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Abstract

Vietnam experiences increasing droughts throughout the dry season due to climate change, global warming,
and human-caused activities like urbanization and deforestation. Drought hazard significantly impacts socioe-
conomic, agriculture, and the environment; it directly threatens human lives, livelihoods, food security, and
environmental degradation. It is essential to have a drought assessment map to assist in developing and imple-
menting strategies to combat drought. Space remote sensing technology development has enabled efficient and
cost-effective monitoring and evaluation of droughts on a large scale, surpassing the capabilities of ground-
based observations. This research uses remote sensing technology to monitor and assess the severity of the
drought in the Bac Binh district, Binh Thuan province. We analyzed the Temperature Vegetation Dryness Index
(TVDI) using multi-temporal Landsat 8 satellite data for the severe drought events in 2014, 2017, and 2020.
The results indicate a significant increase in the percentage of land area affected by drought, from 50.74% in
2014 to 66.23% in 2020. The obtained maps provide valuable visual data to relevant agencies, assisting with
planning preventative measures and mitigating future drought risks.

Keywords: drought; Landsat 8; temperature vegetation dryness index; Bac Binh.
https://doi.org/10.31814/stce.huce2023-17(2)-11 © 2023 Hanoi University of Civil Engineering (HUCE)

1. Introduction
Drought is a natural hazard that occurs when there is an intense and persistent shortage of pre-

cipitation [1]. Drought is especially a common phenomenon in Asia which is a living continent of
more than half of the world’s population [2, 3]. Since the late 1990s and continuing to the present,
most of Asia, Southern Europe, Africa, and Southern Australia have shown a trend toward increas-
ingly frequent drought occurrences [4]. In terms of the number of people affected by drought, Asia
has more than 1.3 billion people affected during the same period [5]. In recent years, droughts in
Asia have become more severe and frequent because of climate change and increasing water demand
[6]. Droughts can have significant impacts on ecosystems and human populations, leading to crop
failures, food shortages, water scarcity, and even migration and conflict [7]. The traditional method of
monitoring drought is to observe and record physical indicators such as rainfall, water levels in rivers,
and soil moisture from the meteorological stations [8]. This approach often relies on ground-based
stations which can be time-consuming and labor-intensive, and not effective for the large scale [9].
Despite these limitations, traditional drought monitoring methods are still important in many regions
where advanced technology is not widely available or accessible [10]. Meanwhile, the use of remote
sensing data in monitoring drought can provide valuable information to help authorities plan and
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implement effective measures to mitigate the impacts of drought on the local community [11]. Nowa-
days, Landsat 8 satellite image data can completely overcome the limitations of traditional methods in
monitoring and evaluating drought [12]. It can provide a synoptic and comprehensive view of the area,
allowing for the detection of changes in vegetation health, land surface temperature, and precipitation
patterns [13]. Additionally, Landsat 8 satellite image data can be collected regularly which enables
the monitoring of drought over time and the assessment of its impacts on vegetation and the environ-
ment [14]. Moreover, this satellite image data is non-destructive and can cover large areas, making it
cost-effective and efficient in comparison to ground-based observations [15]. With the advancement
of Landsat satellite generations, the accuracy and spatial resolution of this new-generation data have
strongly improved, allowing for more precise and reliable drought monitoring [16]. These advantages
have made Landsat 8 satellite image data an essential tool for monitoring drought and informing
decision-making in various sectors such as agriculture, water management, and disaster risk reduc-
tion [17]. Bac Binh district is located in the Northeastern of Binh Thuan province, Vietnam. It has a
strategic position because of its location at the intersection of the Central Highlands and the coastal
region of Southern Vietnam [18]. Moreover, it has a diverse landscape and a rich cultural heritage
and is home to many ethnic minority groups [19]. Nevertheless, it is situated in a dry and arid region,
making it particularly vulnerable to drought [20]. Although the severity of the drought varied over
different years, it has caused damage to people’s life, people livelihood, and local economic develop-
ment [21]. Determination of drought using the satellite image data can rely on various indices such
as the Normalized Difference Vegetation Index (NDVI), the Soil Adjusted Vegetation Index (SAVI),
the Temperature Vegetation Dryness Index (TVDI), and the Vegetation Condition Index (VCI) [22].
These indices are often utilized to detect changes in vegetation cover, soil moisture, and surface tem-
perature [23]. Meanwhile, TVDI is a significant index for drought monitoring because it can combine
information on land surface temperature and vegetation health to provide a measure of the moisture
stress of the landscape [24]. In addition, TVDI can capture the onset of drought earlier than other
indices because it detects the effects of water stress on vegetation before they occur [25]. TVDI is
also sensitive to changes in temperature, which is an important factor in drought formation [24, 26].
Thus, TVDI is considered an effective index for detecting droughts in different regions, and its results
can be easily interpreted and mapped [27]. As a result, this index has often been used in monitor-
ing drought [21, 26, 28–32]. Nonetheless, most of these studies used old-generation Landsat satellite
images to monitor drought [21, 26, 31], or used different satellite image data in assessing drought [28–
30, 32]. Whereas the old-generation Landsat imagery data was often delayed for a long time before
being provided to users, which hindered timely and efficient analysis [33]. Different satellite image
data can lead to variations in the TVDI values, which can affect the accuracy and reliability of the
drought assessment [34].Therefore, this study applied multi-temporal Landsat 8 satellite data to mon-
itor and evaluate drought conditions in Bac Binh district, Binh Thuan province, in 2014, 2017, and
2020 based on the Temperature Vegetation Dryness Index (TVDI). The calculated TVDI index from
the same satellite image data can limit potential inconsistencies when using different satellite image
data. The received maps of this study can provide valuable information for monitoring drought and
help relevant authorities plan and implement effective measures to minimize the impact of drought
on the local community.

