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Abstract

Soil compression index (Cc) plays a vital role in describing the settlement behaviors of geotechnical infrastruc-
tures. The conventional Oedometer test broadly used to determine Cc is time-consuming and expensive, which
challenges incorporating the high spatial variability of Cc. Alternatively, this study utilized the pedo transfer
function (PTF) concept to develop a predictive model on the extreme gradient boosting (XGB) framework for
estimating Cc with high accuracy and low effort. The presented XGB-PTF implemented on the database is
acquired from 40 boreholes in Ho Chi Minh city and its vicinity to learn and recognize the correlation pat-
terns of Cc and the easily-obtainable soil parameters (i.e., grain size distribution, unit density, moisture content,
Atterberg limits). Rigorous evaluation with standard regression metrics demonstrated the efficiency and ex-
cellent performance of the XGB-PTF (e.g., low root-mean-squared error of 0.089 and a high coefficient of
determination of 0.903). Furthermore, the presented framework showed its superiority over the current em-
pirical equations in estimating Cc by higher prediction accuracy and applicability to the broader range of soil
types. Given efficiency, flexibility, and dynamics, the presented model is expected to be a versatile approach to
quantizing and advancing the knowledge of soil characteristics over a regional area.
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1. Introduction

Accuracy estimate of ground settlement is a typical geotechnical problem that has drawn mas-
sive attention during the history of soil mechanics. In practice, the state-of-the-art Terzaghi approach
linearizes the correlation between void ratio (e) and effective stress to approximately describe the pri-
mary soil settlement behaviors with a certain degree of success. Given the increased effective stress,
the expected settlement can be sufficiently estimated utilizing the compression index (Cc) with ac-
ceptable accuracy for engineering applications. However, the Oedometer experiment for determining
Cc is time-consuming and labor-intensive, which challenges incorporating the high spatial variability
of Cc.

Several experimental studies have been carried out to explore the variation patterns of Cc con-
cerning different soil types. Closed-form equations have been proposed to estimate Cc based on fit-
ting the obtained experimental data [1, 2]. Those published equations generally relate Cc in terms
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of liquid limit (LL), water content (w), and void ratio (e0) (e.g., Cc = 0.009(LL − 10) for clays [3];
Cc = 0.011wCc = 0.54e − 0.19 for peat [4]; Cc = 0.54e − 0.19 for clays [5]). However, despite the
practicality, merely being suitable for some specific soil texture restrains the generalized capacity of
those empirical models.

In this regard, machine learning (ML) based pedo transfer function (PTF) is a promising alter-
native to the generic PTF. For details, PTF contributes as mathematical links between the easily-
obtainable parameters (i.e., basic soil properties [6]) and the parameter of interest (e.g., Cc) that later
allows exploiting the ML advantages in data mining to increase the model performance. Furthermore,
the potential of ML-PTF has been accredited in describing various geotechnical applications ([7–10]).
Recently, Zhang [11] developed the Bayesian Neural network-based model to forecast soil compress-
ibility and undrained shear strength of clayey. Similarly, Scott Kirts et al. [12] utilized the support
vector machine (SVM) model to predict the soil compressibility for coarse-grained, fine-grained, and
organic peat. The obtained results once demonstrated the great potential of this approach in geotech-
nical design. Yet proper academic attention is required to enhance the practical applications of this
approach further, as well as advance the knowledge of the correlation between given attributes and
soil compressibility behaviors.

The primary objective of this research is to develop an ML-PTF on the extreme gradient boosting
(XGB) framework [13] capable of estimating soil compression index with high precision and low ef-
fort. Furthermore, advancing the quantitative knowledge of which soil structural indicators determine
soil compressibility using correlation analysis. The XGB-PTF was implemented on the Ho Chi Minh
(HCM) soil database based on 40 boreholes system collected from different projects in HCMC and
its vicinity.

