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Abstract

This paper presents a stable node-based smoothed finite element method (SNS-FEM) based on the upper theo-
rem of limit analysis for stability analysis of a square tunnel in cohesive-frictional soils subjected to surcharge
loading. The homogeneous soil is considered rigid-perfectly plastic and obeys the associated flow rule follow-
ing the Mohr–Coulomb failure criterion. In this paper, the square tunnel is subjected to the surcharge loading
σs on the ground surface. The variations of the stability number σs/c have been investigated for different values
of the cover depth-to-width ratio of the tunnel H/B, unit weight γB/c, and internal friction angle ϕ. Numerical
results of square tunnels using the SNS-FEM approach demonstrate accuracy and efficiency. Design tables
and charts of stability number results are provided for engineers to use in the preliminary design stage of the
square tunnel.
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1. Introduction
Rapid population growth has increased the demand for circular tunnels in transportation sys-

tems such as metros, highways, and railways. In recent years, square and rectangular tunnels have
been widely used in subway stations, underground spaces, and mine tunnels. These tunnels are typi-
cally built in soils with cohesive and frictional properties. Therefore, this research aims to investigate
the effects of surcharge loading on the stability analysis of square tunnels constructed in cohesive-
frictional soils.

Numerous centrifuge model tests focusing on circular tunnels were conducted in the 1970s by
researchers at the University of Cambridge, including works by Cairncross [1], Atkinson and Pott [2],
and Seneviratne [3]. Later, Davis et al. [4], Mühlhaus [5], and Leca and Dormieux [6] used upper-
bound rigid-block and lower-bound limit analysis to derive theoretical solutions for circular tunnel
problems in cohesive-frictional soils. A limited study using the upper bound rigid-block method
makes it difficult to postulate an admissible failure mechanism, especially for deeper tunnels and
soils with high friction angles. The numbers and arrangement of the rigid blocks often limit the ac-
curacy of this method and the ultimate failure mechanism. Then, Sloan and Assadi [7] first utilized
finite element limit analysis (FELA) and linear optimization techniques to investigate the undrained
stability of a square tunnel in cohesion soils. Highly efficient finite element limit analysis techniques,
based on nonlinear optimization, Lyamin and Sloan [8] and Lyamin et al. [9] calculated the stability
of circular and square tunnels in cohesive-frictional soils. Next, Yang and Yang [10] investigated the
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support pressure for a shallow rectangular tunnel in cohesive-frictional soil based on the upper bound
rigid-block failure mechanisms. Recently, Yamamoto et al. [11, 12] used the finite element upper-
bound and lower-bound theorem and nonlinear programming techniques to analyze the stability of
circular and square tunnels in cohesive-frictional soils subjected to surcharge loading. More recently,
Vo-Minh et al. [13] used the upper-bound limit analysis using the isogeometric analysis (IGA) and
second-order cone programming (SOCP) optimization techniques to investigate the stability of circu-
lar tunnels in cohesive-frictional soils.

The finite element method (FEM) has recently gained significant popularity in various sciences
and engineering fields. However, the standard FEM has inherent limitations and drawbacks, such as
reduced accuracy when using lower-order elements, sensitivity to mesh distortion, and the occurrence
of the volumetric locking phenomenon. To overcome these challenges, Liu et al. [14] introduced the
node-based smoothed finite element method (NS-FEM) to address these drawbacks and analyze prob-
lems in solid mechanics using upper-bound solutions. The NS-FEM eliminates the volumetric locking
by directly computing the strain smoothing associated with nodes using only the shape functions with-
out coordinating transformation. Furthermore, the NS-FEM exhibits improved performance in highly
distorted elements. It has been successfully applied to several engineering problems, including solid
mechanics (Nguyen-Thoi et al. [15, 16], and limit analysis of solid problems [17]. A few years ago,
Vo-Minh et al. [18–20] utilized the NS-FEM with the upper bound limit analysis theorem to examine
the stability of tunnels in cohesive-frictional soils. Recently, Vo-Minh [21] employed the NS-FEM
and SOCP for slope stability analysis in cohesive-frictional soils.

