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Abstract

The main objective of this paper is to use the data-driven approach to predict and study the factors affecting
the compressive strength of steel fiber concrete. Therefore, six machine learning (ML) models were evaluated
against a database of 166 samples and ten input variables, including Cement content, Water content, Silica fume
content, Steel fiber content, Coarse aggregate content, Sand content, Superplasticizer content, Fiber diameter,
Fiber length, Fly ash content. Six ML models, including Artificial Neural Network (ANN), K-Nearest Neighbor
(KNN), Categorical Boosting (CatB), Random Forest (RF), Gradient Boosting (GB), and Extreme Gradient
Boosting (XGB), are evaluated against performance metrics and validated by 1000 Monte Carlo simulations.
The compressive strength prediction performance by the ML models is arranged in descending order as follows
XGB > GB > CatB > RF > ANN > KNN. The two best models can predict the compressive strength of steel fiber
concrete to be GB with a coefficient of determination (R*) of 0.9874 and a root mean square error (RMSE) of
2.5763 MPa and XGB with an R? of 0.9926 and an RMSE of 1.9814 MPa for the testing dataset. The influence
of the ten variables can be arranged in descending order as follows: Cement content > Water content > Silica
fume content > Steel fiber content > Coarse aggregate content > Sand content > Superplasticizer content > Fiber
diameter > Fiber length > Fly ash content. Among them, Cement content, Silica fume content, and Steel fiber
content have a positive effect on improving the compressive strength of concrete. The steel fiber content used
should be less than 1.5% of concrete volume to improve the efficiency of steel fiber in concrete. Meanwhile,
Fiber diameter and Fiber length have a minimal influence on the compressive strength of steel fiber concrete.
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1. Introduction

Steel fibers have been popularly used in manufacturing ultra-high and high-performance con-
cretes. Adding steel fibers dispersed to the mixture can improve the mechanical properties of steel
fiber concrete compared to ordinary concrete, especially its tensile strength and mechanical behavior
after cracking [1, 2]. It is due to the bridging action of steel fibers at the cracking locations that help
to delay the crack mouth opening while maintaining the ductility of concrete. Thanks to the above ad-
vantages, steel fiber concrete could be used to partially or totally replace reinforcing bars in structural
members. Several recent studies stated that fiber steel concrete is an interesting material for producing
reinforced concrete structures under aggressive environmental conditions (e.g., chloride attack) be-
cause it enhances the load-bearing capacity and avoids brittle failure due to reinforcement corrosion
(3, 4].

The highest compressive strength is obtained at a volume of 1.5%, according to Song and Hwang
[5], who also noted that the compressive strength increases at the volume fraction of 1.5% steel
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fiber employed. The compressive strength significantly declines as the volume of steel fibers reaches
2%. Also, as the volume proportion of steel fibers rises, so does the high-strength fiber-reinforced
concrete’s splitting tensile strength. The manufacturing process (e.g., time, order), the volume of steel
fiber, and the geometry of steel fiber have all been found to affect how the fiber separates during
mixing. The design of steel fiber concrete strength is complicated because it depends on many input
factors, such as steel fiber content, length, and diameter. In addition, other design factors, including
cement content, water content, sand content, coarse aggregate content, superplasticizer content, silica
fume content, and fly ash content, also greatly affect the compressive strength of steel fiber concrete.
A large number of design inputs complicates the design of the compressive strength of concrete using
steel fibers. This leads to costly and difficult designs using traditional methods such as destructive
tests in the laboratory. Therefore, it is necessary to use new approaches to determine the compressive
strength of concrete using steel fibers. In addition, analyzing the influence of input factors above also
helps to easily design the compressive strength of concrete using steel fibers.

Currently, Big Data Approach combined with ML algorithms is used a lot to solve complex corre-
lations in problems of engineering science, especially in civil engineering. Geotechnical engineering
and materials science are two challenging fields of civil engineering that use data-driven or ML
methodologies [6—11]. Geotechnical engineering is currently applying some ML techniques, such as
ANN and SVR (Support Vector Regression), in order to forecast soil parameters via ML approaches,
such as soil strength and the foundation’s load-bearing capacity [12, 13]. Also, the coefficient of
chloride diffusion was predicted by Tran [11] using a data-driven approach.

