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Abstract

This paper presents the upper bound limit analysis of a slope in cohesive-frictional soils using the node-based
smoothed finite element method (NS-FEM). The soil slope was discretized as triangular elements and modeled
as Mohr-Coulomb material with the associated flow rule. This paper investigated the variation of slope stability
numbers Ns with the change of the slope inclination angle α and β, and internal friction angle ϕ. Several
numerical examples of slopes are presented, showing that the NS-FEM approach can demonstrate accuracy
and efficiency solutions. Finally, the stability results are presented in design tables and charts for engineers to
use in the preliminary design stage of the slope stability analysis.
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1. Introduction
Slope stability analysis has received wide attention because of its practical importance. Over sev-

eral decades ago, the limit equilibrium method (LEM) has almost dominated in examining the stability
of slopes, embankments, etc. Many researchers used the LEM for slope stability, including the works
of Janbu [1], Morgenstern and Price [2], Spencer [3], Sarma [4], Fredlund and Krahn [5], Chen and
Morgenstern [6] and others studies to satisfy the complete requirements for force and moment equi-
librium. The method proposed by these researchers is useful because it can provide observation and
insight into the studied problem. Although the accuracy of limit equilibrium solutions is based on the
assumed failure mechanisms of slopes, this approach is often favored in the preliminary design stage
because of its simplicity.

Another approach for analyzing geotechnical structure stability is using the lower and upper bound
limit theorems developed by Drucker et al. [7]. Chen [8] applied the upper bound limit analysis to
study slope stability problems using rigid-block failure mechanisms. Michalowski [9] performed a
slope stability analysis based on a translation failure mechanism, which was assumed to be a rigid
block analogous to slice in the traditional slice method. Donald and Chen [10] proposed a new method
for stability analysis of slope in soils and rocks, where the sliding mass was divided into small numbers
of discrete blocks with linear interfaces between blocks. Kim et al. [11] analyzed slopes using the limit
equilibrium method and limit analysis and found that the results from the two approaches were in good
agreement for homogeneous slopes. In recent years, Liu and Zhao [12], and Zhi-Bin and Chang-Bing
[13] used the upper bound limit analysis based on the rigid finite element method in combination
with linear or nonlinear programming for slope stability analysis. Recently, Seyed-Kolbadi et al. [14]
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proposed an improved strength reduction based slope stability analysis. More recently, Vu-Hoang et
al. [15] and Vo-Minh [16] used the bubble-enhanced quadrilateral element (FEM-Qi6) to evaluate the
elastoplastic analysis of slope stability and the bearing capacity factors of strip footing in cohesive-
frictional soils.

Some decades ago, the finite element method (FEM) was rapidly developing to solve complicated
geotechnical problems. Sloan [17, 18], Sloan and Kleeman [19], Lyamin and Sloan [20, 21], and
Krabbenhoft et al. [22] introduced finite element limit analysis (FELA) in combination using linear
and non-linear optimization techniques for the stability of geotechnical problems. However, one of the
drawbacks of low-order elements FEM-T3 is the volumetric locking phenomenon, which often occurs
in nearly incompressible materials. To overcome disadvantages, many methods were suggested to re-
duce integration methods [23], enhance assumed strain [24–26], and so on. Another technique whose
strain smoothing domains and the integration is performed over the cells associated with the nodes
is the so-called node-based smoothed finite element method (NS-FEM). The node-based smoothed
finite element method has been employed for upper bound limit problems due to the following advan-
tages: (i) total degrees of freedom significantly decreased, leading to a fast convergence for solutions,
(ii) volumetric locking phenomenon is prevented by using the NS-FEM method in solving undrained
geotechnical analysis, (iii) by using of smoothed strains in NS-FEM, the integration is conducted in
the edges of smoothed cells, there is no need to calculate the derivatives of the shape function. Liu et
al. [27] and Nguyen-Xuan et al. [28] applied this method to calculate the limit and shakedown loads
in solid mechanics problems made of elastic-perfectly plastic material. The NS-FEM recently became
an active research topic that has been widely applied to heat transfer analysis (Wu et al. [29]), fracture
analysis (Liu et al. [30]), structural-acoustic analysis of shells (Wang et al. [31]). Recently, Vo-Minh
et al. [32–34] applied NS-FEM for the stability of circular tunnels, dual circular, and dual square tun-
nels in cohesive-frictional soils. More recently, Vo-Minh [35] estimated strip footing bearing capacity
factors using the node-based smoothed finite element method and second-order cone programming
using the upper limit analysis.

