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Abstract

This paper presents a finite element model for dynamic analysis of axial functionally graded (AFG) microbeams
subjected to a moving mass. The material properties of the microbeams are considered to vary in the axial direc-
tion by a power-law function, and they are evaluated by Mori-Tanaka scheme. The first-order shear deformation
theory is employed in conjunction with the modified couple stress theory to establish the differential equations
of motion for the AFG microbeams. A two-node beam element with six degrees of freedom was derived and
used in combination with Newmark method to solve the equations of motion and to compute the dynamic re-
sponse of the microbeams. Numerical investigations are carried out on AFG microbeam with simply supported
ends. The proposed method is validated by comparing with results in previous work. The effects of dimension-
less material length scale parameters, the material distribution and the moving mass parameters on the dynamic
characteristics of the AFG microbeams are studied and discussed in detail.
Keywords: AFG microbeam; dynamic response; modified couple stress theory; finite element model; moving
mass.
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1. Introduction
Microbeams are widely applied in biosensors, atomic force microscopes, microactuators, and

micro-electro-mechanical (MEMS) [1]. In these applications, the microbeams may carry microparti-
cles attaching or moving along the microbeams. For example, integrated complementary metal oxide
semiconductor (CMOS)-MEMS free-free beam resonator arrays, AFM probes, and micro/nano scale
sensors such as micro accelerometers. Thus, the different behaviors of the microbeam should be
evaluated. The classical continuum mechanics theories, however cannot predict the size-dependent
behaviors occurring in microbeams due to the lack of material length scale parameters. The mod-
ified couple stress theory (MCST), which is a higher-order continuum theory proposed by Yang et
al. [2], contains only one material length scale parameter, is widely used in studying the behaviour
of microbeams. The use of MCST in evaluating behaviour of homogeneous microbeams has been
described in [3–5].

Functionally graded (FG) material is a new type of composite material in which the material prop-
erties vary continuously and smoothly from one surface to another. The introduction of FG material
has overcome the limitations of traditional composites such as cracking, delamination and stress con-
centration. With the development of manufacturing technology, the concept of FG material is also
extended to microbeams. Many investigations on static and dynamic analyses of FG microbeams have
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been reported recently. Ke and Wang [6] studied the dynamic stability of FG microbeams on the ba-
sis of the MCST and Timoshenko beam theory. In their study, the material properties are considered
to vary in the thickness direction and they are estimated through Mori-Tanaka scheme. Şimşek and
Reddy [7] examined the static bending and free vibration of FG microbeam using the MCST and var-
ious higher order beam theories. Timoshenko beam theory was used in combination with the MCST
by Nateghi and Salamat-talab [8] to study the thermal effect on buckling and free vibration behaviour
of FG microbeams. Based on the MCST and Timoshenko beam theory, Ansari et al. [9] solved the
free vibration problem of simply supported FG microbeams via the Navier solution.

The moving load problem is of interest to many researchers because of its wide application. Ols-
son [10] presented the dynamic problem of the homogeneous beam under a moving load based on
Euler-Bernoulli beam theory. Both the analytical method and the finite element method were adopted
in the study. Wu [11] investigated the dynamic response of an inclined beam due to moving loads
by considering each moving load as a moving mass element. Gan et al. [12] used the finite element
method to study the dynamic response of AFG Timoshenko beams with non-uniform cross sections
under multiple moving forces. In their paper, the material properties of the beam varied continuously
in the axial direction according to the power-law function, and they were evaluated by Voigt model.
Şimşek et al. [13], Ebrahimi-Mamaghani et al. [14] adopted Euler-Bernoulli beam theory to model the
forced vibration of AFG beams under a moving load. The Rayleigh-Ritz method was employed in con-
junction with the differential quadrature method by Khalili et al. [15] to obtain the dynamic behavior
of an FG beam subjected to a moving load. Vibration of bi-dimensional functionally graded Timo-
shenko beams under a moving load was studied by Nguyen et al. [16] using the finite element method
and Newmark method. The effects of moving load and mass on the dynamic response of the FG beam
were studied by Esen et al. [17], also using finite element formulation. Esen et al. [18] proposed a
modified continuum mathematical model to investigate the dynamic behaviour of Timoshenko per-
forated microbeams under a moving load. The effects of moving load and the microstructure size
parameter on the dynamic behavior were investigated in detail in their study.