Regarding the compressive strength of concrete using steel fiber, Li et al. [14] proposed ML meth-
ods, such as individual and ensemble models, that were taken into consideration to estimate the 28-day
compressive strength of steel fiber concrete. SVR algorithm, a single technique, and two ensemble
approaches (namely SVR-AdaBoost and SVR bagging) were used in this study. To evaluate the effec-
tiveness of each method, k-fold cross-validation, statistical analysis, and coefficient of determination
were used. The SVR-AdaBoost approach was the most accurate, with an R? value of 0.96. Based on
the SVR-Adaboost model, a sensitivity technique was also employed to evaluate the impact of factors
on the accuracy of the predictions. Khan et al. [15] also estimated the compressive strength of steel
fiber concrete by a high-performance ML model, which is Random Forest, with an R* = 0.96. Cement
content had the most positive effect on the compressive strength of steel fiber concrete, according
to the SHapley Additive exPlanations (SHAP) value. These two studies both use ten input variables
including cement content, water content, sand content, coarse aggregate content, superplasticizer con-
tent, silica fume content, fly ash content, steel fiber content, length of steel fiber, and diameter of steel
fiber for building an ML model to predict the compressive strength of steel fiber concrete. However,
the influence of these factors on the compressive strength of steel fiber concrete has not been quanti-
fied in the study of Li et al. [14] and Khan et al. [15]. In addition, the accuracy of the ML model in
assessing the compressive strength of steel fiber concrete can be improved.

Some experimental investigations were performed regarding factors that affect the compressive
strength of steel fiber concrete. The water-to-cement ratio (W/C) significantly affects the compres-
sive strength of concrete. The compressive strength decreases as the W/C ratio increases, following
Abbass et al. [16]. According to Kim et al. [17], the compressive strength of steel fiber concrete
increases when the sand/aggregate ratio increases. The workability and compressive strength are im-
proved when the superplasticizer content reaches 1.5% of cement content, according to Aruntas et
al. [18]. According to Nili and Afroughsabet [19], adding more silica fume to concrete increases its
compressive strength. Challoob and Srivastava [20] investigated how fly ash and steel fibers affect
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the strength characteristics of pozzolana cement concrete. Using fiber volume fractions of up to 1%
improves the compressive strength of steel fiber concrete, according to Koksal et al. [21]. Each vari-
able effect on the compressive strength of steel fiber content has been individually evaluated, but a
simultaneous assessment of multiple variables on the compressive strength of steel fiber concrete has
not been thoroughly studied.

Therefore, the main objective of this study is to quantify the influence of the ten inputs mentioned
above on the compressive strength of steel fiber concrete based on data-driven approaches combined
with sophisticated algorithms such as SHAP and Partial Dependence Plot 1D. These algorithms need
to be based on an ML model that has high performance in predicting the compressive strength of
steel fiber concrete. The performance of the ML model depends greatly on the statistical distribution
of the samples in the database used to build the model. Therefore, the first part of the paper will
describe the statistical distribution of variables, including an input variable and an output variable
compressive strength of the database gathered from previously published studies by Li et al. [14].
Then, he second part of the paper will be used to briefly describe the basis of data-driven approaches,
including using six popular models: ANN, KNN, CatB, RF, GB, and XGB. In this study, six popular
and easily accessible algorithms are used in open-source libraries written in Python programming
language. In this study, all hyperparameters of the ML models use the default value proposed by the
Sklearn library [22]. Therefore, the third part of the paper will evaluate the performance of these
available models in predicting the compressive strength of steel fiber concrete based on performance
criteria such as R? and RMSE. Performance will be validated using Monte Carlo simulation. The best-
performing ML model will be used in conjunction with the SHAP technique and Partial Dependence
Plot 1D in quantifying the influencing factors as well as predicting the compressive strength of steel
fiber concrete.

