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Abstract

In this paper, the internal microstructures of three different concrete mixtures were investigated through digital
image analysis procedure conducted on a set of 60 cross-sectional images of hardened concrete specimens.
To quantitatively describe the geometry and spatial organization of all the components within the hardened
concretes and measure the heterogeneity of different concrete mixtures and sample shapes, a two-dimensional
Autocorrelation Function (ACF) analysis program was performed on a series of 60 scanned images of internal
cross-sectional images. This enabled us to define a correlation range called the microstructural characteristic
length, /;, which can be used as: (i) an indicator to quantify the properties on the domain size of the internal
microstructure of hardened concrete, and (ii) an input parameter for constitutive modeling or for estimating the
Representative Volume Element (RVE) of concrete. As the image analysis procedure based on ACF does not
require the segmentation of the images, the method proposed in the present paper provides a simple and useful
way of quantifying the microstructure of concrete for many practical purposes.

Keywords: concrete; autocorrelation function; integral range; image analysis; characteristic length scale; mi-
crostructural characterization.
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1. Introduction

Concrete is a complex heterogeneous material with hardened structures consisting of a variety of
different components, i.e. aggregates, multi-scale pores, air voids, and cement matrix. The internal
structure of hardened concrete is hence affected by multiple factors, such as the size and shape of
the aggregates, the cement paste, the interfacial transition zone (ITZ) between the cement paste and
aggregates, the spatial distribution of the components, and the degree of compaction [1]. It is widely
acknowledged that the internal structure of concrete has a significant impact on its mechanical re-
sponses of concrete under various loading conditions [2]. Therefore, quantifying the microstructural
characteristics of hardened concrete is frequently required in both numerical and experimental inves-
tigations of its mechanical behavior [3, 4]. For this purpose, several characteristic length scales have
been proposed to describe the internal structures of concrete on the domain size. Those can be, for
instance, the largest or the average size of aggregates, the size of pores, the ITZ length, etc., which
can be applied for different types of concrete [5]. However, these defined characteristic lengths are
not objective and precise as they do not provide a quantitative description of the spatial distribution,
geometries, and fraction content of the various components that exist within the hardened concrete
samples.
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In general, statistical correlation functions are frequently employed as a crucial technique in quan-
titatively characterizing the internal structures of heterogeneous materials such as concrete [6-9].
Anisotropic characteristics, orientation distribution, shape, and geometrical features can be extracted
from the application of n-point correlation functions [6, 7,9, 10] or Autocorrelation functions [11, 12]
on the two-dimensional cross-sectional images of materials. The n-point spatial correlation function
is a statistical method used to assess the likelihood of finding n points, in a predetermined geometrical
arrangement, all located within the region of space occupied by a single constituent of a two-phase
material [4, 10]. This means that, to apply n-point correlation functions, the heterogeneities existing
in the internal structure of heterogeneous materials must be categorized into two distinct phases. In
other words, the use of n-point correlation functions requires the segmentation of the individual com-
ponents of the material. Nevertheless, this work is challenging and time-consuming due to the need
for complex mathematical algorithms for image segmentation. On the other hand, the Autocorrela-
tion Function (ACF) provides a simpler alternative that does not involve segmenting the individual
components of the material. This approach avoids the potential biases that may arise from identifying
component boundaries, and is therefore more practical. The ACF is capable of detecting the size,
shape, orientation, and spatial arrangement of objects within an image [13]. Hence, it can serve as an
effective tool to (i) provide a quantitative characterization of the internal structure of the material in a
general sense, and (ii) objectively identify a Representative Volume Element (RVE) of the material in
terms of microstructural properties [14]. ACF is widely used in the field of geology and geosciences
due to its ability to analyze visual textures (color objects), as opposed to the binary objects that the
n-point correlation functions consider [11, 12]. Conversely, the application of ACF for concrete has
not been extensively studied thus far.

This paper presents an image analysis procedure conducted on cross-sectional images of various
hardened concrete specimens to investigate their microstructural features. Subsequently, an ACF anal-
ysis program was implemented on a set of 60 scanned images of the cross-sections of the specimens
to analyze the internal microstructure of the three examined concretes. This allowed for the identifica-
tion of a characteristic length of the microstructure, denoted as /;, which can be used to quantitatively
describe the internal microstructure of the hardened concrete in its entirety.