In this paper, the MCST is used in combination with the first-order shear deformation beam the-
ory to study the dynamic response of AFG microbeams under a moving mass. The material properties
of the microbeam are considered to vary in the axial direction according to a power-law function, and
they are evaluated by Mori-Tanaka scheme. The differential equations of motion of the AFG mi-
crobeams are established via Hamilton’s principle. A finite element model is developed and used in
conjunction with Newmark method to solve the differential equations and to obtain the dynamic re-
sponse of a simply supported AFG microbeam. The effects of the material length scale parameter, the
material distribution, the moving mass speed as well as the mass ratio on the dynamic characteristics
of the AFG microbeam are examined in detail.

2. Theory and formulation
A simply supported AFG microbeam of thickness h and width b under a moving mass m, as shown

in Fig. 1, is considered. It is assumed that the mass m moves with a constant velocity vfrom the left
end to the right end of the beam and it is always in contact with the beam. The Cartesian coordinate
system (x, y, z) is chosen such that the x-axis is on the mid-plane, the z-axis is perpendicular to the
mid-plane and it directs upward. xm is the abscissa of the moving mass measured from the left end of
the beam.

The microbeam is made from a mixture of ceramic and metal with their volume fractions varying
in the axial direction according to [13]

Vc(x) =
(
1 −

x
L

)n
; Vm(x) = 1 − Vc(x) (1)
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where L is the beam length; Vc and Vm are, respectively, the volume fraction of ceramic and metal; n
is the power-law index; The subscript ‘c’ and ‘m’ in Eq. (1) and hereafter stand for ceramic and metal,
respectively.

Figure 1. A simply supported AFG microbeam under a moving mass

According to Mori-Tanaka scheme [19], the effective Young’s modulus E f and Poisson’s ratio ν f

of the microbeam can be calculated in the form

E f (x) =
9K f G f

3K f +G f
; ν f (x) =

3K f − 2G f

6K f + 2G f
(2)

where the effective local bulk modulus K f and the shear modulus G f are given by

K f = Km +
(Kc − Km) Vc

1 +
Vm (Kc − Km)
Km + 4Gm/3

; G f = Gm +
(Gc −Gm) Vc

1 +
Vm (Gc −Gm)

Gm +
Gm (9Km + 8Gm)

6 (Km + 2Gm)

(3)

where Ki = Ei/[3 (1 − 2υi)],Gi = Ei/[2 (1 + υi)], (i = c,m). The effective mass density is defined by
Voigt model as

ρ f (x) = ρcVc(x) + ρmVm(x) (4)

According to the modified couple stress theory (MCST) [2], the strain energy U of the microbeam
can be written as

U =
1
2

∫
V

(
σ : ε +m : χ

)
dV (5)

where V is the beam volume;σ and ε are, respectively, the stress and strain tensors; m is the deviatoric
part of the couple stress tensor; χ is the symmetric curvature tensor. These tensors are given by [4]

σ = λ tr(ε)I + 2µε; ε =
1
2

[
∇u + (∇u)T

]
χ =

1
2

[
∇θ + (∇θ)T

]
; θ =

1
2

curlu; m = 2l2µχ
(6)

where u is the displacement vector; θ is the rotation vector; λ =
E f ν f

(1 + ν f )(1 − 2ν f )
and µ =

E f

2(1 + ν f )
are Lame’s constants, in which E f and ν f are defined in Eq. (2); l is a material length scale parameter.

Based on the first order shear deformation beam theory, the axial and transverse displacements,
ux (x, z, t) and uz (x, z, t), respectively of an arbitrary point in the beam are given by

ux(x, z, t) = u(x, t) − zθ(x, t)

uz(x, z, t) = w(x, t)
(7)
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where u (x, t) and w (x, t) are, respectively, the axial and transverse displacements of the point on the
mid-plane; θ (x, t) is the rotation of the cross-section; t is the time variable;

Using Eq. (7), the tensors in Eq. (6) are rewritten as

ε =

 εxx 0 εxz

0 0 0
εzx 0 0

 ; σ =

 σxx 0 σxz

0 σyy 0
σzx 0 σzz

 ; χ =

 0 χxy 0
χyx 0 0
0 0 0

 ; m = 2l2µχ (8)

where
εxx = u,x − zθ,x ; εxz = εzx =

1
2

(
w,x − θ

)
σxx = (λ + 2µ)εxx; σxz = σzx = 2ψµεxz; σyy = σzz = λεxx

χxy = χyx =
1
4

(
−w,xx − θ,x

) (9)

where ψ is the shear correction coefficient, equals to 5/6 for the beam with rectangular cross section
considered herein.