2. Database description and analysis

To select a high-performance ML model for determining the compressive strength of steel fiber
concrete, a database of 166 samples, 10 input variables and 1 output compressive strength collected
by Li et al. [14]. The database only considers steel fiber concrete compressive strength at 28 days;
therefore, curing age will not be considered an input variable for ML model selection.

Table 1. Statistical value of space variables

Variable Unit Mean StD Min 059,  Median 0759 Max
Cement content kg/m®  446.05 105.31 280 370.5 400 500 680
Water content kg/m® 17122  30.88 133.00 152.00 158.00 184.00  270.00
Sand content kg/m® 785.83 156.56 582.00 682.00 743.00  835.00  1350.00
Coarse aggregate content  kg/m®>  936.54 260.63  0.00  872.00 1050.50 1100.00 1170.00
Superplasticizer content % 0.95 1.79 0.00 0.00 0.15 1.00 9.00
Silica fume content % 5.99 11.74 0.00 0.00 0.00 10.00 43.00
Fly ash content % 1.36 5.68 0.00 0.00 0.00 0.00 30.00
Steel fiber content % 0.86 0.61 0.00 0.50 1.00 1.50 2.00
Fiber length mm 40.67 15.76 0.00 30.00 35.00 60.00 60.00
Fiber diameter mm 0.60 0.19 0.00 0.50 0.62 0.75 0.90

Compressive strength MPa 6139 2149 26.10 40.93 62.75 76.85 99.20

The database description is very important in improving the accuracy as well as determining the
applicable domain of the ML model. The results of the data statistics are described in Table 1. The
distribution of data between the input variable and the compressive strength is shown in Fig. 1. Based
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Figure 1. Description of input variables and compressive strength

on the data distribution in Fig. 1, a linear correlation is established between each input variable and
compressive strength. Linear correlation allows preliminary assessment of the influence of factors on
the compressive strength of steel fiber concrete. Fig. 1(a) shows that increasing cement content im-
proves the compressive strength of steel fiber concrete. In contrast, increasing water content reduces
the compressive strength of steel fiber concrete, as shown in Fig. 1(b). Figs. 1(c) and 1(d) show that
increasing sand content reduces compressive strength while increasing coarse aggregate content im-
proves compressive strength. Superplasticizer and increased silica fume content increase compressive
strength, as indicated in Figs. 1(e) and 1(f). The linear correlation in Figs. 1(h) — 1(j) has not shown
a significant influence of the steel fiber content as well as the geometrical properties of steel fiber,
including fiber length and diameter. Fly ash has a weak impact on the compressive strength of steel
fiber concrete, as shown in Fig. 1(g).

Linear correlation is difficult to accurately describe the influence of the input factors on the com-
pressive strength of steel fiber concrete. Therefore, techniques to further analyze these correlations
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are at the end of the study.

The range of values to be able to use the ML models developed in this study effectively is de-
scribed in Table 1. The compressive strength is limited, ranging from 26.1 MPa to 99.2 MPa. This
range corresponds to conventional concrete and high-performance concrete. The steel fiber content
varies from 0% to 2% by volume. The geometry of steel fiber ranges from 13 mm to 60 mm for length
fiber and 0.2 mm to 0.9 mm for diameter fiber. The binder content, including cement, varies from 280
to 680 kg/m>, silica fume content is 0 to 43%, and fly ash content is O to 30 % of the cement content
for binder replacement. The aggregate used includes sand content varying from 582 to 1350 kg/m’
and coarse aggregate content from 0 to 1170 kg/m>. Some concrete samples do not use coarse aggre-
gate in the mix composition and use sand entirely. The amount of water varies from 133 to 270 kg/m?,
with the superplasticizer content varying from 0 to 9% of the concrete volume.