This paper presents the application of the NS-FEM for stability analysis of natural slopes in ho-
mogeneous cohesive-frictional soils using the upper bound limit analysis and second-order cone pro-
gramming (SOCP) optimization. To consider the slope stability analysis, a dimensionless stability
factor N s can be presented by three parameters: slope inclination angle α and β, soil friction angle ϕ.
Several numerical results of slopes have been investigated, showing that the NS-FEM approach can
demonstrate accuracy and efficiency solutions. The stability results are presented in design tables and
charts for engineers to use in the preliminary design stage of the slope stability analysis.

The article is organized as follows: Section 2 describes the problem definition. Section 3 presents
an upper bound limit analysis for a plane strain with the Mohr-Coulomb yield criterion. Numeri-
cal examples are presented in Section 4. Finally, Section 5 closes this paper with some concluding
remarks.

2. Problem definition
Fig. 1 shows a general layout of the slope stability analysis with a height H and the slope inclina-

tion angle α and β. Under plane strain conditions, the homogeneous soil properties are the cohesion c,
friction angle ϕ and unit weight γ. According to the upper bound limit analysis theorem, the soil be-
haves as a perfectly plastic material and obeys the associated flow rule following the Mohr-Coulomb
failure criterion.

A typical finite element mesh for the stability analysis of the slope problem is illustrated in Fig. 2.
The boundary conditions of this problem were such that the model’s left, right and bottom boundaries
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were fixed in both the horizontal and vertical directions. Therefore, the size of the problem domain
is chosen to be large enough to eliminate the boundary effects and the plastic zones to be contained
entirely within the domain and not intersect the right and bottom boundaries.

Figure 1. Soil properties and geometry of the slope Figure 2. Typical finite element mesh and
displacement boundary conditions for

the case α = 5◦, β = 30◦

To evaluate the stability of a slope under the influence of the soil cohesion and self-weight, a
dimensionless stability factor Ns can be presented by three input parameters such as slope inclination
angle α and β, soil friction angle ϕ

Ns =
γH
c
= f (α, β, ϕ) (1)

where N s = γH/c is the stability factor proposed by Chen [8], then various researchers developed
stability charts under plane-strain conditions, such as Lyamin and Sloan [20, 21], Krabbenhoft et al.
[22], Makrodimopoulous and Martin [36].

This paper considers the slope angles α = 0◦ - 25◦, β = 30◦ - 90◦, and the value of friction angles
ϕ = 0◦ - 35◦. To obtain an upper bound solution for the stability factor N s of slope, it is convenient
to consider c = 1, γ = 1. In this case, the stability factor Ns = Hc may be used to predict the critical
height Hc of an embankment with slope angle α and β.

3. Upper bound limit analysis for slope stability using a node-based smoothed finite element
method (NS-FEM)

3.1. A brief overview of the NS-FEM

Figure 3. The smoothing cells associated with the
nodes in the NS-FEM

Unlike the traditional finite element method
(FEM), the numerical integration domains of
the node-based smoothing method (NS-FEM) are
based on polygonal cells related to the nodes rather
than the elements. The problem domain Ω is di-
vided into Ns smoothing cells formulated as Ω =
Ns∑

k=1

Ωs
k and Ωs

i ∩ Ω
s
j = ∅, i , j and Ns is the to-

tal number of field nodes in the entire problem
domain. The polygonal cells Ωs

k called a nodal
smoothing domain associated with the node k, are
constructed by connecting the mid-edge points se-
quentially to the centroid of surrounding triangular elements, as shown in Fig. 3. The smoothing
domain boundary Ωs

k is labeled as Γk, and the union of all Ωs
k forms precisely the whole problem Ω.
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The smoothed strain on the cell Ωs
k associated with node k using NS-FEM can be calculated by

˜̇εk =
∑

k∈N(s)