Using Eq. (8), the strain energy of the microbeam in Eq. (5) can be written in the form

U =
1
2

L∫
0

∫
A

(
σxxεxx + 2σxzεxz + 2mxyχxy

)
dAdx

=
1
2

A

L∫
0

[
(λ + 2µ)

(
u2
,x +

h2

12
θ2
,x

)
+ ψµ

(
w,x − θ

)2
+

l2µ
4

(
w,xx + θ,x

)2
]

dx

(10)

where A = b × h is the cross-sectional area of the beam.
The kinetic energy T of the beam is defined as

T =
1
2

L∫
0

∫
A

ρ f (x)(u̇2
x + u̇2

z )dAdx (11)

In Eq. (11), an over dot is used to denote the derivative with respect to the time variable. Substi-
tuting Eq. (7) into Eq. (11), the kinetic energy of the beam can be rewritten in the form

T =
1
2

A

L∫
0

ρ f (x)
[
(u̇2 + ẇ2) +

h2

12
θ̇2

]
dx (12)

The potential energy due to moving mass is given by [18]

Vm = −

L∫
0

[(
mg − mẅ − 2mvẇ,x − mv2w,xx

)
w(x, t) − müu(x, t)

]
δ (xm − vt) dx (13)

where g is the gravity acceleration; mü and mẅ are the axial and transverse inertia forces, respec-
tively; 2mvẇ,x and mv2w,xx are, respectively, the Coriolis and centrifugal forces; δ (.) is the Dirac
delta function.
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Applying Hamilton’s principle to Eqs. (10), (12) and (13), the differential equations of motion of
AFG microbeam under a moving mass are obtained as follows

δu : −Aρü + A
[
(λ + 2µ) u,x

]
,x − (mü)xm = 0

δw : Aρẅ − A
[
ψµ

(
w,x − θ

)]
,x + A

[
l2µ
4

(
w,xx + θ,x

)]
,xx

+
(
mẅ + 2mvẇ,x + mv2w,xx

)
xm
= mg

δθ : −
ρh2

12
θ̈ + ψµ

(
w,x − θ

)
+

[
(λ + 2µ)

h2

12
θ,x +

l2µ
4

(
w,xx + θ,x

)]
,x
= 0

(14)

The finite element method used to solve Eq. (14) will be presented in the next section to analyze
the dynamic response of the AFG microbeam.

3. Finite element formulation
A finite element model is developed in this section to solve the equations of motion (14). To this

end, the beam is assumed to be divided into a number of two-node beam elements with length le. The
vector of nodal displacement (d) for a generic element contains six components as

d =
{

ui wi θi u j w j θ j
}T

(15)

where uk,wk and θk (k = i, j) are, respectively, the values of the axial, transverse displacements and
rotation θ at the node k; The superscript ‘T ’ denotes the transpose of a vector or a matrix.

The displacement field u = {u w θ}T inside the element is interpolated from the nodal displace-
ments according to

u = Nd (16)

where N is the matrix of interpolation functions with the following form

N =

 Nu

Nw

Nθ

 =
 Nu1 0 0 Nu2 0 0

0 Nw1 Nw2 0 Nw3 Nw4
0 Nθ1 Nθ2 0 Nθ3 Nθ4

 (17)

where Nu1 and Nu2 are linear functions, Nwi and Nθi (i = 1, ..., 4) are the solution of the static governing
differential equations of a homogeneous Timoshenko beam element obtained by Kosmatka [20], and
they are defined as follows

Nu1 =
le − x

le
; Nu2 =

x
le

(18)

Nw1 =
1

1 + ϕ

2 (
x
le

)3

− 3
(

x
le

)2

− ϕ

(
x
le

)
+ 1 + ϕ


Nw2 =

le
1 + ϕ

( x
le

)3

−

(
2 +

ϕ

2

) ( x
le

)2

+

(
1 +

ϕ

2

) ( x
le

)
Nw3 = −

1
1 + ϕ

2 (
x
le

)3

− 3
(

x
le

)2

− ϕ

(
x
le

)
Nw4 =

le
1 + ϕ

( x
le

)3

−

(
1 −

ϕ

2

) ( x
le

)2

−
ϕ

2

(
x
le

)