For dynamic structural analysis and acoustic problems, the NS-FEM has been found to have limi-
tations due to its inherent “overly-soft” nature, which leads to temporal instability. Various numerical
improvements have been proposed to address this issue in recent years. For example, Liu et al. [22]
introduced the α-FEM, a combination of the FEM and the NS-FEM with an adjustable stabilization
parameter α, while Xu et al. [23] presented the hybrid smoothed finite element method (H-SFEM).
However, these methods require an uncertain parameter α, making calculation results highly sensi-
tive to its value. To overcome the need for an uncertain parameter α, Wang et al. [24] introduced
the stable node-based smoothed finite element method (SNS-FEM) for the analysis of 2D acoustic
problems. The SNS-FEM utilizes the smoothing domain associated with nodes from the NS-FEM
and expands the smoothed shape function gradient using the first-order Taylor equation in an approx-
imation integral domain. Additionally, six extra integration points (for 3D space) or four additional
integration points (for 2D space) are introduced to modify the smoothed strain. The SNS-FEM has
been successfully applied in various fields, including static and dynamic analysis of solid mechanics
(Feng et al. [25]) and metal forming problems (Yang et al. [26]). Recently, Vo-Minh and Nguyen-Son
[27] employed the SNS-FEM based on the upper-bound limit analysis to evaluate the stability of two
circular tunnels at different depths. More recently, Vo-Minh and Nguyen [28], and Vo-Minh et al. [29]
investigated the seismic stability of a circular and a square tunnel in cohesive-frictional soils using the
SNS-FEM.

This research paper aims to apply the SNS-FEM and SOCP optimization for stability analysis of
a square tunnel in cohesive-frictional soils subjected to surcharge loading. To confirm the validity
and accuracy of the SNS-FEM method, the stability numbers of a square tunnel are compared with
the average values of the lower and upper bound using FELA and nonlinear optimization techniques
reported by Yamamoto et al. [12]. The authors used low-order triangular elements and velocity dis-
continuities to maintain the numerical accuracy in their approaches. The key idea of the proposed
method SNS-FEM is that the strain field within the smoothing domain is not a smoothed constant but
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varies linearly, effectively overcoming the overly soft problem of the NS-FEM and temporal instabil-
ity. Furthermore, the Mohr–Coulomb yield criterion can be formed in a SOCP using the SNS-FEM.
The problem can be solved by the primal-dual interior-point method implemented in the Mosek soft-
ware package [30]. This algorithm proved to be an effective optimization tool for limit analysis in
geotechnical engineering.

The paper is organized as follows: Section 2 describes the problem definition. Section 3 briefly
overviews the upper bound limit analysis formulation based on the SNS-FEM method. Numerical
examples of stability analysis for a square tunnel are presented and discussed in Section 4. Finally,
some concluding remarks are made in Section 5.

2. Problem definition
The plane strain square tunnel model has width B, cover depth H, and is subjected to the ultimate

surcharge loading σs on the ground surface, as shown in Fig. 1. The boundary of the problem is
chosen sufficiently distance away from the tunnel periphery, which has a width 2L and a height H +
B + h. In this study, to eliminate the boundary effects of the domain, the values of L = 3B − 7B, H =
B − 5B, and h = B − 2B are assumed to be sufficiently large, and the failure mechanisms are inside
the problem. The soil behavior is described as homogeneous Mohr–Coulomb material with cohesion
c, friction angle ϕ and unit weight γ, and drained loading conditions are assumed. In this study, a
dimensionless stability number σs/c is defined by using a functional relationship of ϕ, γB/c and H/B
are given as

σs

c
= f
(H

B
,
γB
c
, ϕ
)

(1)

This paper considers the tunnel ratio of cover depth and the width of the square tunnel H/B =
1-5. The dimensionless unit weight γB/c ranges from 0 to 2, and the value of soil friction angle ϕ
varies from 0° to 35° is investigated. The horizontal displacements are free (u , 0) or fixing (u = 0)
along the ground surface to describe the smooth or rough interface condition between the soil and
the surcharge loading. The limitation of this study is that it does not consider the initial stress and the
effect of the groundwater surrounding a square tunnel.

Figure 1. Square tunnel subjected to surcharge loading

3. Upper bound limit analysis in the geomechanics problem using a stable node-based smoothed
finite element method (SNS-FEM)

3.1. The upper bound limit analysis for plane strain in geotechnical problems
Under the assumption of small deformation, a two-dimensional problem domain Ω bounded by a

continuous boundary Γu̇ ∪ Γt = Γ,Γu̇ ∩ Γt = ∅ is considered. Assumed that the domain is subjected
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to body forces f and external tractions g on the Neumann boundary Γt, while the velocity vector
u̇ = [ u̇ v̇ ]T prescribes the Dirichlet boundary Γu̇.