2. Material and Methods
2.1. Study area

Bac Binh district is the largest district in Binh Thuan province, located in the north of Binh
Thuan province, about 230 km East of Ho Chi Minh City and about 200 km Southwest of Nha Trang
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(Fig. 1). Bac Binh district has a natural area of about 1872.2 km2 and is located from 10°58’27"to
11°31’38"North latitude, 108°06’30"to 108°37’34"East longitude.

Figure 1. The study area

The terrain of Bac Binh district is quite com-
plex, with a small flat area sandwiched between
mountain ranges in the North and Northwest and
dunes in the Southeast, forming a basin-like ter-
rain [35]. The district is located in the tropical
monsoon climate zone, with plenty of sunshine,
wind, no winter, and the driest climate in Vietnam.
The climate is divided into two distinct seasons:
the rainy season and the dry season. The rainy sea-
son usually starts from May to October, while the
dry season is from November to April of the fol-
lowing year. In reality, the rainy season only fo-
cuses on three months: August, September, and
October, so the dry season lasts longer [36]. De-
sertification of sand dunes has been the primary
form of land degradation in the Bac Binh district
in recent years [20].

2.2. Data used

The Landsat 8 optical satellite imagery is a
source of satellite data with moderate spatial reso-
lution, completely free, and regularly updated (Ta-
ble 1). Its abundant spectral channels allow for ap-
plication in many studies on natural resources, the
environment, hydrology, and meteorology at the district scale and above [16].

Table 1. Detailed information of Landsat 8 images [37]

Bands
Wavelength

(micrometers)

Spatial
resolution
(meters)

Temporal
resolution

(days)
Sensor type

Band 1 - Coastal aerosol 0.43–0.45 30 16 OLI
Band 2 - Blue 0.45–0.51 30 16 OLI
Band 3 - Green 0.53–0.59 30 16 OLI
Band 4 - Red 0.64–0.67 30 16 OLI
Band 5 - Near Infrared (NIR) 0.85–0.88 30 16 OLI
Band 6 - Shortwave Infrared (SWIR) 1 1.57–1.65 30 16 OLI
Band 7 - Shortwave Infrared (SWIR) 2 2.11–2.29 30 16 OLI
Band 8 - Panchromatic 0.50–0.68 15 16 OLI
Band 9 - Cirrus 1.36–1.38 30 16 OLI
Band 10 - Thermal Infrared (TIRS) 1 10.6–11.19 100 16 TIRS
Band 11 - Thermal Infrared (TIRS) 2 11.50–12.51 100 16 TIRS

In this study, the Landsat 8 data was downloaded from the website of the United States Geological
Survey [38]. The satellite images were acquired during the driest period in the Bac Binh district from
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January to March (Table 2).

Table 2. The used Landsat 8 data

No Data type Scene name Data acquisition time

1 Landsat 8 OLI LC08_L1TP_124052_20140130_20200912_02_T1 January 30, 2014
2 Landsat 8 OLI LC08_L1TP_124052_20170207_20200905_02_T1 February 07, 2017
3 Landsat 8 OLI LC08_L1TP_124052_20200216_20200823_02_T1 February 16, 2020

2.3. Methodology

The research methodology consists of four main steps and is described in Fig. 2.