2. Theoretical background
2.1. Principles of Autocorrelation Function

In the context of image analysis, the Autocorrelation Function (ACF) provides information about
the degree of correlation between an image and a displaced version of itself. More specifically, it mea-
sures the extent to which the gray values of individual pixels are correlated with those of neighboring
pixels as a function of their relative spatial displacement [13, 15]. To determine the ACF of a digital
image, a duplicate of the original image is shifted by different displacements in all directions and the
autocovariance is computed as a function of the displacement [12, 13, 15]. For an image of size MXN
pixels, ACF can be calculated by Eq. (1).

M N
Cla,b)= D > i(x,y) *i(x +a,y +b) (1)
x oy

where C (a, b) is the autocorrelation function, i (x,y) is the two-dimensional grey value at position
(x,y), and a and b represent the displacement (or lag) from the corresponding x and y positions.
Similar to the original image, the ACF is also a two-dimensional function. Despite having the same
dimensions, the ACF and the original image have different significance. In the original image, a
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coordinate point (x,y) represents a position, whereas in the ACF, a coordinate point (a, b) refers the
endpoint of a neighborhood vector. Moreover, the value of the ACF at a given point (a, b) indicates
the correlation of all image points (x, y) with all neighbourhood points located at (x + a,y + b). In the
context of digital images, the application of ACF can offer insights into the primary features or spatial
attributes present within the images. These may include characteristics such as the directionality or
periodicity of specific patterns.

The ACF is commonly associated with Fourier analysis and the implementation of Fast Fourier
Transforms (FFT) [13]. While both methods are mathematically equivalent to Eq. (1), the FFT method
provides greater computational efficiency [16, 17]. On the image plane, a Region of Interest (ROI)
which must be square to allow the use of FFT algorithms, is selected and digitized [12, 13, 15].
Following the works of Heilbronner et al. [11, 13], the ACF of an image is typically computed using
the following procedure:

(1) The digitized ROI of a given image is read into a matrix of gray values. Note that ROI must be
square.

(i) The mean gray value i (x, y) is calculated and subtracted as follows:

f(x,y):i(x,Y)—i(x’)’) (2)

(>iii) The two-dimensional discrete Fourier transform is given by:

2

1 N—-
flu,v) = f(x, ¥). exp [-2mi(ux + vy)/N] 3)
x:O

b
=

where f (u,v) is the discrete transform, u# and v are the frequencies in x— and y— direction, f (x,y)
is the discrete gray value at the position (x,y), x and y are the discrete image coordinates, N = 2"
(where m is an integer) is the size of the matrix (or the size of digitized ROI of an image), and i is
V-1.

(iv) The transform is calculated via the application of the separability theorem using the following
expression:

N-1
Flu,v) = Zf(x v). exp [~2mi(ux)/N] )
where
1 N-1
foen =+ yZO £(x,). exp [-27i(vy)/N] (5)

Egs. (4) and (5) indicate that the rows and columns of the image matrix are transformed using two
sequential one-dimensional FFTs.

(v) The Fourier transform of the ACF is acquired by multiplying the Fourier transform of the
image, f (u,v), with its complex conjugate f* (u, v).

(vi) Next, the inverse transformation is applied to calculate the value of ACF, g (x, y) at the position

(x,y) as follows:
N-1N-1

Q00 =5 > D F).exp[=2ritux + )] ©)

u=0 v=0
In this study, the Autocorrelation function value at the point (x, y), C (x, y), is finally calculated by
normalizing the value g (x, y) obtained from Eq. (6) with its maximum value (i.e. g (0, 0)).
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2.2. Definition of microstructural characteristic length