The upper bound theorem indicates that a structure is expected to collapse when there exists a
kinematically admissible velocity field for which the external work rate Wext(u̇) is greater than the
internal plastic dissipation rate Wint(σ, u̇) such that

Wint(σ, u̇) < Wext(u̇) (2)

where 

Wint(σ, u̇) =
∫
Ω

Dp(u̇)dΩ =
∫
Ω

σε̇dΩ

Wext(u̇) =
∫
Ω

fu̇dΩ +
∫
Γt

gu̇dΓ

ε̇ =
[
ε̇xx ε̇yy γ̇ xy

]T
= ∇u̇

U =
{
u̇ : u̇ = u̇0 on Γu̇,Wext(u̇) > 0

}
σ ∈ {σ : ψ(σ) ≤ 0}

(3)

u̇ and σ denote the kinematically admissible velocity field and plastically admissible stress, respec-
tively; ψ(σ) is the yield function.

In the upper bound limit analysis, plastic dissipation can be expressed

Wint(σ, u̇) = α+Wext(u̇),∀u̇ ∈ U (4)

where α+ is the collapse load multiplier.
Setting C = {u̇ ∈ U |Wext(u̇) = 1}, the collapse multiplier α+ can be determined from the following

optimization problem

α+ = max
{
∃σ ∈

∑
|Wint(σ, u̇) = α+Wext(u̇),∀u̇ ∈ U

}
= min

u̇∈U
Dp(u̇)

st


u̇ = 0 on Γu

Wext(u̇) =
∫
Ω

fu̇dΩ +
∫
Γt

gu̇dΓ = 1
(5)

In geotechnical problems, the soil is considered rigid-perfectly plastic and obeys the associated
flow rule following the Mohr–Coulomb failure criterion. The internal plastic dissipation equation for
plane strain conditions is proposed by Makrodimopoulos and Martin [31] as follows

Dp(u̇) = c cos ϕ
∫
Ω

√
ε̇TΘε̇dΩ with ε̇ =

[
ε̇xx ε̇yy γ̇ xy

]T
and Θ =

 1 −1 0
−1 1 0
0 0 1

 (6)

where ϕ is the friction angle and c is the soil cohesion.

3.2. A brief of a stable node-based smoothed finite element method (SNS-FEM)

This section briefly describes a stable node-based smoothed finite element method (SNS-FEM)
presented by Feng et al. [25].
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The problem domainΩ is subdivided into non-overlapping and non-gap smoothing domains based

on the background cells, with the condition thatΩ =
Nn∑

k=1

Ωs
k andΩs

i ∩Ω
s
j = ∅, i , j, where Nn denotes

the total number of field nodes. Fig. 2(a) shows how a nodal smoothing domain Ωs
k associated with

node k is constructed by connecting the mid-edge points to the centroid of surrounding triangular
elements. The boundary of the smoothing domain Ωs

k is labeled as Γk, and the union of all Ωs
k forms

the entire problem domain Ω.

(a) The smoothing cells associated with the node k (b) The approximate integration domain
and integration points for SNS-FEM

Figure 2. The schematic of a node-based smoothing domain for node k

Using the NS-FEM, Liu et al. [14] calculated the smoothed strain rates on the cell Ωs
k associated

with node k as follows
˜̇εk =

∑
k∈N(s)

B̃k(xs)dk (7)

where N(s) is the set containing nodes directly connected to node k,dk is the nodal displacement vector
and B̃k(xs) is a smoothed strain-displacement matrix given by

B̃k(xs) =

 b̃kx(xs) 0
0 b̃ky(xs)

b̃ky(xs) b̃kx(xs)

 (8)

where

b̃kh(xs) =
1

A(s)
k

∫
Γk

n(s)
h (x)Nk(x)dΓ =

1

A(s)
k

M∑
k=1

Nk(xGP
k )n(s)

kh l(s)
k , (h = x, y) (9)

where A(s)
k =

∫
Ωs

k

dΩ is the area of the cellΩs
k, N(k)(x) is the FEM shape function for node k, and n(s)(x)

is the normal outward vector on the boundary Γ(s)
k , M is the number of the sub-boundary of Γ(s)

k . The
Gauss point of Γ(s)

k is xGP
k , which has length l(s)

k and outward unit normal n(s)
kh .