3. Data-driven approach
3.1. Machine learning algorithms

In this section, six popular ML algorithms including ANN, KNN, CatB, RF, GB and XGB will be
briefly described. The human brain systems are greatly simplified in ANN models. Artificial neurons
are computational units similar to those in the biological nervous system. The input, hidden, and
output layers make up the majority of the ANN model. First, a signal connects each neuron in the
n'h layer to the neurons in the (n + N layer. Then, a weight is applied to each link. Next, each input
may be multiplied by its appropriate weight to determine the output. Finally, an activation function
processes the output to obtain the final ANN output. The ANN could be helpful in resolving many
technical and scientific issues. As a result, the ANN has a wide range of applications, including
signal processing, picture compression, function approximation, differential equations, stock market
prediction, and medical diagnostics. According to Tamura and Tateishi [23], the number of neurons
for one hidden layer can be calculated by formulation N; — 1 with N; being the number of input
variables. In this study, N; = 10, the number of neurons for the hidden layer is considered equal to 10.

Because of its great effectiveness and simple interpretability, the KNN approach has been widely
employed in classification challenges [24]. In KNN, a new sample is categorized in accordance with
its k nearest neighbors in the neighbor space that have known labels. KNN is a lazy learning method
that delays computation till later while approximating the function locally. The output of a sample is
determined for regression issues by averaging the outputs of its k nearest neighbors.

A startup called Yandex created the open-source ML algorithm Categorical Boosting in 2017
[25]. One of CatB core edges is its ability to integrate a variety of different data types, such as images,
audio, or text features, into one framework. However, CatB also offers an idiosyncratic way of han-
dling categorical data, requiring a minimum of categorical feature transformation, unlike most ML
algorithms that cannot handle non-numeric values.

Breiman [26] originally introduced Random Forest, which groups several classification or regres-
sion trees. One of the decision tree-based algorithms is RF, where each tree serves as a vote and
forms the basis of the algorithm’s decision-making. As a result, group learning techniques with the
unique outcomes of each tree frequently produce better outcomes. RF is a modified version of bag-
ging or bootstrap aggregation that creates multiple regression trees without pruning by using random
(repeated) training data samples and summing their averages.

Gradient Boosting is a synthesis process that draws inspiration from gradient descent and builds
an enhanced prediction tool using boosting techniques [27]. Boosting starts with creating a tree to
determine the link between the input and output variables, and then more trees are created to minimize
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mistakes. According to GB, boosting is an optimization problem that aims to reduce error using a loss
function.

The Gradient Boosting method created by Friedman et al. in 2000 has been updated to become
Extreme Gradient Boosting [28]. The fundamental idea behind the GB technique is to sequentially
integrate weak (i.e., high error) essential learning trees into a more robust learning model tree. The
regularization component, which is introduced to the loss function in the XGB model, is used to as-
sess the complexity of the model in order to enhance the performance of the GB model. It is feasible
to harmonize the learning model’s parameters and avoid overfitting by incorporating a regularization
component. This algorithm’s primary challenge is to maximize the value of the goal function. Ad-
ditionally, it uses a gradient-enhanced framework to construct ML algorithms. Consequently, XGB
parallel boost trees can swiftly and accurately address a variety of data science applications.

3.2. Performance evaluation of machine learning model

Many well-known and widely-used statistical metrics, including RMSE and R?, are employed to
assess the prediction ability of the ML models. According to Souza et al. [29], using two performance
indices including R* and RMSE are effective enough to evaluate the performance of ML models in the
regression problem. R? values range from 0 to 1, which is a crucial criterion in regression analysis. It
is calculated as the square of the correlation between the expected and actual outcomes. As a result,
a high R? value indicates a strong connection between the predicted and actual values. RMSE is an
error assessment of the mean squared difference between a ML model’s predicted and actual output.
Lower values of RMSE demonstrate better prediction performance. These metrics’ values are written

as follows: .
2. (4~ b))
2

2_ 4 | =L
R=1-|— (D

2.()

=1

1 & 2
RMSE = \ W2 l(aj—b,-) 2)
J:

where N is the number of samples in the database, a is the output’s actual value, and b is the model’s
anticipated value.