B̃k(xs)dk (2)

where N(s) is the set containing nodes directly connected to node k,dk is the nodal displacement
vector, and the smoothed strain gradient matrix B̃k(xs) on the domain ∧s

k can be determined from

B̃k(xs) =

 b̃kx(xs) 0
0 b̃ky(xs)

b̃ky(xs) b̃kx(xs)

 (3)

where
b̃kh(xs) =

1

A(s)
k

∫
Γk

n(s)
h (x)Nk(x)dΓ (4)

where A(s)
k =

∫
Ωs

k

dΩ is the area of the cell Ωs
k,Nk(x) is the FEM shape function for node k, and n(s)(x)

is the normal outward vector on the boundary Γ(s)
k . The number of Gauss points for line integration

(4) depends on the degree of Nk. If Nk are linear shape functions, one Gauss point is sufficient for line
integration along each segment of a boundary of Γ(s)

k ofΩs
k, Eq. (4) can be transformed to its algebraic

form

b̃kh(xs) =
1

A(s)
k

M∑
k=1

Nk(xGP
k )n(s)

kh l(s)
k , (h = x, y) (5)

where M is the total of the boundary segment of ℘(s)
k , xGP

i is the Gauss point of the boundary segment
of ℘(s)

k , which has length l(s)
k and outward unit normal n(s)

kh .

3.2. An upper bound limit analysis for a plane strain in geotechnical problems using the NS-FEM
A two-dimensional problem domain ∧ bounded by a continuous boundary S u̇∪S t = S , S u̇∩S t =

∅ is considered. The rigid-perfectly plastic body is subjected to external tractions g on S t and body
forces f on the boundary S u̇ prescribed by the displacement velocity vector u̇. The strain rates can be
expressed by equation

ε̇ =
[
ε̇xx ε̇yy γ̇ xy

]T
= ∇u̇ (6)

In the upper bound theorem, a kinematically admissible displacement field u̇ ∈ U, such that

Wint(σ, u̇) = α+Wext(u̇) (7)

where α+ is the limit load multiplier of the external tractions load g and body forces f.
The external work can be determined

Wext(u̇) =
∫
Ω

fu̇dΩ +
∫
Γt

gu̇dS (8)

The internal plastic dissipation of the two-dimensional domain ∧ can be written as

Wint(σ, u̇) =
∫
Ω

Dp(u̇)dΩ =
∫
Ω

σε̇dΩ (9)
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in which a space of kinematically admissible velocity field is denoted by

U =
{
u̇ ∈ (H1(Ω))2, u̇ = ¯̇u on S u̇

}
(10)

Setting C = {u̇ ∈ U |Wext(u̇) = 1}, the limit analysis problem is based on the kinematical theorem
to determine the collapse multiplier α+ of the following optimization problem

α+ = max {∃σ ∈
∑
|Wint(σ, u̇) = αWext(u̇),∀u̇ ∈ U} = min

u̇∈U
Dp(u̇)

st
{

u̇ = 0 on S u

Wext(u̇) = 1
(11)

In geotechnical problems, Makrodimopoulos and Martin [36] proposed the internal plastic dissi-
pation equation for plane strain as follows

Dp(u̇) = c cos ϕ
∫
Ω

√
( ˜̇εi

xx − ˜̇εi
yy)2 + ( ˜̇γi

xy)2dΩ (12)

where c, ϕ are the cohesion and friction angle of the soil, respectively.
For an associated flow rule, the plastic strain rates vector is given by

ε̇ = λ
∂ψ(σ)
∂σ

(13)

where λ is a non-negative the plastic multiplier and the Mohr-Coulomb yield function ψ(σ) can be
expressed in the form of stress components as

ψ(σ) =
√

(σxx − σyy)2 + 4τ2
xy + (σxx + σyy) sin ϕ − 2c cos ϕ (14)

Using the NS-FEM, the problem is discretized by Ne triangular elements and the total number of
nodes Nn. The smoothed strains rates ˜̇ε can be calculated from Eq. (1). The upper bound limit analysis
for a plane strain of slope stability using the Mohr-Coulomb failure criterion can be written

α+ = Ns = min

 Nn∑
i=1

cAi cos ϕ
√

( ˜̇εi
xx − ˜̇εi

yy)2 + ( ˜̇γi
xy)2 −W0

ext(u̇)