(19)
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and

Nθ1 =
6

(1 + ϕ) le

( x
le

)2

−

(
x
le

) ; Nθ2 =
1

1 + ϕ

3 (
x
le

)2

− (4 + ϕ)
(

x
le

)
+ 1 + ϕ


Nθ3 = −

6
(1 + ϕ) le

( x
le

)2

−

(
x
le

) ; Nθ4 =
1

1 + ϕ

3 (
x
le

)2

− (2 − ϕ)
(

x
le

)
(20)

with ϕ = 12EmI/ (12ψGmA). It is noted that when the shear rigidity approaches infinity, the poly-
nomials in Eqs. (19) and (20) return to the Hermite polynomials and their derivative, respectively.
The element formulated from the polynomials in (19) and (20) is, therefore, free of shear locking. In
addition, the convergence of the element based on the polynomials in (19) and (20) is much faster
than the conventional element using linear interpolation.

Using the interpolations, the strain energy (U) of the microbeam can be written in the form

U =
1
2

nel∑
dT (kuu + kθθ + kss) d (21)

where nel is the total number of elements used to discrete the beam; kuu,kθθ and kss are, respectively,
the element stiffness matrices stemming from the axial stretching, bending and shear deformation.
These matrices are as follows

kuu = A

le∫
0

NT
u,x (λ + 2µ) Nu,xdx; kθθ =

Ah2

12

le∫
0

NT
θ,x (λ + 2µ) Nθ,xdx

kss = A

le∫
0

[
ψµ

(
Nw,x − Nθ

)T (
Nw,x − Nθ

)
+

l2µ
4

(
Nw,xx − Nθ,x

)T (
Nw,xx − Nθ,x

)]
dx

(22)

The kinetic energy in Eq. (12) can also be written in the form

T =
1
2

nel∑
ḋT (muu +mww +mθθ) ḋ (23)

the element mass matrices in Eq. (23) are defined as follows

muu =

le∫
0

NT
u ρANudx; mww =

le∫
0

NT
wρANwdx; mθθ =

le∫
0

NT
θ

ρAh2

12
Nθdx (24)

The potential energy in Eq. (13) is of the form

Vm =

nel∑(
d̈T mmd̈ + ḋT cmḋ + dT kmd − dT fm

)
(25)

where mm, cm and km are, respectively, the element mass, damping and stiffness matrices due to the
effects of the inertia, Coriolis and the centrifugal forces of the moving mass; fm is the time-dependent
element nodal load vector generated by moving mass. The expressions for mm, cm,km and fm are as
follows

mm
6×6
=

[
NT

u mNu + NT
wmNw

]
xe

; cm
6×6
= 2v

[
NT

wmNw,x
]

xe

km
6×6
= v2

[
NT

wmNw,xx
]

xe
; fm

6×1
= mg

[
NT

w

]
xe

(26)
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In Eq. (26), the notation [.]xe means that [.] is evaluated at xe-the current abscissa of the moving
mass with respect to the left node of the element. Note that except for the element under the moving
mass, the element matrices mm, cm,km and the load vector fm are zeros for all other elements.

Having element mass and stiffness matrices of the microbeam as well as the element mass, damp-
ing, stiffness matrices and load vector due to moving mass, the discrete equation of motion for the
AFG microbeam can be written in the form

(M +Mm) D̈ + CmḊ + (K +Km) D = F (27)

where D, Ḋ and D̈ are, respectively, the global vectors of nodal displacement, velocity and accelera-
tion; M and K are structural mass and stiffness matrices obtained by assembling the element mass and
stiffness matrices, respectively; Mm,Cm,Km and F are, respectively, the global matrices and vector
constructed by assembling the matrices mm, cm,km and fm over the elements. Eq. (27) can be solved
by the Newmark method. The average acceleration method that ensures unconditional convergence is
adopted herein.

4. Numerical results and discussion
Dynamic response of the simply supported AFG microbeam under a moving mass is numerically

investigated in this section. To this end, the AFG microbeam with b = h, the material length scale
parameter l = 17.6 µm [6] is considered herein. The beam used in this study includes aluminum (Al)
and Silicon carbide (SiC) with their material properties as follows [6, 7, 10]

- Em = 70 GPa, ρm = 2702 kg/m3, νm = 0.3 for Al.
- Ec = 427 GPa, ρc = 3100 kg/m3, νc = 0.17 for SiC.
For convenience, the following non-dimensional parameters are introduced for the dynamic mag-

nification factor Dd, mass ratio rm, speed parameter fv and the dimensionless material length scale
parameter η as

Dd = max
(
w(L/2, t)

wst

)
; rm =

m
ρmAL

; fv =
πv
ω1L

; η =
h
l

(28)

where wst = mgL3/48IEm is the static deflection of an aluminum beam under a load mg acting at
mid-span; ω1 is the fundamental frequency of the simple supported aluminum microbeam. A uniform
increment time step ∆t = ∆T/500, with ∆T is the total time necessary for the mass to cross the beam,
is used for the Newmark method.