The SNS-FEM approach utilizes a node-based strain smoothing technique, employing linear strain
fields over the smoothed domain on 3-node triangular elements. To establish a stable node smooth
domain Ωsc

k , an integral region formed by all the element domains of node k is approximated to a
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circle with the same area. Subsequently, the smooth domain Ωs
k is divided into four subdomains to

obtain four integration points Gi
n(i = 1, 2, 3, 4), as shown in Fig. 2(b).

The radius of the equivalent circle is defined by

rc =

√
As

k

π
(10)

where A(s)
k is the area of the cell Ωs

k.
Feng et al. [25] proposed that the smoothed strain in an approximation integral domain is ex-

panded at the first order of the Taylor equation

˜̇ε = ˜̇εk +
∂ ˜̇ε
∂x

(x − xk) +
∂ ˜̇ε
∂y

(y − yk) (11)

Therefore, the smoothed strains of the four domains ˜̇εsc
1 , ˜̇εsc

2 , ˜̇εsc
3 , ˜̇εsc

4 are

˜̇εsc
1 =

˜̇εk −
∂ ˜̇ε
∂x

rc; ˜̇εsc
2 =

˜̇εk −
∂ ˜̇ε
∂y

rc; ˜̇εsc
3 =

˜̇εk +
∂ ˜̇ε
∂x

rc; ˜̇εsc
4 =

˜̇εk +
∂ ˜̇ε
∂y

rc (12)

Using the SNS-FEM, a smoothing strain around node k can be modified following Eq. (12) for
the 2D problem

⌢

ε̇k = ˜̇εk + ( ˜̇εsc
k )T

x ( ˜̇εsc
k )x

As
k

2
+ ( ˜̇εsc

k )T
y ( ˜̇εsc

k )y
As

k

2
(13)

Noting that the four additional points in the SNS-FEM are just temporary variables, the original
NS-FEM code is revised with only slightly modified.

In geotechnical problems, the domain is discretized by Ne triangular elements and the total nodes
Nn. Substituting the stable smoothed strains rates vector

⌢

ε̇ in Eq. (13) into Eq. (5), the upper-bound
limit analysis using the SNS-FEM in plane strain geotechnical problems can be written

α+ =
σs

c
= min

 Nn∑
i=1

cAi cos ϕ

√
(
⌢

ε̇
i
xx −

⌢

ε̇
i
yy)2 + (

⌢

γ̇
i
xy)2

 = min

 Nn∑
i=1

cAiti cos ϕ



s.t



ti ≥

√
(
⌢

ε̇
i
xx −

⌢

ε̇
i
yy)2 + (

⌢

γ̇
i
xy)2, i = 1, 2, . . . ,Nn

u̇ , 0, v̇ = const on Γt (smooth)
u̇ = 0, v̇ = const on Γt (rough)
u̇ = 0 on Γu
Wext(u̇) = 1
⌢

ε̇
i
xx +

⌢

ε̇yy = ti sin ϕ

(14)

where α+ is a stability number, Nn is the total number of nodes in the domain, Ai is the area of node
i, ti is the additional variable, c is the cohesion value, and ϕ is the friction angle of the soil. The first
constraint in Eq. (14) is a form of SOCP optimization. The upper bound limit analysis based on the
SNS-FEM approach and SOCP has been implemented in Matlab. The conic interior-point optimizer
of the academic Mosek package [30] is utilized to solve geotechnical engineering problems.
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4. Numerical examples
Due to the symmetry of the problem, only half of a square tunnel was used in the upper bound

simulation. The numerical analysis employed typical finite element meshes consisting of 3477 trian-
gular elements for the case H/B = 1, which were used to generate the deformed shape and velocity
plots shown in Fig. 3. GiD [32] software was utilized to create triangular elements for the square
tunnel. The domain size was assumed to be large enough to eliminate the boundary effects, and the
plastic zones were contained entirely within the domain.