Figure 2. The methodology used in this study

a. Step 1. Calculation of Normal Difference Vegetation Index (NVDI)

The NDVI is an important parameter in agriculture, used to indirectly monitor rainfall, evaluate
the impact of weather, and calculate biomass, seasonal productivity, and plant health [39]. The NDVI
indicates the degree of vegetation cover on the Earth’s surface and often ranges from −1 to 1 [40]. The
higher the NDVI is, the higher the vegetation density is, and in reverse [41]. In this study, the NDVI
was calculated as the following equation:

NDVI =
NIR − Red
NIR + Red

(1)

where NIR, Red refer to the near-infrared and red wavelengths of the electromagnetic spectrum, re-
spectively. These values correspond to band 5 and band 4 of Landsat 8 data (Table 1).

b. Step 2. Calculation of Land Surface Temperature (LST)

To calculate land surface temperature, the following steps need to be taken [42]:
- Converting digital number values (DNs) on Landsat images in the thermal infrared channel to

top-of-atmosphere reflectance (TOA) values using the following formula:

TOA = ML.Qcal + AL (2)
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where ML is band-specific multiplicative rescaling factor from the metadata; Qcal corresponds to band
10 and band 11; AL repsresents band-specific additive rescaling factor from the metadata.

- TOA to Brightness Temperature conversion (TB):

TB =
K2

ln
(
1 + K1

Lλ

) − 273.15 (3)

where K1 is band-specific thermal conversion constant from the metadata; K2 is band-specific thermal
conversion constant from the metadata; Lλ is TOA value.

Table 3. Information on radiation values of Landsat-8 satellites

Value Band 10 Band 11

ML 0.0003342 0.0003342
AL 0.1 0.1
K1 774.8853 480.8883
K2 1321.0789 1201.1442

- Calculation of the surface emissivity (ε):
The surface emissivity can be determined from remote sensing data based on the reclassifying

results of land cover types or the NDVI factor. Surface emissivity indicates the ability of a surface
to emit thermal radiation [43]. The thermal bands of Landsat 8 data capture the emitted radiation
from the Earth’s surface, and accurate estimation of surface emissivity is crucial for retrieving surface
temperature and analyzing the thermal properties of different land cover types [44]. The determination
of the surface emissivity based on the NDVI can identify the surface emissivity in detail for each pixel
and heterogeneous area. In this study, the surface emissivity of a pixel is calculated as follows [42]:

ε = εvPv + εs (1 − Pv) (4)

where εv and εs are characteristic emissivities for pure vegetation cover area (= 0.985) and homoge-
neous soil (= 0.960), respectively [45]; Pv is the proportion of vegetation cover in a pixel, and ranges
from 0 for bare soil to 1 for vegetation. The value of Pv is determined using the formula [46]:

Pv =

[
NDVI − NDVImin

NDVImax − NDVImin

]2

(5)

- The Land Surface Temperature (TS) was calculated using the below equation:

TS =
TB

1 +
(
λ.TB

ρ

)
ln (ε)

(6)

where λ is the central wavelength of the thermal infrared channel; ρ = h
c
σ

; σ is Stefan-Boltzmann

constant (= 1.38×10−23 J
K

); h is Plank constant (= 6.626×10−34 J.sec ); c is light speed (= 299792458
m/s);
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c. Step 3. Calculation of Temperature Vegetation Dryness Index (TVDI)

TVDI is a remote sensing index that was developed to assess vegetation health and soil mois-
ture levels based on temperature and vegetation data [26]. Sandholt et al. suggested the calculation
of TVDI by combining the land surface temperature and NDVI (Normalized Difference Vegetation
Index) [47]. By measuring the difference between the land surface temperature and the temperature
of the vegetation, TVDI can provide an estimate of the degree of dryness or wetness in the soil [48].
According to that, TVDI can be calculated by using the following equation [47]:

TVDI =
TS − TS min

TS max − TS min
(7)

where TS is the calculated surface temperature (in degrees Celsius); TS max and TS min are maximum
and minimum surface temperatures. respectively (in degrees Celsius);

d. Step 4. Creation of drought maps

The drought maps were classified based on the calculated TVDI index. Typically. the TVDI ranges
from 0 to 1 and indicates the status of drought at different levels [49]. The drought level is classified
in Table 4.