4. Results and Discussion
4.1. Selection of machine learning model

Dividing 70% of the database for the training dataset and 30% for the test set leads to the ran-
domization of the number of samples used in these two sets, according to Nguyen et al. [30]. The
Monte Carlo simulation is proposed to validate the ML. model performance. Monte Carlo simulation
is frequently used to define the randomness of the model’s uncertainty [31]. Based on previously cre-
ated models, this approach chooses any combinations of input variables with a specific probability
distribution. Using a Monte Carlo simulation, the uncertainty of the input variables is transferred to
the outcomes. Following the aforementioned findings, 1000 Monte Carlo simulations are carried out
(with 1000 different combinations of input variables for each simulation) to display the distributions
of R? and RMSE on the training set and test set for the compressive strength of steel fiber concrete.

The results of the convergence analysis of the R? value for the testing dataset after 1000 simula-
tions are shown in Fig. 2. It can be seen that except for the ANN model, the remaining five models,
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including KNN, CatB, RF, GB, and XGB, all have R* value of the testing dataset converges after
about 150 simulations, the ANN model gives the converged R? value after about 700 simulations.
Therefore, it is reasonable to choose to use 1000 simulations of Monte Carlo to validate the model
performance.
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Figure 2. Convergence analysis of R? value for the testing dataset
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Fig. 3 shows the boxplot of 1000 R? and RMSE values for the training and testing datasets. Table 2
collects statistical values of 1000 R> and RMSE values for the training and testing datasets, including
mean and StD (standard deviation) values. The results show that the ANN and KNN models have R?
and RMSE values that vary widely for the training set, while the XGB, GB, RF, and CatB models
for R> and RMSE values have high convergence through the StD value in Table 2. The dispersion
of R? and RMSE values of ANN is 0.7911, 8.4727 MPa for the testing set and KNN is 0.0706 and
1.4293 MPa, respectively. The mean R> and RMSE of the two models ANN and KNN are 0.7911 and
8.4727 MPa, and 0.7115 and 11.2725 MPa for the testing dataset, respectively. ANN and KNN are
the two models with the lowest performance among the six proposed ML models. Using the testing
dataset, comparing two performance metrics, R> and RMSE, including mean and StD values of six
ML models, the performance of the ML model can be sorted in descending order as follows XGB >
GB > CatB > RF > ANN > KNN. In which the two highest performing models have the mean values
of R* and RMSE after 1000 Monte Carlo simulations for the test data set as XGB with R> = 0.9737 on
average and RMSE = 3.3325 MPa on average, GB with mean of R? = 0.9697 on average and RMSE
= 3.5645 MPa on average. Therefore, two ML models, XGB and GB, will be selected to predict the
compressive strength and quantify the influence of factors on the compressive strength of steel fiber
concrete.

Table 2. Statistical values of two performance metrics (R? and RMSE)

Mean value of R? Mean value of RMSE (MPa)

Model

Training dataset Testing dataset Training dataset Testing dataset
XGB 0.9993 0.9734 0.5481 3.3325
GB 0.9952 0.9697 1.4776 3.5645
CatB 0.9987 0.9631 0.7751 3.9017
RF 0.9943 0.9629 1.6145 3.9573
ANN 0.9545 0.7911 4.4387 8.4727
KNN 0.8330 0.7115 8.7244 11.2725
StD of R? StD of RMSE (MPa)

XGB 0.0004 0.0159 0.1618 0.8286
GB 0.0009 0.0175 0.1380 0.8548
RF 0.0012 0.0209 0.1462 0.9384
CatB 0.0004 0.0256 0.1147 1.1850
KNN 0.0241 0.0706 0.5872 1.4293
ANN 0.0212 0.5575 1.0657 4.6208