(a) Typical mesh (b) Deformed shape (c) Velocity plot

Figure 3. Typical finite element mesh for a square tunnel in the case H/B = 1, γB/c = 1, ϕ = 5°

4.1. Results of failure mechanisms

(a) Yamamoto et al.
solution [12]

(b) SNS-FEM solution

Figure 4. Comparison of power dissipations of a
square tunnel in the case H/B = 1, γB/c = 1, ϕ = 5°

(a) Yamamoto et al.
solution [12]

(b) SNS-FEM solution

Figure 5. Comparison of power dissipations of a
square tunnel in the case H/B = 1, γB/c = 1, ϕ = 20°

Figs. 4–5 show the power dissipation of a shallow square tunnel H/B = 1 using the SNS-FEM in
the case friction angle ϕ = 5° and ϕ = 20°, respectively. Although a different friction angle is used
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here, these slip surfaces are almost identical, as seen in Figs. 4(b) and 5(b). The failure mechanism
illustrates that a small slip failure occurs in the bottom corner, while a large surface mechanism
originates from the top corner of the tunnel and extends up to the ground surface. The slip failures
were obtained using the SNS-FEM method presented in Figs. 4(b) and 5(b) are consistent with those
reported by Yamamoto et al. [12] in Figs. 4(a) and 5(a).

In the cases of moderate tunnel with H/B = 2 and deep tunnel with H/B = 4, as shown in Figs. 6(b)
and 7(b), the major slip failure mechanisms originate from the bottom corner of the tunnel and extend
up to the ground surface. The shapes of failure mechanisms of square tunnels obtained using the SNS-
FEM are quite similar to those derived from the FELA approach reported by Yamamoto et al. [12]
shown in Figs. 6(a) and 7(a).

(a) Yamamoto et al.
solution [12]

(b) SNS-FEM solution

Figure 6. Comparison of power dissipations of a
square tunnel in the case H/B = 2, γB/c = 1, ϕ = 5°

(a) Yamamoto et al.
solution [12]

(b) SNS-FEM
solution

Figure 7. Comparison of power dissipations of a
square tunnel in the case H/B = 4, γB/c = 1, ϕ = 5°

(a) ϕ = 5° (b) ϕ = 20°

Figure 8. Power dissipations of a circular tunnel
using the SNS-FEM in the case H/D = 1, γD/c = 1

(a) H/D = 2 (b) H/D = 4

Figure 9. Power dissipations of a circular tunnel
using the SNS-FEM in the case γD/c = 1, ϕ = 5°
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For comparison, the plots of failure mechanisms of circular tunnels are shown in Figs. 8–9 for
the same geometric and soil properties as those presented in Figs. 4–7 for square tunnels. Comparing
these plots, it can be observed that the shallow and deep circular tunnel failure mechanisms are quite
different from the cases of shallow and deep square tunnels. As expected, the ultimate surcharge loads
for circular tunnels are higher than those for square tunnels. It is due to the significant arching effect
on stress distribution around a circular tunnel.

Figs. 10–11 show failure mechanisms in the cases of shallow and deep square tunnels with the
influence of soil properties γB/c. In the case of the shallow tunnel shown in Fig. 10, when γB/c = 1,
γB/c = 2.5, and ϕ = 20°, the failure mechanisms consist of two parts: (i) a large surface mechanism
originates from the top corner of the tunnel and extends up to the ground surface; (ii) a small surface
mechanism occurs from the bottom of a square tunnel. Fig. 11 shows the collapse mechanisms of deep
tunnels where ϕ = 20°, H/B = 4, γB/c = 1, and γB/c = 2.5, the failure surfaces around the outer sides
of the square tunnels and do not extend to the ground surface. It means that the deep tunnel is more
stable when the weight of the soil increases, and the slip surface does not affect the ground surface.

(a) γB/c = 1 (b) γB/c = 2.5

Figure 10. Power dissipations of a square tunnel
using the SNS-FEM in the case H/B = 1, ϕ = 20°

(a) γB/c = 1 (b) γB/c = 2.5

Figure 11. Power dissipations of a square tunnel
using the SNS-FEM in the case H/B = 4, ϕ = 20°

4.2. Results of stability numbers

To demonstrate the computational efficiency of the proposed method for stability analysis of a
square tunnel, we consider the computational cost based on variables Nvar, and optimization CPU
times are considered for the case H/B = 1, ϕ = 30°, γB/c = 1. The reported CPU times only account
for the time spent on the interior-point iterations to solve the resulting SOCP problem. Table 1 summa-
rizes the stability numbers σs/c, number of variables Nvar, and CPU times for the finite element limit
analysis using triangular elements (FEM-T3), the edge-based smoothed finite element (ES-FEM-T3),
and the present approach SNS-FEM. These results highlight the efficiency of the SNS-FEM method
in terms of computational cost when compared to other finite element methods for stability analysis
of a square tunnel.
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Table 1. Comparisons of stability numbers of a square tunnel using the SNS-FEM and other solutions
(H/B = 1, ϕ = 30°, γB/c = 1, smooth interface)