Table 4. Classification of drought levels based on the TVDI [47]

No TVDI value Drought level

1 0.0 – 0.2 No drought
2 0.2 – 0.4 Low drought
3 0.4 – 0.6 Moderate drought
4 0.6 – 0.8 Severe drought
5 0.8 – 1.0 Very severe drought

3. Results and discussion
3.1. Normal Difference Vegetation Index (NVDI) maps

(a) 2014 (b) 2017 (c) 2020

Figure 3. NDVI maps in 2014, 2017, and 2020
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In this study, NDVI maps were generated based on band 4 and band 5 of Landsat 8 satellite data
in 2014, 2017, and 2020 (Fig. 3). NDVI values ranged from (−0.213) to 0.544 in 2014, from (−0.324)
to 0.570 in 2017, and from (−0.269) to 0.567 in 2020, respectively. This result seems to show that the
vegetation coverage within the study area has not increased much. It can be observed that over time,
the average value of NDVI across the study area shows a decrease, indicating a decline in vegetation
cover in the Bac Binh district. Fig. 3 highlights a significant change in NDVI, particularly in the
central and southern areas, where water shortages for agricultural production and desertification are
becoming more pronounced, respectively. This finding aligns completely with the observed vegetation
loss in the Land-cover classes maps from a previous study conducted by Dang et al. in 2020 [35].
Furthermore, the diminishing occurrence of high NDVI values in the northern part of the Bac Binh
district confirms the significant decline in the forests of the north.

3.2. Land Surface Temperature (LST) maps
Similar to NDVI, LST maps were built based on band 10 and band 11 of Landsat 8 satellite data

in 2014, 2017, and 2020 (Fig. 4). LST values ranged from 16.7 to 36.3 °C in 2014, from 17.6 to 39.8
°C in 2017, and from 21.5 to 42.4 °C in 2020, respectively.

(a) 2014 (b) 2017 (c) 2020

Figure 4. LST maps in 2014, 2017, and 2020

The temperature maps depicted in Fig. 4 reveal a significant increase in surface temperature across
the entire Bac Binh district, with particular emphasis on the central area. The observed temperature
rise in the western and northern forests, as illustrated in Fig. 4, aligns perfectly with the documented
decrease in vegetation cover between 2009-2014 and 2014-2019 reported by Dang et al. (2020) [35].
The variation in absolute temperature values between this study and the literature [35] primarily arises
from the use of different image sources and analytical data. However, in terms of spatial patterns, the
classification of surface temperature exhibits a similarity between the current study and the previous
study, despite relying on only a single image to represent dry season data in this study.

It is noteworthy that the increase in surface temperature between 2014 and 2017 appears to be
significantly higher compared to the period of 2017-2020. This discrepancy can be attributed to the
active El Niño period between 2014-2017, while the period of 2017-2020 corresponds to an active
phase of the La Niña weather pattern. The agreement between the studied land surface temperature
maps and those of the previous literature confirmed the reliability of the research outcomes.
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3.3. Temperature Vegetation Dryness Index (TVDI) maps

TVDI reflects the normalized surface temperature ratio calculated from LST using Eq. (7) to
better represent the variation of land surface temperature. TVDI values ranged from 0 to 1, and the
higher these values are, the greater the degree of drought is, and in reverse. The maps of TVDI of
Bac Binh district in 2014, 2017, and 2020 are presented in Fig. 5. The TVDI map for the years 2014,
2017, and 2020 illustrates the correlated changes in surface temperature across the study area. It is
evident that the northern purple area (TVDI ≈ 0) gradually diminishes and nearly disappears towards
the west, while expanding in the central area (refer to Fig. 5(b)). This surface temperature response
corresponds to the decline in vegetation cover in the northern and western regions, accompanied by
an increase in cultivated areas in the central region. Furthermore, the southern region experiences an
expansion of the area with high TVDI values, indicating the spreading of sand dunes. Despite the
absence of validation data, the results of the TVDI map for the Bac Binh area in 2019 (Fig. 5(b))
exhibit a similar pattern when compared to the NDDI (Normalized Difference Drought Index) map
reported by Trinh and Vu (2019) [20]. This similarity provides further support for the reliability of
the paper’s findings.

(a) 2014 (b) 2017 (c) 2020

Figure 5. TVDI maps in 2014, 2017, and 2020

3.4. Drought classification maps

Based on the analysis of the TDVI values, drought classification maps were created. Then, the
drought classification maps of the Bac Binh district of Binh Thuan province in 2014, 2017, and 2020
are presented in Fig. 6.