4.2. Compressive strength prediction using the best machine learning models

In this section, the accuracy of predicting the compressive strength of steel fiber concrete by two
ML models, XGB and GB, will be described in Fig. 4 and Table 3. Figs. 4(a) and 4(c) compare
the predicted and actual compressive strength values using the XGB and GB models. The prediction
errors of the two models are also shown in Figs. 4(b) and 4(d). In Figures 4(a) and 4(c), the closer
the data points are to the y = x line, the better the predictive power of the model. It can be seen
that the XGB model gives outstanding compressive strength prediction results when the data points
of the testing dataset are mostly on the y = x line and in the +10% error (y = 0.9x and y = 1.1x)
limit domain, the corresponding error of compressive strength prediction for the test set is also in the
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region +4 MPa, the error of prediction for the training set is deficient. Meanwhile, the GB model
also predicts very well the compressive strength, but it is still lower than the XGB model when there
are some data points outside the +10% domain and the out-of-domain error +4 MPa for the testing

dataset.
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Figure 4. Comparison between experimental and predicted compressive strength of steel fiber concrete,
XGB model and GB model

Table 3. Performance value of XGB and GB model in predicting compressive strength of steel fiber concrete

Dataset Model R? RMSE (MPa)
Teainin XGB 0.9988 0.6956

& GB 0.9943 1.5234
Testin XGB 0.9926 1.9814

g GB 0.9874 2.5763

The performance of predicting compressive strength of the XGB model compared with the GB
model is specified and quantified through Table 3, describing the R? and RMSE values of XGB for
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the test set as 0.9926 and 1.9814 MPa, respectively. The GB model has R> = 0.9874 and RMSE =
2.5763 MPa values for the testing dataset.

4.3. Investigating of factor effect on compressive strength of concrete

Regarding the two highest-performing ML models, XGB and GB, the ten inputs were quanti-
tatively analyzed using the SHAP algorithm. The global SHAP values depicted in Fig. 5 help to
relatively quantify the influence of each factor on the accuracy of the ML model as well as the mag-
nitude of the predicted compressive strength. The simultaneous use of two ML models to quantify
influencing factors helps confirm the correctness of the results.
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Figure 5. Global SHAP value for interpreting input effect on the predicted value consisting
of prediction capability and the magnitude value

In Fig. 5, the results of the global SHAP value based on XGB and GB models confirm that the
five factors that have the least influence on the performance of the two ML models, as well as the
compressive strength are Fly ash content < Fiber length < Fiber diameter < Superplasticizer content
< Sand content. The importance of Fiber length and Fiber diameter can be interchanged, but the
difference is insignificant, as shown in Fig. 5(b). On the other hand, the five factors ranked in order
Cement content > Water content > Silica fume content > Steel fiber content > Coarse aggregate
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content have a great influence on the prediction accuracy of compressive strength of the XGB and
GB models, as well as the value compressive strength of steel fiber concrete.

Therefore, the order of influence of factors on compressive strength can be arranged in descending
order Cement content > Water content > Silica fume content > Steel fiber content > Coarse aggregate
content > Sand content > Superplasticizer content > Fiber diameter > Fiber length > Fly ash content.

The four most important factors including Cement content > Water content > Silica fume content
> Steel fiber content, strongly influence on the compressive strength of steel fiber concrete. In the
remaining six factors, although Coarse aggregate content and sand content have an influence in the
range of 8 MPa on the compressive strength, however, these two factors tend to have an insignificant
influence when the SHAP values of these two factors are identical at different values of these two fac-
tors, as well as the same value of the two inputs, multiple SHAP values can be determined. This may
be due to the input data distribution domain of Coarse aggregate content and Sand content. Especially,
coarse aggregate content, it varies between 0 and 1170 kg/m3, the median value is 1050.5 kg/m3, and
0759 = 1100 kg/m>. It can be seen that the value of coarse aggregate content is mainly concentrated
at 1000 kg/m>. The uneven distribution of data makes the assessment of the trend of the influence of
the input variable on the compressive strength unclear.

The first four factors tend to have an evident influence on compressive strength, these four factors
will be quantified regarding their influence on compressive strength using the 1D Partial Depen-
dence Plot technique, shown in Fig. 6. For instance, increasing Cement content increases compressive
strength, but its effect remains the same when it reaches about 500 kg/m>, as indicated in Fig. 6(a).
The domain of influence of cement on compressive strength can be up to 25 MPa.