As mentioned in Section 1, the ACF of a digital image can provide global information for all
features contained in an image with regard to geometry. Those are, for instance, the average shape,
the preferred orientation, the isotropy or anisotropy behavior, and the spatial organization of the mi-
crostructural features (e.g. grains, pores, cement paste, etc.) [12, 15]. However, the two-dimensional
ACEF itself cannot express the microstructural characteristics in terms of size. For this work, a range
which gives information on the domain size of the microstructural characteristics has to be extracted
from the ACF. This range is commonly called Autocorrelation length (ACL). Several methods have
been proposed based on the definition that autocorrelation length measures the rate at which a random
event decays [7, 18, 19]. For instance, some researchers [18-20] employed exponential functions to
describe the ACF and determined the ACL as the displacement at which the ACF decreases to 1/e
of its original value. Alternatively, some authors [6, 7] estimated the ACL as the distance at which
the ACF reaches a constant value (e.g. the square of the volume fraction of examined object or zero).
This distance (or ACL value, ry) implies that the correlation between f (x,y). and f (x + rg,y + rg) is
considered to be vanished. Consequently, the ACL can be applied for estimating the dimensions of
the Representative Volume Element (RVE) of the material [3, 21]. The value of the ACL is frequently
observed to be proportional to the size of the largest relevant features (or heterogeneities) within a
given microstructure [6, 13, 22]. Consequently, rg is insufficient to quantify the spatial properties
such as the shape, orientation, volume fraction of the heterogeneities presented in the image.

Another definition for a range that can be used to quantitatively describe the microstructure is
called the integral range [14, 23, 24]. The definition of the integral range in the space R" is:

1
~ C(x,0) = C(x,70) Jgn

l; (C(x,r) — C(x,r9)dr (7)
where C (x,0) is the value of the ACF at zero displacement (r = 0), and rp is the autocorrelation
length. According to [3, 14], this integral range is significant parameter to predict the variability of
material properties as a function of the geometry of parts. In other words, it can be used the integral
range, /;, to globally characterize the microstructure of a material. Based on this, in the present study,
we define the microstructural characteristic length as the integral range that is calculated from an
integration of the ACF following Eq. (7).

An example of the relationship between the ACF value, C (x,r), and the displacement, r, for
a given direction is shown in Fig. 1. The highest ACF value is equal to 1, which corresponds to
zero displacement (r = 0). As the displacement r increases, the ACF value gradually decreases un-
til it reaches zero. As seen in Fig. 1, the points with a displacement larger than ry are uncorrelated
(C (x,r > rg) ~ 0). Therefore, ry can be considered as the autocorrelation length of the microstruc-
ture. In this study, ry is defined as the distance from the origin to the point where ACF reaches a
value of O for the first time (see Fig. 1). From Eq. (7), for a given direction (x = const), the defined
microstructural characteristic length, /;, can be now estimated by the following equation:

li= f (C(r) = C(ro))dr ®)
0

In this study, both the ACL value, rg, and the integral range, /;, are considered in quantitatively
characterizing the microstructure of hardened concrete samples.
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Figure 1. An example of the relationship between the ACF value, ACF (x, r),
and the displacement, r, for a given direction

3. Materials and Image analysis
3.1. Materials and samples preparation

In the present work, three mixtures of normal-weight concrete were examined. Mix proportions for
these three concretes are presented in Table 1. Ordinary Portland cement with the properties satisfying
the specifications outlined in [25] was used for all mixtures. Concrete was cast using portable tap
water. The sand and coarse aggregates employed in all the mixtures complied with the requirements
described in [26]. The size distribution of the aggregates, determined via sieve analysis, was consistent
with [27]. In this study, the maximum size of aggregate, d,;, was defined as the nominal sieve aperture
size for which the mass of the retained fraction was below 10%.

For a specific concrete mix proportion, both 150300 mm concrete cylinders and 150 mm con-
crete cubes were considered. The casting and curing procedures of concrete specimens were per-
formed in accordance with the protocol for normal-weight concrete outlined in [28].

Table 1. Mix proportions of 1 m? concrete mixtures

Concrete Cement:sand:coarse aggregate Water-to-Cement The maximum size of aggregates,

mixture (by weight) ratio d, (mm)
M1 1:3:0 0.5 2.5
M2 10
M3 1:2.2:2.7 0.43 20

Two samples of each mixture and each shape, for a total of 12 concrete specimens, were used for
the image analysis works in this study. These specimens were cut by using diamond grinding discs at
28 days of age. The cylindrical specimens were cut into four parts (Fig. 2(a)), while the cubes were cut
into three pieces (Fig. 2(b)), for a total of 60 cross sections of concrete samples were prepared for the
image analysis program in this study. To achieve high-quality images, the cross-section surfaces were
first ground flat using hand pressure on a water-cooled wheel topped with more and more grit size of
metal-bonded diamond plates, and then polished using successively finer grit resin-bonded diamond
plates. After polishing, the surfaces were thoroughly cleaned with water. The polish was considered
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acceptable if the surface had uniform reflectivity and was free of striations caused by the grinding

materials.
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Figure 2. Cutting positions of the cross sections