The results show that most of the study area has a moderate to very high level of drought. Areas
with no drought and low drought were mainly concentrated in the north, where natural forest coverage
remains. However, the area of these regions during the period 2014-2020 tended to decrease signif-
icantly along with the decrease in the natural forest area. The area of these regions was 92216.8 ha
(49.26%) in 2014, followed by 71386.8 ha (38.13%) in 2017, and followed by 63225.6 ha (33.77%),
respectively. Comparing between 2014 and 2017, the area of these regions decreased by 20830.0 ha
(11.13%), while comparing between 2017 and 2020, it decreased by 8161.2 ha (4.36%) (detailed in
Table 5 and Fig. 7).
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(a) 2014 (b) 2017 (c) 2020

Figure 6. Drought classification maps in 2014, 2017, and 2020

Table 5. Statistical data of drought classification areas in 2014, 2017, and 2020

Classification drought
The year 2014 The year 2017 The year 2020

Area (ha) Area (%) Area (ha) Area (%) Area (ha) Area (%)

No drought 49102.5 26.23 34078.6 18.20 34197.1 18.27
Low drought 43114.3 23.03 37308.2 19.93 29028.5 15.51

Moderate drought 45339.9 24.22 35672.0 19.05 42779.5 22.85
Severe drought 30867.7 16.49 39861.8 21.29 45679.6 24.40

Very severe drought 18794.7 10.04 40298.4 21.52 35534.3 18.98

Figure 7. Areas of drought in hectares and percentages by classification
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Meanwhile, the area experiencing moderate to severe drought increased significantly from 2014
to 2020 and was mainly concentrated in agricultural production areas and sandy soils. In 2014, the
area of these regions accounted for 95002.3 ha (50.74%). However, these regions had expanded to
115832.3 ha (61.87%) in 2017. This expansion was mainly attributed to the impact of El Nino in
2016. Furthermore, the drought-affected area continued to grow by approximately 4.3%, accounting
for 123993.5 ha (66.23%) in 2020 due to the expansion of sandy soil area and a decrease in agri-
cultural land. Thus, it is evident that within a short period from 2014 to 2020, the area experiencing
moderate drought to very severe drought increased quite rapidly. In 2014, these areas only accounted
for half of the total area of the district, by 2020, they accounted for two-thirds of the total area of the
district. The drought maps analyzed in this study exhibit significant differences from the drought map
of the Bac Binh district published by Trinh and Vu (2019) [20]. The main disparity arises from utiliz-
ing the TVDI index in this study, while Trinh and Vu relied on the NDDI index without incorporating
land surface temperature data. Additionally, the classification thresholds for these two indicators are
entirely distinct. However, despite these disparities, there is a notable increase in the extent of moder-
ate to severe drought, with a roughly 7% rise from 2011 to 2017, as reported by Trinh and Vu [20].
This finding supports the reasonable conclusion that the research results reflect the increasing trend
of dry areas over time. Furthermore, it is noteworthy that the soil moisture and land surface temper-
ature monitoring points depicted in Fig. 5 [20] are situated entirely within the regions experiencing
moderate to very severe drought, as identified in this report. This observation further confirms the
reasonableness and reliability of employing the TVDI for drought assessment in this study.

Generally, the drought in Bac Binh district, Binh Thuan province, is increasing both in movement
speed and area expansion, and this phenomenon seriously affects the quality of life, living environ-
ment, and livelihoods of local people. In addition to the unfavorable terrain, prolonged hot weather
conditions and low rainfall increase the temperature in the area, and the reduction of vegetation cov-
erage is also the main reason leading to the drought in the research area.

4. Conclusions
In this study, multi-temporal Landsat 8 satellite data were used to assess drought conditions in Bac

Binh district, Binh Thuan province, for the years 2014, 2017, and 2020 based on the Temperature Veg-
etation Dryness Index (TVDI). The results indicate that areas without drought and with low drought
levels are primarily located in the northern part of the study area, where natural forest coverage still
exists. However, these regions are experiencing a significant decrease in size. Moderate to very severe
drought areas are concentrated in the central and southern parts of the study area, characterized by
basin-like terrain and predominantly sandy soil, and are also the location of local people’s production
activities. The study results demonstrate the expansion in both the extent and severity of drought from
2014 to 2020. The percentage of drought-affected areas has notably increased from 50.74% in 2014
to 66.23% in 2020. The drought situation is predicted to worsen in 2023 with the incoming El Nino
event. This study also highlights the effectiveness of remote sensing data in monitoring and assessing
drought conditions over a large area and an extended period. The drought maps can serve as a valuable
tool for local authorities to develop policies to mitigate drought risks, preserve natural forest areas,
and guide appropriate livelihood changes for the local population. In future work, multi-remote sens-
ing images covering a longer period, coupled with in-situ observations and land cover classification
maps, can be used to further enhance the classification of drought levels in Bac Binh province with
reduced uncertainty.
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