 = min

 Nn∑
i=1

cAiti cos ϕ −W0
ext(u̇)


st


u̇ = 0 on S u
Wext(u̇) = 1
˜̇εi

xx + ˜̇εyy = ti sin ϕ

ti ≥
√

( ˜̇εi
xx − ˜̇εi

yy)2 + ( ˜̇γi
xy)2, i = 1, 2, . . . ,Nn

(15)
where α+ is a stability number, Ai is the area of node i, and Nn is the total number of nodes in the
domain. The last constraint in Eq. (15) is expressed in the conic form. As a result, the conic interior-
point optimizer of the academic Mosek package [37] is used to solve this problem. The upper bound
using the NS-FEM approach has been written in Matlab. The computations were performed on a
Windows XP environment in a Dell Optiplex 990 (Intel CoreTM i5, 1.6GHz CPU, 8GB RAM).
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4. Numerical examples
4.1. Comparisons of slope failure mechanisms and stability factors with other solutions

In order to obtain the stability factor Ns representing the effect of the soil weight and cohesion
(γ = 1, c = 1), the optimization problem for plane strain using the NS-FEM can be determined by

α+ = Ns = min

 Nn∑
i=1

Aiti cos ϕ −W0
ext(u̇)

.
For comparison purposes, the power dissipations of slopes using the NS-FEM and Krabbenhoft

et al. [22] solution for the case β = 60◦, α = 0◦, ϕ = 20◦ is shown in Fig. 4. The surface of sliding
using the NS-FEM is passing through the toe of the slope, illustrated in Fig. 4(a). It is clear that the
failure mechanism obtained using the NS-FEM is quite the same as that of the solution reported by
Krabbenhoft et al. [22] in Fig. 4(b).

(a) Power dissipation using the NS-FEM (b) Power dissipation reported by Krabbenhoft et al. [22]

Figure 4. Comparison of the power dissipation between NS-FEM and solution reported by
Krabbenhoft et al. [22] for β = 60◦, α = 0◦, ϕ = 20◦, c = 1

The results of stability numbers Ns of slopes obtained from the present study were compared with
other numerical results in the cases β from 50◦ to 90◦: (1) Chen [8] used the upper bound rigid-block
failure mechanisms; (2) Lyamin and Sloan [20, 21] used the upper bound and lower bound solutions
and non-linear programming optimization; (3) Krabbenhoft et al. [22] used 3-node elements with
discontinuities and non-linear optimization. A comparison of these results is listed in Table 1 for the
cases β = 50◦ - 90◦. The Nsvalues are in good agreement with the analytical upper bound solution of
Chen [8] and the average values of the lower bound and the upper bound theorem reported by Lyamin
and Sloan [20, 21]. The results of Ns using the NS-FEM are smaller than those of Krabbenhoft et al.
[22], with a maximum error of 2.2%. A comparison of stability numbers Ns used the present method
to show the accuracy and convergence of the NS-FEM for solving the slope stability analysis.

Table 1. Comparison of the stability number of slope Ns between NS-FEM and other solutions
in the literature (ϕ = 20◦)

β Chen [8] Lyamin & Sloan [21] Lyamin & Sloan [20] Krabbenhoft et al. [21] NS-FEM

UB UB LB UB UB

50 13.63 13.79 13.44 13.79 13.55
60 10.39 10.54 10.21 10.54 10.30
70 8.30 8.44 8.12 8.44 8.27
80 6.75 6.89 6.58 6.89 6.68
90 5.50 5.67 5.41 5.67 5.45

UB - Upper bound; LB - Lower bound
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To consider the accuracy of this approach, a comparison of the stability numbers Ns, the number of
iterations, and optimization CPU times using the NS-FEM with those reported by Makrodimopoulous
and Martin [36] are listed in Table 2. The reported CPU times refer to the time spent on the interior-
point iterations and exclude the time to read the data file. For slope stability, Makrodimopoulous
and Martin [36] used 28864 3-node elements with discontinuities (FEM-T3) and 6-node triangular
elements (FEM-T6) in the mesh.