3.2. Image analysis via Autocorrelation function

Two-dimensional color images of the concrete sample sections were acquired using a flatbed
scanner. This scanner was set to a resolution of 1200 dpi to obtain the 24-bit color (RGB) digital

image of the cross-section surfaces (Fig. 3).

24-bit RGB color image
-

"y & ta
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-

Figure 3. Three 8-bit gray scale images (Red, Green, and Blue channels) of a 24-bit color image

In the context of digital image analysis, an RGB color image can be considered as a stack of
three channels, representing the Red, Green, and Blue intensity values for each pixel. This means
that a 24-bit color value of each pixel is represented by a triplet of grayscale values, specifying the
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relative magnitude of red, green, and blue components (see Fig. 3). In this study, for ACF analysis,
the original RGB color image was split into three 8-bit grayscale images through the MATLAB™
function of rghb2gray. In an 8-bit grayscale image, each pixel contains the color intensity information
in a range from O (black color: darkest part) to 255 (white color: brightest part).

To determine the ACF values of an RGB image, the average of its three-color channels was com-
puted. It is noteworthy that, for the ACF computation using the Fast Fourier Transform (FFT) algo-
rithms, the image needs to be transformed into a square matrix. Consequently, 90 square regions of
interest (ROIs) for circular sections (i.e. from the cylindrical specimens) which rotated around the cen-
ter of the circular image were analyzed. The ACFs of these ROIs were calculated and then averaged.
In this study, the Autocorrelation length, r(, and the defined microstructural characteristics length, /;,
along a given direction of ACF are determined following the procedure described in Section 2. The
values of ry and /; of each grayscale image are calculated by averaging all the corresponding values
obtained from all directions of its image plane, while those of each color cross-section image are
averaged over its three-color channels.

4. Results and discussions
4.1. Features of autocorrelation function

Fig. 4 shows the ACF values of the examined sections for three concrete mixtures. Brighter re-
gions on the ACF image represent a greater degree of spatial correlation, which are commonly called
the “central peak” area of ACF [13, 15]. This central peak area is typically larger when the objects
presented within the image (i.e., aggregates) are larger. Indeed, as shown in Fig. 4, the central peak
area of the ACF for M1 mixture (Fig. 4(a)) was significantly smaller in comparison to those for M2
mixture (Fig. 4(b)) and M3 mixture (4(c)).

The ACF image consistently exhibits a single maximum value at its center, regardless of the
concrete mixture or cross-section surface. From this peak value, the ACF gradually decreases to zero
as the shifted displacement of the image (r) is increased. Nevertheless, owing to the anisotropic shape
of the objects in the image, the rate of decrease of the ACF value away from the origin is not the
same in all displacement directions. The rate of decay of the ACF away from the origin for the three
concrete mixtures considered in this study can be ordered as follows: M1 < M2 < M3. This implies
that M1 mixture contains fewer anisotropic objects than M2 and M3 mixtures do. In other words, the
finer material (M1 mixture) exhibits better homogeneity compared to the coarser materials (M2 and
M3 mixtures). This phenomenon can also be viewed from the “background” areas of the ACF image
which correspond to the darker zone surrounding the central peak area. In the background area, the
degree of fluctuation around zero for M1 concrete is significantly lower compared to that of M2 and
M3 concretes (see Fig. 4).

The relationship between the ACF values, C (x, y), and the displacement, r, for different sections,
sample shapes, and mixtures are displayed in Fig. 5 and Fig. 6, from which it can be found that:

(1) for a given concrete sample, the ACFs of the different cutting sections of M1 and M2 mixtures
are not significantly different, regardless of the concrete mixture and sample shape (Fig. 5). This
implies that there is no segregation of the internal microstructures of hardened samples for these two
mixtures. A quite difference is observed for the different sections of M3 mixture (Fig. 5(e) and (f)).
This may result from the different sizes and content of the coarse aggregates presented within the
sections of M3 mixtures. However, this difference is a qualitative observation and is not large enough
to conclude that a segregation phenomenon exists within the M3-mixture samples.

