-performance ML model for calculating the shear strength of SSFRC, a
database was derived from the investigation of Lantsoght [10]. This dataset includes 330 experimental
results. The database contains eight input variables: beam width (b,,), effective depth of section (d),
longitudinal reinforcement ratio (p), shear span-to-effective depth ratio (a/d), aggregate size (d,),
concrete compressive strength (f;), fiber tensile strength (f;), and steel fiber factor (F).

Table 1 shows the statistical values of input variables for building the ML model. The beam
width ranges from 55 mm to 610 mm (mean of 158.40 mm; standard deviation of 68.35 mm). With
a mean value of 283.71 mm and a standard deviation of 178.38 mm, the effective depth of section
value ranges from 85.00 mm to 1118.00 mm. The longitudinal reinforcement ratio ranges from 0.0%
to 5.7% (mean of 3.0%; standard deviation of 1.0%). The shear span-to-effective depth ratio ranges
from 2.5 to 6.0 in the dataset (mean of 3.35, standard deviation of 0.64). The aggregate size varies
from 0.40 mm to 22.00 mm, with a mean value of 10.50 mm and a standard deviation of 5.02 mm.
The concrete compressive strength ranges from 9.8 MPa to 154.5 MPa (mean of 48.51 MPa; standard
deviation of 24.43 MPa). The fiber tensile strength value varies between 260.0 MPa and 4913.0 MPa,
with a mean value equal to 1270.99 MPa and a standard deviation of 471.76 MPa. The percentage
volume, dimension, and length of steel fibers can be represented by the steel fiber factor, which has a
range of values from 0.10 to 2.86 with a mean value of 0.53 and a standard deviation of 0.34. Finally,
the output variable of the shear strength of SSFRC beams ranges from 13.0 kN to 1430.0 kN, with a
mean value of 150.85 kN and a standard deviation of 163.95 kN.

Table 1. Statistical value of input variables for building ML model

Variable Abbre.  Unit Mean Std Min Max
Beam width by, mm 158.40 68.35 55.00 610.00
Effective depth of section d mm  283.71 178.38  85.00 1118.00
Longitudinal reinforcement ratio Jol % 3.00 1.00 0.00 5.70
Shear span-to-effective depth ratio ald - 3.35 0.64 2.50 6.00
Aggregate size d, mm 10.50 5.02 0.40 22.00
Concrete compressive strength fe MPa 48.51 24.43 9.80 154.50
Fiber tensile strength fi MPa 127099 471.76 260.00 4913.00
Steel fiber factor Fy - 0.53 0.34 0.10 2.86
Shear strength Vi kN 150.85 163.95 13.00 1430.00

One of the main criteria for determining the importance and applicability of input variables is the
correlation between input variables and shear strength. As a result, Fig. 1 shows the description of
data distribution between input variables and shear strength of SSFRC beams, and each description is
plotted by a linear correlation line. By the linear correlation, it is worth noting that the shear strength
of SSFRC beams depends strongly on the beam width and effective depth of section, which positively
affect the shear strength value. Other input variables also have influences on the shear strength of
SSFRC beams. This suggests that the dataset’s eight input variables should be considered independent.
These eight input variables are used to determine the influences of each input variable on the beam’s
shear strength.
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Figure 1. Distribution between input variables and shear strength of SSFRC beams

It is challenging to adequately explain the impact of the input elements on the compressive
strength of steel fiber concrete using a linear correlation. Therefore, SHAP methods for further ana-
lyzing these relationships are provided in section 4.3 of this study.

Two subsets of the data used in this investigation are: the training dataset, which comprises 70%
of the total experimental samples (231), is used to create ML models. The testing dataset, which

comprises 30% of the total experimental samples (99 samples), is used to assess the performance of
the proposed ML model.
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3. Data-driven approach

3.1. Machine learning algorithms with hybrid ANN-PSO

a. Artificial Neural Network

Artificial neural networks are computational
architectures inspired by the physiology of animal
brains, which are made up of several parallel basic
processors (neurons) coupled by a system of ax-
ons and dendrites that allows for the interchange
of simple signals. In the case of an ANN, linkages
become links, and neurons become units, greatly
simplifying the structure of the brain. Similar to
neurons, ANN nodes are interconnected with one
another. The output of a node is a signal when the
input crosses a threshold. A kind of ANN called a
multi-layer perceptron [28] establishes many lay-
ers of neurons. Input, output, and hidden layers
are the three categories that these layers fall un-