It is evident that the slope stability factor based on the NS-FEM for the case β = 70◦, ϕ = 35◦

solutions (Ns = 13.95) using 6834 triangular elements agree well with the 6-node triangular element
presented by Makrodimopoulous & Martin [36] using a mesh of 28864 triangular elements (Ns =
13.88), with the error is less than 0.64%. Furthermore, based on an interior-point algorithm using the
Mosek optimizer, the NS-FEM optimization problem is very fast convergence, with about 22 - 24 step
iterations and a maximum CPU time of 3.11 s. Thus, the numerical procedure using the NS-FEM and
SOCP reduces a significant number of elements and the time for solving optimization problems.

Table 2. Comparison of the stability number of slope Ns for the case β = 70◦

Makrodimopoulos and Martin [36] NS - FEM

(ϕ = 20◦) (ϕ = 35◦) (ϕ = 20◦) (ϕ = 35◦)

Ne

FEM - T3 FEM - T6 FEM - T3 FEM - T6

Ne

NS - FEM NS - FEM

Ns

(Error %)
Iterations
CPU (s)

Ns

(Error %)
Iterations
CPU (s)

Ns

(Error %)
Iterations
CPU (s)

Ns

(Error %)
Iterations
CPU (s)

Ns

(Error %)
Iterations
CPU (s)

Ns

(Error %)
Iterations
CPU (s)

28864 8.471
(2.06%)

23
65.1 (s)

8.338
(0.46%)

36
194.5 (s)

15.46
(11.57%)

29
85.2 (s)

14.19
(2.41%)

21
109.5 (s)

6834 8.275
( - 0.3%)

22
3.3 (s)

13.95
(0.64%)

24
3.11 (s)

Ne - no. of elements

4.2. Numerical results and discussions

In this study, the weight of the soil considered as the external force contributes to the stability
factors Ns. Generally, there are two distinct failure modes for the slope stability analysis:

(a) Toe failure mode: the sliding surface passes through the toe of the slope for all cases β ≤
60◦ and ϕ ≥ 10◦ because the friction angle ϕ increases, leading to the frictional component of shear
strength of the soil slope increasing.

(b) Base failure mode: the failure mechanisms extend beneath the toe of the slope in the case β ≤
60◦, α = 0◦ to 15◦, and slight friction angle ϕ = 0◦ to 5◦. In this failure mode, the energy dissipation
by the soil shear strength is slightly greater than or equal to the self-weight of the soil.

Fig. 5 shows the plastic dissipation distribution of the slope using the present method NS-FEM
in the case β = 30◦, ϕ = 0◦, α = 0◦, and α = 15◦. For a purely cohesive soil (friction angle ϕ = 0◦) as
shown in Figs. 5(a)–5(b), failure surfaces pass below the toe of the slope because of the sliding due
to gravity, which tends to mobilize a larger volume of shear resistance than those of toe failure mode.

Figs. 6(a), 6(c), 7(a), 7(c) show the failure mechanisms of slopes for the cases β = 30◦- 60◦, α =
0◦ and 15◦, small friction angle ϕ = 5◦. In these figures, the sliding surfaces beneath the toe of the
slope tend to mobilize a larger volume of shear resistance than those of toe failure mode because the
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(a) α = 0◦ (b) α = 15◦

Figure 5. Power dissipation of the slope using NS-FEM for the case β = 30◦, ϕ = 0◦

(a) β = 30◦, α = 0◦, ϕ = 5◦ (b) β = 30◦, α = 0◦, ϕ = 20◦

(c) β = 30◦, α = 15◦, ϕ = 5◦ (d) β = 30◦, α = 15◦, ϕ = 20◦

Figure 6. Power dissipations of slope using NS-FEM for the case β =30◦

(a) β = 60◦, α = 0◦, ϕ = 5◦ (b) β = 60◦, α = 0◦, ϕ = 20◦
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(c) β = 60◦, α = 15◦, ϕ = 5◦ (d) β = 60◦, α = 15◦, ϕ = 20◦

Figure 7. Power dissipations of slope using NS-FEM for the case β =60◦

shear strength of the soil slope is small. When the friction angle increases ϕ = 20◦, the failure surfaces
develop from the toe of the slope and extend to the ground surface, as illustrated in Figs. 6(b), 6(d),
7(b), 7(d). It means that the shear strength of the soil slope increases with an increase in friction angle
ϕ, and the toe failure mechanism occurs.