Water content varying from about 133 kg/m3 to 270 kg/m3 can cause the intensity to decrease
from a value of 44 MPa (79 MPa to 35 MPa), a relatively linear decrease trend (Fig. 6(b)). The
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Figure 6. Partial dependence plot in analyzing the most important factors on compressive strength
of steel fiber concrete

increase in compressive strength shows a significant variation in the range of 12 MPa when changing
the amount of silica fume used from 0 to 15%. After this interval, the compressive strength did not
increase despite an increase in the silica fume content to 40% weight of binder (Fig. 6(c)). Steel
fiber has a positive effect on compressive strength. Fig. 6(d) shows that as the steel fiber content
increases from 0 to 1.5% of volume, the compressive strength can increase by 6 MPa. However, the
compressive strength does not continue to increase even though the steel fiber is greater than 1.5% to
2% of volume. This effect of steel fiber content on compressive strength is consistent with the results
found by Koksal et al. [21] and Nili et al. [32].

It can be seen that in addition to the above four factors, Sand content, Superplasticizer content, and
Coarse aggregate content have a relatively small influence on the variation of compressive strength.
In particular, Superplasticizer does not seem to affect the compressive strength of steel fiber con-
crete, as shown in Fig. 6(g). The variation value of compressive strength caused by Sand content and
Coarse aggregate content is about 5 MPa, as shown in Figs. 6(e) and 6(f). Therefore, increasing Sand
content and Coarse aggregate content to a certain value will reduce the compressive strength of steel
fiber concrete.

5. Conclusions and Perspectives

A data-driven approach is proposed to study the compressive strength of steel fiber concrete. In
this study, six popular ML models were evaluated to select the ML models with good performance for
predicting and studying the factors affecting the compressive strength of steel fiber concrete. Based
on a database of 166 samples and ten input variables, including Cement content, Water content, Silica
fume content, Steel fiber content, Coarse aggregate content, Sand content, Superplasticizer content,
Fiber diameter, Fiber length, Fly ash content, six ML models including ANN, KNN, RF, CatB, GB,
and XGB are evaluated against performance metrics including R? and RMSE and validated by 1000
Monte Carlo simulations.

Based on the average values of R* and RMSE for the testing dataset, the compressive strength
prediction performance of the ML models is arranged in descending order as follows XGB > GB >
CatB > RF > ANN > KNN, especially R> = 0.9734 on average and RMSE = 3.3325 MPa on average
for XGB model. The two best models can predict the compressive strength of steel fiber concrete to
be GB (R* = 0.9874 and RMSE = 2.5763 MPa) and XGB (R* = 0.9926 and RMSE = 1.9814 MPa),
respectively.

Nonlinear analysis techniques, including SHAP and Partial Dependence Plot 1D, based on two
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high-performance models, GB and XGB, were used to analyze and quantify the influence of ten
inputs on the precision value of the compressive strength of steel fiber concrete. The influence of
the ten variables can be arranged in descending order as follows: Cement content > Water content >
Silica fume content > Steel fiber content > Coarse aggregate content > Sand content > Superplasticizer
content > Fiber diameter > Fiber length > Fly ash content. Cement content, Silica fume content, Steel
fiber content, and Water content have an evident influence on the compressive strength of concrete.
The three first factors positively improve the compressive strength of concrete, while the increased
last factor causes the compressive strength to decrease. The geometric parameters of steel fiber (i.e.,
diameter and length) have a minimal influence on the compressive strength of steel fiber concrete.
The effect of input variables on compressive strength was quantified. For instance, the steel fiber
content used should be less than 1.5% of concrete volume to improve the efficiency of steel fiber in
concrete.

This study helps engineers have an initial assessment when designing the strength of steel fiber
concrete. In addition, the model selected could be used for the input value domain mentioned in the
present study.
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