(ii) for a given shape of the sample, the difference of the ACFs between the different sections
in the same concrete sample is more pronounced with an increase in aggregate size. This agrees
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Figure 4. ACF for three concrete mixtures: (left) original scanned images; (right) digital image of ACF for (a)
M1-, (b) M2-, and (c) M3-concrete mixtures

with the heterogeneous phenomenon observed from the ACF images above (Fig. 4). Indeed, when
the aggregate sizes increase, the heterogeneity of the microstructure consequently increases, which
causes more importance for the anisotropic behavior of the original image and the ACF image as
well. As a result, the decay of the ACF away from the center is not the same in all directions and all
sections.

(ii1) On average, there is no significant difference in the relationship between ACF values (C (x, y))
and the displacement (r) among all sections of the cylinder and the cube of M1 and M2 mixtures
(Fig. 6(a) and (b)), while a distinct difference is observed for M3 mixture (Fig. 6(c)). This finding
implies that the shape and/or the size of the sample can affect the variation in hardened microstructure
of a given concrete mixture.

(iv) as expected, a noticeable correlation exists between the ACF value and the size of the aggre-
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gates (Fig. 6(d)). This indicates that the microstructural characteristics of the hardened concrete are
mainly controlled by the size of the aggregates, without being influenced by the mix proportion.
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Figure 5. The relationship between ACF value, C (x, r), and the displacement, r, for different sections
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Figure 6. The relationship between ACF value, C (x, r), and the displacement, r, for different shapes

4.2. Autocorrelation length

As previously mentioned in Subsection 2.2, this study defines the autocorrelation length, rg, as
the displacement where the ACF remains positive (see Fig. 1). The values of ry for different samples
and concrete mixtures are summarized in Table 2 and Fig. 7, from which, it is observed that:

(i) for a specific concrete mix proportion, the values of autocorrelation length (ACL), rg, of cylin-
ders and cube are similar. This demonstrates that the ACL value is not influenced by the shape of the
concrete sample. Additionally,

(ii) for a given shape of the concrete sample, both the mean value and the standard deviation (SD)
of g increase as the size of aggregates, d,;, increases, meaning that the ACL value is strongly affected
by the size of the aggregates. This is clearly seen from a linear correlation between rg and d,, (rg ~
1.5d,) presented in Fig. 8. This finding suggests that to achieve comparable hardened microstructures
among different concrete samples for the three mixtures examined in this study, the characteristic
dimension of the samples should be greater than 1.5 times the maximum aggregate size.
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Table 2. Autocorrelation length, ry, and microstructural characteristic length, /;,
averaged over all sections for the three examined concrete mixtures

Concrete ro (mm) l; (mm) Concrete ro (mm) [; (mm)

specimen Mean SD Mean SD group Mean SD Mean SD

M1 cylinder 6.5 2.7 0.66 0.11 M1 mixture 6.9 4.3 0.67 0.16
M1 cube 7.3 34  0.67 0.12

M2 cylinder 18.3 54 221 0.28 M2 mixture 18.8 8.2 232 034
M2 cube 19.2 6.2 243 0.20

M3 cylinder 29.0 7.1 3.74 0.69 M3 mixture 28.1 12.5 3.62 0.92
M3 cube 27.2 13 3.49 0.60
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Figure 7. Autocorrelation length, ry, for different Figure 8. Relationship between the value of
specimens of the three examined concrete mixtures Autocorrelation length, rg, and the maximum
size of aggregates, d,

4.3. Microstructural characteristic length

The variations of the defined microstructural characteristic length, /;, regarding different samples
of the three concrete mixtures considered in this study are shown in Fig. 10. Similar to the ones pre-
sented in Fig. 7, it is observed that there is no significant influence of sample shape on the value of /;,
irrespective of concrete mix proportion. This suggests that the microstructural characteristic length,
l;, as defined in this study, can serve as a useful metric for measuring the discrepancy in microstruc-
tural properties among various samples of a given material. Furthermore, for whatever the shape of
the concrete sample, when the maximum size of the aggregates increases, the defined characteris-
tic length of hardened microstructure, /; increases in terms of both the mean value and variability
(see Fig. 9 and Table 2). This finding indicates that the heterogeneity of hardened concrete increases
with an increase in aggregate size, which is consistent with the qualified observations presented in
Subsection 4.3 regarding the values of ACF.