Fig. 8 illustrates failure mechanisms of the slope in the cases β = 90◦, α = 0◦ - 15◦, ϕ = 5◦ - 20◦,
the failure surfaces develop from the toe of the slope and extend to the ground surface.

(a) β = 90◦, α = 0◦, ϕ = 5◦ (b) β = 90◦, α = 0◦, ϕ = 20◦

(c) β = 90◦, α = 15◦, ϕ = 5◦ (d) β = 90◦, α = 15◦, ϕ = 20◦

Figure 8. Power dissipations of slope using NS-FEM for the case β = 90◦
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Fig. 9 shows the transition zone of slope failure mechanisms and the relationship between stability
factors Ns and small friction angles ϕ = 0◦ - 10◦, slope angles α = 0◦ - 5◦ and β = 30◦ - 90◦. Compar-
isons indicate that the effect of friction angle ϕ on the failure mechanism is significant compared to
other parameters. As shown in Figs. 9-9(b), there are two distinct failure modes for the slope stability
analysis: i) When β ≤ 60◦, α ranging from 0◦ to 5◦, and friction angle ϕ = 0◦ to 5◦, the base failure
mechanisms beneath the toe of the slope because the shear strength of the soil slope is small; ii) In
the cases β ≤ 60◦, ϕ ≥ 10◦ and β > 60◦, ϕ > 0◦, the sliding failure surface passes through the toe of
the slope because an increase in the friction angle contributes to an increase the shear strength of the
soil slope.

(a) α = 0◦

(b) α = 5◦

Figure 9. Stability numbers of slope Ns using NS-FEM

The computed values of Ns for friction angles ϕ ranging from 5◦ to 35◦, slope angles α from 0◦

to 25◦, and β ranging from 30◦ to 90◦ using the NS-FEM are summarized in Table 3.
The variation of stability factors Ns with the effect of the inclination angle of slope β (for different

friction angle values ϕ) is plotted in Fig. 10 for the case α = 0◦. From Fig. 10, the Ns values decreased
as the slope angle β increased. The rate of reduction in Ns rapidly when β ranges from 30◦ to 45◦ and
the friction angle is slight ϕ = 5◦. However, the magnitude of Ns decreased linearly when the friction
angle ϕ = 35◦. The stability factors obtained from the present method NS-FEM are well in agreement
with the analytical upper bound solution reported by Chen [8]. It demonstrates that the present method
has high effectiveness for solving slope stability analysis in cohesive-frictional soils.
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Table 3. The stability numbers of slope Ns between NS-FEM and results reported by Chen [8]

ϕ◦ α◦
β = 30◦ β = 45◦ β = 60◦ β = 75◦ β = 90◦

NS-
FEM

Chen
[8]

NS-
FEM

Chen
[8]

NS-
FEM

Chen
[8]

NS-
FEM

Chen
[8]

NS-
FEM

Chen
[8]

5 0 9.03 9.13 7.27 7.35 6.08 6.16 5.03 5.14 4.06 4.19
5 8.33 8.83 7.03 7.18 5.88 6.03 4.93 5.05 3.98 4.14

10 0 13.28 13.50 9.16 9.31 7.12 7.26 5.67 5.80 4.34 4.58
5 12.98 13.28 9.02 9.16 7.02 7.14 5.57 5.71 4.24 4.53

10 12.28 12.89 8.45 8.93 6.55 6.94 5.33 5.61 4.17 4.47

15 0 21.57 21.69 11.94 12.05 8.35 8.63 6.27 6.57 4.95 5.02
5 20.98 21.48 11.44 11.91 8.24 8.52 6.17 6.49 4.85 4.97

10 20.63 21.14 11.03 11.72 8.08 8.38 6.07 6.38 4.75 4.91
15 20.24 20.49 10.87 11.42 7.98 8.19 5.98 6.26 4.63 4.83

20 0 41.07 41.22 16.06 16.16 10.33 10.39 7.24 7.48 5.45 5.50
5 40.87 41.02 15.89 16.03 10.09 10.28 7.08 7.40 5.24 5.46