Ne FEM-T3 ES-FEM-T3 Present method SNS-FEM

(T3) Nvar CPU (s) σs/c Nvar CPU (s) σs/c Nvar CPU (s) σs/c

584 2425 0.46 51.12 3433 0.48 34.02 1681 0.44 7.51
918 3783 0.58 27.46 5325 0.61 17.68 2571 0.56 6.91

1668 6821 0.78 16.40 9545 1.05 11.99 4541 0.61 6.78
2256 9195 1.05 14.60 12834 2.20 11.27 6066 0.80 6.76
2640 10743 1.42 14.14 14976 2.69 10.79 7056 0.86 6.75
3796 15405 1.56 13.12 21429 3.98 10.32 10041 1.28 6.74
4764 19301 1.89 11.83 26813 5.49 9.62 12521 1.33 6.71
5312 21509 2.13 11.49 29867 6.20 9.57 13931 1.59 6.68
6014 24335 2.47 11.34 33773 7.50 9.52 15731 1.89 6.68
6860 27733 2.89 11.08 38461 12.83 9.29 17881 2.27 6.68
7898 31907 3.39 10.36 44225 13.25 9.02 20531 2.47 6.68
9226 37241 3.56 10.28 51584 14.92 8.80 23906 2.70 6.67

Nvar(FEM-T3) = 2Nn + 3Ne; Nvar(ES-FEM-T3) = 2Nn + 3Ned; Nvar(SNS-FEM) = 5Nn, where Nvar,Nn, Ne, and
Ned are the number of variables, nodes, triangular elements, and triangular edges in the problems.

Fig. 12 compares the convergence rate archived by the SNS-FEM approach with those of FEM-T3
and ES-FEM-T3. Despite using a coarse mesh, the stability number values obtained using SNS-FEM
are more convergent than those obtained using other methods, such as FEM-T3 and ES-FEM-T3.
Furthermore, the SNS-FEM approach requires fewer variables than FEM-T3 and ES-FEM-T3 when
using the same elements. The optimization problem using SNS-FEM is solved by an interior-point
algorithm with fast convergence, requiring only 18 - 23 step iterations with a maximum CPU time of
2.70 s (Nvar = 23906). This comparison demonstrates the effectiveness of the SNS-FEM approach,
which utilizes the Mosek optimizer to solve geotechnical engineering problems.

Figure 12. The convergence of stability numbers of a square tunnel H/B = 1, ϕ = 30°, γB/c = 1

The SNS-FEM approach is employed to calculate the stability numbers of a square tunnel, and
the results are compared with the FELA reported by Yamamoto et al. [12]. It is found that the SNS-
FEM method provides an accurate solution, with the majority of the results in good agreement with
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the average values of the lower and upper bounds reported by Yamamoto et al. [12]. Furthermore,
the SNS-FEM approach required less than 5000 triangular elements to achieve this accuracy, while
Yamamoto et al. [12] used 20000 triangular elements and 29850 stress/velocity discontinuities. The
errors of the stability numbers from SNS-FEM limit analysis and the average values of the upper and
lower bound results reported by Yamamoto et al. [12] are within ± 3%, indicating the reliability and
effectiveness of the SNS-FEM method for stability analysis of square tunnels.

(a) ϕ = 5° (b) ϕ= 10°

(c) ϕ= 20° (d) ϕ = 30°

Figure 13. Comparisons of stability numbers using the SNS-FEM and FELA reported by Yamamoto et al. [12]
(smooth interface)

The stability numbers of a square tunnel for various values of H/B, ϕ and γB/c are listed in
Table 2 for smooth and Table 3 for a rough interface. It is observed that for some cases with H/B
ranging from 3 to 5 and γB/c = 2.5, the stability numbers σs/c are approximately zero, indicating the
absence of surcharge loading on the ground surface and the collapse of the tunnels being caused by
the unit weight of the soil. It is important to note that the negative stability numbers do not occur in
engineering practice, which means that only normal tensile stress can be applied to the ground surface
to maintain the stability of the square tunnel. In contrast, positive stability values imply that the square
tunnel collapses when subjected to compressive stress on the ground surface.
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Table 2. Results of stability numbers σs/c (smooth interface)