First of all, it is important to study the accuracy of the derived beam element. In Table 1, the first
three frequency parameters of homogeneous microbeam obtained in the present work are compared
with the results calculated by Ke and Wang [6] obtained by the differential quadrature method. As
seen from the table, the result obtained by the present method agrees with the result of Ref. [6]. The
difference between the present result with that of Ref. [6] may be caused by the different methods
used in the two works.

Table 1. Comparison of the first three frequency parameters of homogeneous microbeam
with η = 2 and L/h = 10

Mode
Ceramic Metal

Ref. [6] Present work Error (%) Ref. [6] Present work Error (%)

1 0.8336 0.8437 −1.21 0.3393 0.3752 −10.58
2 3.2081 3.1199 2.75 1.2914 1.3737 −6.37
3 6.8417 6.3181 7.65 2.7165 2.7510 −1.27
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Figure 2. Comparison of dynamic magnification
factor for AFG macrobeam (η = 0) under a

moving load

Additionally, the comparison of dynamic mag-
nification factor Dd for AFG macrobeam under a
moving load in this paper with that of Şimşek et
al. [13] is shown in Fig. 2. The following param-
eters are used to compute the numerical results
in Fig. 2: P = 100 kN, Em = 210 GPa, ρm =

7800 kg/m3, νm = 0.3, Ec = 390 GPa, ρc =

3960 kg/m3, νc = 0.3, h = 0.9 m, b = 0.4 m, L =
20 mm and η = 0. A very good agreement be-
tween the results in the present work with those of
Ref. [13] is observed in Fig. 2. Note that the re-
sults obtained in Ref. [13] are calculated by using
Euler-Bernoulli beam theory.

The convergence of beam elements in evaluat-
ing the dynamic magnification factor of AFG mi-
crobeam is shown in Table 2, where the results ob-
tained by different numbers of the beam elements are calculated for η = 2, L/h = 10, rm = 0.5, fv =
0.2 and various values of the power-law index. As observed from Table 2, convergence is achieved by
using 26 elements, regardless of the power-law index. Because of these convergence results, 26 beam
elements are used for all the computations reported in the following. Note that the convergence of the
results in Table 1 and Fig. 2 has also been achieved by using 26 elements.

Table 2. Convergence of beam element in evaluating dynamic magnification factor of AFG microbeam for
η = 2, L/h = 10, rm = 0.5, fv = 0.2

n nel = 12 nel = 14 nel = 16 nel = 18 nel = 20 nel = 22 nel = 24 nel = 26

0.5 0.1693 0.1695 0.1696 0.1698 0.1698 0.1696 0.1695 0.1695
1 0.2393 0.2395 0.2396 0.2397 0.2394 0.2394 0.2390 0.2390
2 0.3089 0.3084 0.3082 0.3074 0.3068 0.3074 0.3060 0.3060
5 0.4193 0.4185 0.4174 0.4165 0.4163 0.4150 0.4128 0.4128

Table 3. Dynamic magnification factor of AFG microbeam for L/h = 10, fv = 0.1

rm n
η

1 2 4 6 8 10

0.25 0.5 0.0693 0.1599 0.2525 0.2843 0.2973 0.3038
1 0.0973 0.2197 0.3397 0.3813 0.3984 0.4067
3 0.1653 0.3713 0.5633 0.6246 0.6493 0.6615

0.5 0.5 0.0687 0.1584 0.2490 0.2799 0.2921 0.2984
1 0.0963 0.2219 0.3476 0.3901 0.4077 0.4160
3 0.1578 0.3581 0.5434 0.6047 0.6275 0.6392

1 0.5 0.0650 0.1517 0.2450 0.2765 0.2899 0.2964
1 0.0981 0.2257 0.3520 0.3932 0.4115 0.4194
3 0.1459 0.3428 0.5307 0.5895 0.6145 0.6280
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Figure 3. Variation of dynamic magnification
factor with power-law index and dimensionless

material length scale parameter for
L/h = 20, rm = 0.5, fv = 0.1

The dynamic magnification factor Dd of AFG
microbeam for L/h = 10, fv = 0.1 and different
values of mass ratio (rm = 0.25, 0.5, 1), the power-
law index (n = 0.5, 1, 3, 5), the dimensionless ma-
terial length scale parameter (η = 1, 2, 4, 6, 8, 10)
is presented in Table 3. It is clear from Table 3
that factor Dd increases by increasing the index n
or decreasing rm, regardless of parameter η. On the
other hand, the influence of parameter η on factor
Dd is significant, specifically, increasing η leads
to the increase in Dd, irrespectively of n and rm.