10 40.45 40.69 15.44 15.84 9.85 10.16 6.99 7.30 5.17 5.40
15 39.97 40.09 15.19 15.58 9.47 9.98 6.78 7.18 5.08 5.33
20 38.24 38.64 14.97 15.17 9.26 9.74 6.54 7.03 5.01 5.24

25 0 118.19 119.93 22.76 22.90 12.25 12.74 8.34 8.58 5.95 6.06
5 118.01 119.70 22.69 22.77 12.18 12.64 8.20 8.50 5.85 6.01

10 117.89 119.35 22.51 22.60 12.07 12.52 8.11 8.41 5.78 5.95
15 117.23 118.79 22.19 22.35 11.92 12.36 7.96 8.30 5.70 5.89
20 116.98 117.43 21.75 21.98 11.65 12.14 7.67 8.16 5.60 5.80
25 111.54 112.07 20.96 21.35 11.28 11.84 7.42 7.97 5.49 5.70

30 0 - - 35.16 35.54 15.89 16.04 9.65 9.94 6.47 6.69
5 - - 35.06 35.41 15.69 15.94 9.45 9.86 6.37 6.64

10 - - 34.93 35.25 15.58 15.82 9.38 9.77 6.25 6.59
15 - - 34.67 35.01 15.44 15.67 9.30 9.67 6.08 6.52
20 - - 34.23 34.67 15.19 15.47 9.21 9.54 5.89 6.44
25 - - 33.96 34.11 15.02 15.20 9.15 9.37 5.73 6.35

35 0 - - 65.24 65.52 20.53 20.94 11.37 11.68 7.25 7.42
5 - - 65.14 65.52 20.43 20.84 11.26 11.60 7.15 7.38

10 - - 64.95 65.22 20.27 20.73 11.20 11.51 7.09 7.32
15 - - 64.45 64.70 20.17 20.59 11.08 11.36 7.02 7.26
20 - - 64.39 64.65 20.09 20.40 11.01 11.29 6.92 7.19
25 - - 64.05 64.12 19.98 20.14 10.94 11.13 6.81 7.10
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Figure 10. Comparison stability factors Ns of slopes using NS-FEM and Chen [8] solution in the case α = 0◦

Figure 11. Stability factors Ns of slopes using NS-FEM in the case α = 0◦

Figure 12. Stability factors Ns of slopes using
NS-FEM in the case α = 5◦ and α = 15◦

Fig. 11 shows the relationship between the sta-
bility factors Ns of slopes at different inclination
slope angles β =30◦ - 90◦ and friction angle ϕ = 5◦

- 35◦ for the case α = 0◦. In Fig. 11, it can be seen
that the values of Ns increased with an increase
of ϕ. It means that friction angle ϕ contributes to
the increase in the frictional component of shear
resistance of soil slope.

Fig. 12 illustrates the variation of stability fac-
tors Ns with the change of the friction angle ϕ for
different values of βand α = 5◦, α = 15◦. From Fig.
12, the values of Ns increased with an increase of
ϕ, and the results of Ns slightly decreased with an
increase of the slope inclination angle α.

5. Conclusions
This paper proposes a node-based smoothed finite element method (NS-FEM) to evaluate ho-

mogeneous slope stability in cohesive-frictional soils. Design tables and dimensionless charts are
investigated with the various soil friction angles ϕ and slope inclination angles α and β. The nu-
merical results are available for cases with ϕ ≤ 35◦, and geotechnical engineers can use them in the
preliminary design stage. Based on upper bound limit analysis using the NS-FEM, some concluding
remarks can be shown as follows:
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- There are two distinct failure modes for the slope stability analysis, i.e. the base failure mode
and the toe failure mode. The base failure was commonly encountered for slight friction angles ϕ ≤ 5◦

and β ≤ 60◦, and the failure mechanisms extend beneath the toe of the slope. In contrast, a toe failure
generally occurs for a slope with a larger soil friction angle, and the sliding surface passes through the
toe of the slope.

- In general, the stability numbers Ns decrease continuously with increasing the slope inclina-
tion angle α and β, and it increases with rising friction angle ϕ. The obtained results agree with
the average values of the lower and upper bound reported by Lyamin and Sloan [20, 21], Chen [8],
Makrodimopoulous & Martin [36]. It demonstrates that the present method is highly effective for
solving slope stability analysis in cohesive-frictional soils.
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