Transfer )
function @ Bias

Output
Shear strength

Figure 2. Simple structure of ANN algorithm

der. The supplied database’s input layers are made up of all the input parameters, while the output
layers are made up of the output parameters. Between the input and output levels are processing lay-
ers known as hidden layers. The layers are linked to one another and have various weights attached to
them. Artificial neural networks are taught using a learning function, which updates the ANN every
time the error exceeds a certain tolerance. Fig. 2 illustrates the ANN algorithm’s parts and operation.
Section 4 contains comprehensive information on the ANN parameters utilized in this investigation.

b. Particle Swarm Optimization

Particle swarm optimization is an intelligence-
based metaheuristic method. It is modeled by the
social behaviors of a swarm of flying birds hunt-
ing for food Considering how social animal groups
behave, Kennedy and Eberhart [29] hypothesized
that sharing knowledge within the group enhances
the chance of survival. In order to maximize food
availability and reduce the chance of encounter-
ing predators, for instance, a flock of flying birds
must choose a spot to rest. This presents a difficult
problem.

The objective of a swarm, which is made up of
some particles moving in a high-dimensional so-
lution space, is to discover the best (optimal) so-
lution. A function that may have numerous local
maximum values and lowest values is often max-
imized or minimized during optimization. Fig. 3
depicts particle movement in the PSO algorithm.
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c. Hybrid ANN-PSO

The minimization problem that results from
ANN training can be resolved using optimization
techniques. In a hybrid ANN-PSO algorithm, the
optimization algorithm is used to determine the

Setting number of particles (ANN hyperparameters):
Hyperparameters of ANN model: number of hidden layers.
neuron number of each hidden. activation function for the hidden
layer. Solver for weight optimization. maximal for each iteration

ideal weights-biases for the ML model to increase
the accuracy of the ANN. The flowchart of the hy-
brid ANN-PSO algorithm is briefly described in
Fig. 4. As a result, the weights-biases are the vari-

Initializing position and
velocity of particles

¥

Calculating fitness value

R?2 of each particle

L 2

Finding best fitness value

‘l PSO parameters setting

(maximum R?) of 10-Fold
CV

ables, and the range of these variables’ variations
determines the issue’s feasible space. The coeffi-
cient of determination may be used to define the
fitness value of the particle i”*. These procedures
can be taken to create a hybrid ANN-PSO model:
Create an initial neural network with weights-
biases based on the neuron number of each hidden
layer. Then, updating the weights-biases may de-
pict where a particle is located in the search space
value. Finally, by predicting the output values of
a specific particle in an iteration, the PSO method
updates particle locations over a predetermined population number until the cost function “coefficient
of determination” is maximized.

According to Blanke [30], the optimal parameters of the PSO algorithm can be considered as
population size = 50, inertia = 0.4, cognitive_weight = 0.7, social_weight = 0.7, temp_weight = 0.3,
rand_rest_p = 0.05. Moreover, the number of particles, such as ANN hyperparameters, consists of
the number of hidden layers, neurons number of each hidden, activation function for the hidden layer,
solver for weight optimization, and maximal for each iteration. Search space values of these particles
will be detailed in the next section.

Number of
iteration is
meet

Iteration=Tteration + 1

Figure 4. Flowchart of hybrid ANN-PSO
algorithm

3.2. Performance evaluation of machine learning model

The ML model’s predictive power is evaluated using various well-known and frequently used
statistical measures, such as root mean squared error (RMSE), mean absolute error (MAE), and coef-
ficient of determination (R*). The R? values, ranging from O to 1, are an important consideration in
regression analysis. It is determined by the square of the correlation between the predicted and actual
results. A high R? value, therefore, denotes a good correlation between the expected and actual values.
The samples’ dispersion was described using RMSE. The lower the RMSE, the better the nonlinear
fitting will be. The MAE is a more inclusive term for the mean of errors and stands for the mean of
absolute errors. RMSE and MAE have the same dimension; however, the results show that RMSE is
greater than MAE. This is due to the fact that RMSE squares the error twice, enlarging the gap between
the bigger mistakes. The MAE accurately depicts the mistake. Because its value might represent the
greatest and relatively tiny mistake in the measurement, the smaller the RMSE number, the higher the
relevance. The values of these measures are expressed as follows:

2 (aj - bj)2

2
N_ (Cl )
J=1\"J
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1 & 2
RMSE = ﬁ;(aj—bj) ()
1 N
MAE:NJZ:;|aj—bj| 3)
ax = 2 )

where: a is the output’s actual value, b is the model’s predicted value, and N is the number of samples
in the database. Moreover, Apostolopoulou et al. [31] propose using an a-index to assess the correct-
ness of ML models. In this study, the index is considered to be 25%. Therefore, nys is the sample size
with True value/Predicted value varying from 0.75 to 1.25. It displays the proportion of samples that
achieve expected results with a 25% maximum deviation from experimental results.