On average, the defined microstructural characteristic length, /;, exhibits a linear correlation with
the maximum size of the aggregates, d,, with a proportionality coefficient of 0.2 (/; ~ 0.2d,) (see
Fig. 10). This relationship allows us to conclude that (i) the microstructure of the hardened concrete
is mostly affected by the aggregates, and (ii) /; can also be used to represent the structure of aggregates

76



Cong, V. C./ Journal of Science and Technology in Civil Engineering

[S3

I Concrete cylinders
[ Concrete cube

Microstructural characteristic length, I; (mm)

M1 mixture M2 mixture M3 mixture

Figure 9. Values of the defined microstructural characteristic length, /;, for different samples
of the three examined concrete mixtures

within hardened concrete sample. The strong influence of aggregate size on both the autocorrelation
length, rg, and the characteristic length, /;, arises from the fact that, for the conventional normal-weight
concrete like the three examined in this study, the aggregates possess the highest volume fraction
among the components of hardened concrete samples, including pores, air voids, and cement matrix.
As aresult, the ACF values are mainly controlled by the aggregates which represent the primary and
most voluminous objects presented in cross-section images of concrete (see Fig. 3 and Fig. 4).
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Figure 10. Relationship between the value of Figure 11. Relationship between the value of

microstructural characteristic length, /;, and the microstructural characteristic length, /;, and the
maximum size of aggregates, d, autocorrelation length, r

As shown in Fig. 11, there is a clear correlation between the autocorrelation length, ry, and the
defined microstructural characteristic length, /;, regardless of sample shape and concrete mix propor-
tion. The value of /; is observed to be about one order of magnitude smaller than the value of ry.
Moreover, the associated variabilities of the characteristic length, /;, are always significantly lower
than those of the autocorrelation length, rg, (see Fig. 11 and Table 2), meaning that /; is more reliable
measure than rg in terms of providing consistent values for microstructural quantification.

Alternatively, as an integral range (see Subsection 2.2), the characteristic length, /;, can provide a
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quantitative representation of the shape of the ACF. In other words, /; can serve as a quantitative de-
scriptor of the microstructural features of a hardened concrete sample in its entirety. Meanwhile, the
autocorrelation length, ry, can solely portray the magnitude of the principal objects (i.e. aggregates
in this study) exhibited in the image [13]. To summarize, the defined microstructural characteristic
length, /;, should be used to quantify the internal structure of hardened concrete rather than the au-
tocorrelation length, ry. This also suggests that the characteristic length, /;, can serve as a suitable
measure of the representative volume element (RVE) size for concrete.

5. Conclusions

In the present work, the microstructural characteristics of hardened concrete samples prepared
from the three different mixtures were qualitatively and quantitatively investigated through the im-
age analysis procedure performed on scanned image of cross-sections of concrete. The definition
of the microstructural characteristic length, /;, which is derived from the two-dimensional autocor-
relation function, serve as a useful and straightforward tool for measuring the internal structure of
hardened concrete. From the variations of this characteristic length, it concludes that for conventional
normal-weight concrete, the hardened structure is mostly controlled by the aggregates. Additionally,
the defined characteristic length, /;, can be used as a parameter to quantify the heterogeneity of a
heterogeneous material such as concrete.

The image analysis procedure and the microstructural characteristic length proposed in this study
can be applied for other purposes, for instance, quantifying the segregation phenomenon in concrete or
comparing concrete samples with a given mix proportion supplied from different sources. In addition,
the defined characteristic length could be beneficial for modeling concrete, as it serves as a suitable
quantifying dimension for the internal microstructure that can be integrated into constitutive relations.

The present research focuses solely on exploring the internal structure of hardened conventional
normal-weight concrete. However, the methods employed in this study can be applied to examine
other types of concrete, such as fiber concretes, self-compacting concrete, and ultra-high performance
concrete, where the aggregates (especially coarse aggregates) are not the primary component and their
sizes might not have a significant effect on the hardened microstructure.
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