ϕ H/B
γB/c

0 0.5 1 1.5 2 2.5

0 1 1.99 1.47 0.89 0.27 −0.36 −1.00
2 3.05 1.91 0.75 −0.41 −1.60 −2.79
3 3.66 2.00 0.37 −1.33 −3.02 −4.73
4 4.14 1.99 −0.18 −2.36 −4.58 −6.82
5 4.55 1.89 −0.78 −3.47 −6.20 −8.96

5 1 2.37 1.79 1.17 0.54 −0.11 −0.76
2 3.77 2.54 1.30 0.05 −1.21 −2.47
3 4.70 2.88 1.07 −0.75 −2.58 −4.43
4 5.48 3.10 0.70 −1.70 −4.12 −6.56
5 6.16 3.20 0.22 −2.77 −5.79 −8.85

10 1 2.89 2.24 1.59 0.92 0.23 −0.47
2 4.82 3.46 2.08 0.71 −0.67 −2.07
3 6.31 4.28 2.25 0.17 −1.95 −4.07
4 7.67 4.95 2.19 −0.61 −3.48 -
5 8.89 5.48 1.99 −1.56 −5.28 -

15 1 3.61 2.88 2.15 1.43 0.67 −0.08
2 6.44 4.89 3.28 1.75 0.16 −1.45
3 9.06 6.66 4.22 1.75 −0.80 −3.41
4 11.62 8.37 5.20 1.56 −2.09 -
5 13.97 9.88 5.58 1.06 - -

20 1 4.67 3.84 3.01 2.17 1.32 0.47
2 9.21 7.35 5.47 3.55 1.61 −0.37
3 14.27 11.30 8.19 5.04 1.70 −1.74
4 19.44 15.37 11.03 6.43 1.45 -
5 24.62 19.43 13.80 7.74 0.88 -

25 1 6.36 5.38 4.39 3.39 2.37 1.34
2 14.51 12.10 9.65 7.15 4.57 1.91
3 25.53 21.60 17.13 12.77 7.86 2.93
4 37.77 32.14 25.99 19.28 11.81 3.57
5 51.77 44.56 36.47 27.40 17.31 3.47

30 1 9.22 8.00 6.76 5.51 4.22 2.90
2 26.33 22.87 19.28 15.57 11.71 7.67
3 54.08 48.68 41.50 34.37 26.16 17.62
4 89.04 80.11 70.05 58.66 45.82 31.14
5 137.04 125.14 111.57 96.04 78.26 48.82

35 1 14.64 12.99 11.31 9.59 7.84 6.01
2 58.66 52.70 46.22 39.57 32.54 24.98
3 147.41 138.64 124.00 110.31 93.54 74.24
4 289.90 270.64 248.34 222.80 193.45 158.83
5 509.54 483.71 452.44 415.87 373.43 323.68
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Table 3. Results of stability numbers σs/c (rough interface)

ϕ H/B
γB/c

0 0.5 1 1.5 2 2.5

0 1 2.04 1.54 0.94 0.16 −0.31 −1.31
2 3.12 1.97 0.82 −0.35 −1.54 −2.73
3 3.73 2.07 0.41 −1.26 −2.97 −4.78
4 4.16 2.04 −0.35 −2.30 −4.94 −6.91
5 4.59 1.74 −1.01 −3.79 −6.59 −9.42

5 1 2.47 1.93 1.39 0.70 −0.01 −0.72
2 3.87 2.63 1.38 0.12 −1.15 −2.41
3 4.81 2.98 1.16 −0.67 −2.53 −4.38
4 5.58 3.18 0.77 −1.65 −4.09 −6.54
5 6.21 3.28 0.30 −2.72 −5.75 −8.83

10 1 3.11 2.49 1.84 1.12 0.38 −0.34
2 4.96 3.59 2.20 0.81 −0.59 −1.99
3 6.49 4.43 2.35 0.25 −1.86 −4.01
4 7.85 5.08 2.29 −0.54 −3.44 -
5 9.01 5.66 2.13 −1.45 −5.24 -

15 1 4.01 3.24 2.45 1.68 0.89 0.09
2 6.68 5.11 3.51 1.91 0.20 −1.34
3 9.39 6.94 4.46 1.94 −0.64 −3.34
4 12.01 8.65 5.23 1.69 −1.99 -
5 14.21 10.30 5.87 1.32 −1.72 -