4. Results and Discussion
4.1. Optimization of ANN hyperparameters

The ANN algorithm has many hyperparameters that need to be refined. However, in order to
reduce the computation time, the selected hyperparameters and search space values for fine-tuning
include the following:

(i) The activation function for the hidden layer, including identity, logistic, tanh, and relu func-
tions.

(i) Solver for weight optimization, including L-BFGS (Limited-Memory Broyden—Fletcher—
Goldfarb—Shanno), SGD (Stochastic Gradient Descent), and Adam (Adaptive moment estimation).

(iii) Maximal for each iteration varying from 1000 to 30000.

(iv) Number of hidden layers: one hidden layer, two hidden layers.

(v) Number of neurons for each hidden layer from 1 to 20.

The cost function for the PSO optimization function is the maximizer coefficient of determination,
the value of the remaining hyperparameters using the default value proposed in the Sklearn library
[32].
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Figure 5. Cost function R> depending on the number of neurons

R? is aggregated as the value of a 10-Fold CV. The hyperparameters of ANN models are tuned in
2000 iterations, and the hyperparameters are defined as activation function =‘relw’, solver = ‘L-BFGS’
for both cases of using one and two hidden layers. Fig. 5 shows the cost function R*> depending on
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the number of neurons: (a) one hidden layer and (b) two hidden layers. Fig. 5(a) shows the number of
neurons varying from 1 to 20 in a single hidden layer. It can be seen that a neuron count of 5 gives
a maximum R? value of 0.9085 for a hidden layer and a maximum of 5000 iterations, respectively.
Fig. 5(b) shows that the R? value changes when the number of neurons in the two hidden layers
changes from 1 to 20. When both hidden layers use up to 20 neurons, the R> value domain is lower
when the number of neurons in the two hidden layers is small (less than 15 neurons). For two hidden
layers, maximal iteration equals 14000, hidden layer 1 using 5 neurons, and hidden layer 2 using 6
neurons ANN (5; 6), the R? value of the largest ANN model is equal to 0.9287 higher than that of
ANN containing 5 neurons for only 1 hidden layer. Therefore, an ANN model with a hidden layer
structure consisting of 5 neurons for hidden layer 1 and 6 neurons for hidden layer 2, with activation
function ‘relu’, solver for weight optimization ‘L-BFGS’, and maximal iteration = 14000 are proposed
in predicting the shear strength of SSFRC beams.

4.2. Predicting Shear strength of SSFRC using the ANN model

Use the ANN model with the structure and fine-tuned hyperparameters proposed in section 4.1 to
predict the shear strength of SSFRC beams. The shear strength prediction results using the proposed
ANN model are compared with the actual shear strength results. The comparison is shown through
the correlation data in Fig. 6(a) and the prediction error in Fig. 6(b). This comparison is performed
simultaneously for both the training and testing datasets.

Fig. 6(a) shows the correlation between the shear strength value predicted by the ANN model and
the actual shear strength value within the range of values bounded by the +25% error line, with many
points lying asymptotically on the perfect line y = x. This is true for both training and testing data
sets. Therefore, the prediction error of the ANN model, as shown in Fig. 6(b), shows that the error is
mainly concentrated in the 50 kN region. Minimal error approaching 0 kN has the largest number.
The predictive accuracy of the ANN model is quantified through the values R*> = 0.9767, RMSE =
22.752 kN, MAE = 15.5608 kN, and ays = 0.8448 for the training dataset, while R> = 0.9727, RMSE
=31.9822 kN, MAE = 21.5267 kN, and a5 = 0.7677 for the testing dataset. This accuracy is higher
than the Gradient Boosting model proposed by Shatnawi et al. [25], in which R? = 0.9630, despite
using the same database and input variables.
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Figure 6. Comparison between experimental and predicted compressive strength of steel fiber concrete
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4.3. Investigation of factors affecting the shear strength of SSFRC beams

To better explain the predictive principle and predictive power of the ANN model, as well as
to evaluate the factors affecting in general, specifically each factor to the shear strength of SSFRC
beams, the SHAP global and SHAP independent plot values are shown in Figs. 7 and 8, respectively.
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Figure 7. Global SHAP value for interpreting input effect on the predicted shear strength

Specifically, Fig. 7(a) allows determining the relative quantification of the influence of eight input
variables on the shear strength value through the colors showing the magnitude of each variable. The
y-axis in Figs. 7(a) and 7(b) indicates the importance of each input variable to the model’s predictive
accuracy. The higher the position of the input variable, the higher the importance. The larger the size,
the stronger the influence on the accuracy of the model and the shear strength value. Figs. 7(a) and 7(b)
show that the order of influence of the variables on the shear strength value and the predictability of
the ANN model can be arranged in descending order as follows: effective depth of section > beam
width > longitudinal reinforcement ratio > steel fiber content > concrete compressive strength> shear
span-to-effective depth ratio > fiber tensile strength > aggregate size.