The variation of factorDd with power-law in-
dex and dimensionless material length scale pa-
rameter is depicted in Fig. 3 for L/h = 20, rm =

0.5, fv = 0.1. Similar to the results in Table 3, the
results in Fig. 3 show that the factor Dd increases with the increase in the power-law index and pa-
rameter η.

The effects of the power-law index n and the dimensionless material length scale parameter η
on the time histories for mid-span deflection of AFG microbeam are presented in Figs. 4 and 5,
respectively, for two values of speed parameter, fv = 0.1, 0.3. Observations from these figures show
that the index n and parameter η have a significant effect on the mid-span deflection. The amplitude
of the mid-span deflection increases by the increase in the index n and parameter η, regardless of the
speed parameter. Besides, the way of vibration of the beam is also highly dependent on the speed
parameter, the beam tends to carry out less vibration cycles when the value of the speed parameter is
larger, as seen from Figs. 4 and 5, irrespectively of the index n and parameter η.

(a) fv = 0.1 (b) fv = 0.3

Figure 4. Time histories for mid-span deflection for L/h = 20, η = 2, rm = 0.5, and various values of the
power-law index and speed parameter

The variations of the dynamic magnification factor Dd with speed parameter are presented in Figs.
6 and 7 for different values of dimensionless material length scale parameter η and mass ratio rm,
respectively. The figures show that the factor Dd is greatly affected by the speed parameter, the factor
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(a) fv = 0.1 (b) fv = 0.3

Figure 5. Time histories for mid-span deflection for L/h = 20, n = 0.5, rm = 0.5, and various values of
dimensionless material length scale parameter and speed parameter

Dd repeatedly increases and decreases when the speed parameter increases, and then it approaches
the maximum value. The iterative process of increasing and decreasing of Dd − fv curve is the same
for different values of the dimensionless material length scale parameter, Fig. 6, and mass ratio, as
seen in Fig. 7. On the other hand, the factor Dd is higher for a higher value of parameter η, see Fig. 6,
regardless of the speed parameter. The observation from Fig. 7 shows that the maximum value of Dd

is larger for the value of the higher mass ratio.

Figure 6. Variation of dynamic magnification factor
with speed parameter for L/h = 20, n = 5, rm = 0.5
and various values of dimensionless material length

scale parameter

Figure 7. Variation of dynamic magnification factor
with speed parameter for L/h = 20, n = 5, η = 5 and

various values of mass ratio

Fig. 8 shows the thickness distribution of normal stress of AFG microbeam for L/h = 20, n =
0.5, rm = 0.5, fv = 0.1 and various values of the dimensionless material length scale parameter η. The
normal stress is normalized by σ0 = mg/bh, that is σ∗xx = σxx(L/2, z)/σ0. It is clear from the figure
that the parameter η has a significant effect on the normal stress, increasing the parameter η leads to
an increase in the normal stress.
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Figure 8. Thickness distribution of normal stress of AFG microbeam for L/h = 20, n = 0.5, rm = 0.5, fv = 0.1
and various values of dimensionless material length scale parameter

5. Conclusions
The dynamic response of the AFG microbeams under a moving mass has been studied in this pa-

per by using a finite element model. The material properties of the microbeams were assumed to vary
in the longitudinal direction by the power-law function and they are evaluated by Mori-Tanaka scheme.
Based on the modified couple stress theory and Hamilton’s principle, the differential equations of mo-
tion for AFG microbeam are established in the framework of the first-order shear deformation beam
theory. A two-node beam element with six degrees of freedom was derived and used in conjunction
with Newmark method to compute the dynamic responses. Numerical investigations obtained for a
simply supported microbeam reveal the importance of the microsize effect on the dynamic response,
and the dynamic magnification factor of the microbeam increases with the increase of the material
length scale parameter η. The effects of various parameters such as the power-law index, the moving
mass speed and the moving mass ratio on the dynamic behavior of the microbeam have been examined
in detail and highlighted.
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