20 1 5.11 4.24 3.37 2.48 1.60 0.70
2 9.64 7.73 5.80 3.84 1.83 −0.19
3 14.93 11.84 8.67 5.40 1.99 −1.61
4 20.47 16.14 11.64 6.85 1.81 -
5 25.73 20.51 14.54 8.44 1.22 -

25 1 6.84 5.82 4.79 3.75 2.70 1.64
2 15.37 12.82 10.35 7.71 5.06 2.27
3 27.01 22.76 18.26 13.56 8.63 3.33
4 40.23 34.32 27.83 20.58 12.93 4.15
5 54.05 47.15 37.88 29.27 17.62 5.87

30 1 9.85 8.57 7.28 5.97 4.64 3.28
2 28.33 24.41 20.96 16.82 12.97 8.53
3 58.08 51.68 44.52 36.77 28.38 19.37
4 97.07 87.62 76.42 64.49 50.64 35.03
5 148.47 135.34 120.26 102.99 83.43 60.42

35 1 15.82 14.06 12.27 10.44 8.57 6.63
2 64.35 56.69 51.33 42.99 36.72 27.57
3 160.58 148.69 135.66 120.34 103.19 83.82
4 319.03 298.53 273.07 246.28 213.55 177.39
5 570.78 539.46 502.04 458.19 407.05 347.28
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Figs. 13–14 show the variation of the stability numbers σs/c with H/B from 1 to 5 and different
friction angle values ϕ ranging from 5° to 30° in smooth and rough interfaces, respectively. The
results obtained from the present method exhibit a slightly higher value than the solution presented
by Yamamoto et al. [12]. When considering weightless soil γB/c = 0, the square tunnel stability σs/c
with an increasing H/B for all friction angles ϕ. However, when σs/c = 2 and ϕ < 20°, an increase
in the value of H/B leads to a decrease in the stability numbers. Conversely, when γB/c = 2 and ϕ ≥
20°, the stability numbers increase continuously with an increase in H/B. These findings indicate that
the internal friction angle ϕ of the soil significantly influences the results of surcharge loading when
its values increase.

(a) ϕ = 5° (b) ϕ = 10°

(c) ϕ = 20° (d) ϕ = 30°

Figure 14. Comparisons of stability numbers using the SNS-FEM and FELA reported by Yamamoto et al. [12]
(rough interface)

Fig. 15 illustrates the variation of the stability numbers for different values of ϕ and γB/c in the
case H/B = 1 and H/B = 3 (smooth interface). It is important to note that, for given values of H/B
and ϕ, the stability numbers demonstrate decreases as the soil weight γB/c increases. In contrast, for a
given value of γB/c, the stability numbers increase continuously with an increase in the friction angle
of soil ϕ. For the case with a rough interface condition, the stability numbers are almost the same as
for the smooth case, but the collapse loads σs/c are slightly higher.
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(a) H/B = 1 (smooth interface) (b) H/B = 3 (smooth interface)

Figure 15. Variation of the stability numbers σs/c for different values of ϕ and γB/c

5. Conclusions
This research paper introduces the utilization of the upper bound theorem in combination with

a stable node-based smoothed finite element (SNS-FEM) and the second-order cone programming
(SOCP) to investigate the effect of surcharge loading on a square tunnel stability analysis in cohesive-
frictional soils. Design tables and dimensionless charts with various soil properties γB/c and ϕ, geo-
metric parameters H/B are presented. The following conclusions can be drawn:

- The stability numbers value σs/c for all friction angles decreases with an increase in soil prop-
erty γB/c. In contrast, the magnitudes of stability results show a continuous increase with an increase
in both H/B and ϕ.

- For shallow square tunnels, the failure mechanism illustrates that a small slip failure occurs in
the bottom corner, while a large surface mechanism originates from the top corner of the tunnel and
extends up to the ground surface. For medium and deep tunnels, the major slip failure mechanisms
originate from the bottom corner of the tunnel and extend up to the ground surface.

- The numerical results are available for the cases of ϕ ≤ 35°, allowing geotechnical engineers to
utilize them in the preliminary design stage of square tunnels. The proposed method is highly robust
and easily extendable for analyzing stability in various geotechnical engineering problems.
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