The aggregate size and the fiber tensile strength have a negligible and obvious effect on the shear
strength of SSFRC beams, as indicated in Fig. 7(a), Fig. 8(g), and Fig. 8(h). Meanwhile, the effective
depth of section, beam width, longitudinal reinforcement ratio, steel fiber content, and compressive
strength of concrete have a positive effect on the shear strength of SSFRC beams. This means that
when the values of these input variables increase, the shear strength will increase (cf. Fig. 7(a)).
Conversely, among the input variables, the a/d ratio has a negative effect on the shear strength as its
value increases.

Fig. 8(a) shows that when the effective depth of section increased from 100 mm to 900 mm, shear
strength increased by about 600 kN. Similarly, with beam width increased from 50 mm to 450 mm,
shear strength increased by about 400 kN, as indicated in Fig. 8(b). When the global SHAP value is
zero, the actual shear strength equals the mean shear strength shown in Table 1. The upward trend
in the influence of d and b,, on the shear strength tends to be relatively linear. If we exclude the
outlier domain of longitudinal reinforcement ratio (values greater than 5%), the upward trend in shear
strength by longitudinal reinforcement ratio is relatively linear with a 120 kN SHAP value variation,
as shown in Fig. 8(c). The steel fiber factor value is from 0.1 to 1.5, and the shear strength value can
be increased by 100 kN, as indicated in Fig. 8(d). The increase in concrete compressive strength from
25 MPa to 150 MPa causes a linear increase in the shear strength in the range of 85 kN, as shown in
Fig. 8(e). The a/d ratio seems to have a nonlinear effect on the shear strength when its values range
from 2.5 to 5. However, if observed over the whole range studied 2.5< a/d < 6, the rule shear strength
decline is relatively linear with a variation of about 50 kN, as can be seen in Fig. 8(f).
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It can be seen that, based on the value of the SHAP independence plot (Fig. 8), it is possible to
investigate the influence of each variable on the ability to contribute the value of the shear strength of
SSFRC beams in the design process.
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Figure 8. Partial dependence plot in analyzing the influencing factors

5. Conclusions and Perspectives

The study has successfully developed an approach of data-driven to studying the shear strength
of SSFRC beams. Based on a database of 330 data samples and eight input variables (beam width,
effective depth of section, longitudinal reinforcement ratio, shear span-to-effective depth ratio, aggre-
gate size, concrete compressive strength, fiber tensile strength, steel fiber factor), a hybrid machine
learning model between ANN and PSO algorithms have been successfully established to select hyper-
parameters for the model. The ANN includes activation function ‘relu’, solver of weight optimization
‘L-BGFS’, two hidden layers with the number of neurons (5; 6), and maximal iteration 14000.
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A 10-Fold CV is used to validate the reliability of the ANN-PSO machine learning model. With
the proposed hyperparameters, the shear strength of SSFRC beam prediction accuracy is higher than
in previous studies, with R>=0.9727, RMSE = 31.9822 kN, MAE = 21.5267 kN, and ars =0.7677 for
the control dataset.

By interpreting the results of the ANN model by the values of SHAP, including Global SHAP
value and SHAP independence plot, the order of influence of the variables on the shear strength value
and the predictability of the ANN model can be arranged according to the effective depth of section >
beam width > longitudinal reinforcement ratio > steel fiber content > concrete compressive strength
> shear span-to-effective depth ratio > fiber tensile strength > aggregate size. In which fiber tensile
strength and aggregate size have almost no effect on the shear strength value. An increase in the
shear span-to-effective depth ratio reduces shear strength, which can be increased by increasing the
value of effective depth of section, beam width, longitudinal reinforcement ratio, steel fiber factor,
and concrete compressive strength.

The results of this paper are meaningful in the initial assessment of the shear strength of SSFRC,
which helps to speed up the design process and reduce the cost of designing and testing SSFRC
beams.
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