2. Database and Correlation Analysis

2.1. Compression Index Database

This study developed the ML-PTF model for forecasting the Cc value base on the database of
boreholes investigated in Ho Chi Minh city and its vicinity. Fig. 1 presents the approximate posi-
tion of the boreholes. The soil specimen was collected at every 2 m to 3 m of the borehole, whose
depth ranges from 30 m to 50 m, for determining the fundamental soil parameters. Consequently, the
database of interest contains 600 data points with 13 attributes.

Data validity is utilized to eliminate errors that are likely to occur during measuring or docu-
menting. The data points are expected to satisfy: (i) the particle size criterion and (ii) the physical
relationship between soil parameters. The validity process resulted in a clean dataset containing 433
data points.

Moreover, the database includes features directly extracted from grain size distribution (fine gravel
(FG), medium gravel (MG), coarse gravel (CG), very fine sand (VFS), fine sand (FS), medium sand
(MS), coarse sand (CS), very coarse sand (VCS), fine silt (FS) and coarse silt (CS), fraction of clay
(Fclay), silt (Fsilt) and sand (Fsand), natural moisture content (w), natural gravity of soil (γ), dry unit
weight (γd), degree of saturation (Sr), the specific gravity of soil (Gs), void ratio (e0), liquid limit
(LL), plastic limit (PL), compression index (Cc). The secondary features were estimated based on
interpreting the particle size distribution (i.e., D10 and D60 are grain sizes of 60% and 10% passing
the sieved soil, respectively, Cu is a measure of the uniformity of grain size in the soil).
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Figure 1. Approximate locations of 40 boreholes

2.2. Data Properties

Table 1 summarizes the statistical descriptions of primary indicators in the database.

Table 1. Statistical descriptions of data attributes

Statistical
description

w
(%)

γ

(g/cm3)
γd

(g/cm3)
Gs

(g/cm3)
S r

(%)
e

LL
(%)

PL
(%)

Cc

(cm2/kG)

Number 433 433 433 433 433 433 433 433 433
Mean 36.7 1.86 1.42 2.68 90.9 1.05 42.4sr 24.0 0.27
Std. 26.2 0.22 0.35 0.04 6.25 0.68 18.5 10.9 0.40
Min 12.5 1.37 0.64 2.51 53.9 0.40 19.8 9.57 0

Q1 (25%) 19.3 1.66 1.2 2.66 87.0 0.60 27.2 16.9 0.06
Median 24.1 1.95 1.57 2.69 91.8 0.72 38.5 20.1 0.10

Q3 (75%) 42.5 2.01 1.69 2.72 96 1.19 48.1 27.4 0.20
Max 117 2.15 1.89 2.75 99.8 3.17 103 73.3 2.41

(Q1 and Q3 are first and third quartiles)

As shown in Fig. 2, the water content had the broadest range among the other factors, which
slanted toward the smaller value in the 19.3 - 42.53% range. Moreover, the degree of saturation had
an extent from 53.9 to 99.8%, which slanted toward the larger value varying between 87 and 96%.
In particular, 75% of the data had a degree of saturation higher than 87%. The natural gravity of soil
showed a possible bimodal distribution, varying between 1.37 and 2.15 g/cm3, which was primarily
centered in the range of 1.66 - 2.01 g/cm3. Similarly, the dry unit weight of soil also performed a
possible bimodal distribution, varying between 0.64 and 1.89 g/cm3, which was primarily centered in
the range of 1.2 - 1.69 g/cm3. The specific gravity indicates the lowest standard deviation, only 0.04,
with a narrow range from 2.51 to 2.75 g/cm3. The soil’s void ratio ranged from 0.4 to 3.17, which
slanted toward the smaller value varying between 0.6 and 1.19. Only 25% of the data had a void ratio
higher than 1.19. The liquid limit had a high standard deviation value (18.54%) compared to other
factors and has a broad range from 19.8 to 103.4%, which is slanted toward the smaller value in the
range of 27.21 - 48.12%. Only 25% of the data had a liquid limit higher than 48.12%. The plastic limit
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also had a broad vary from 9.57 to 73.3%, which slanted toward the smaller value varying from 16.9 -
27.4%. The compression index ranged from 0 to 2.41 cm2/kG, which slanted toward the smaller value
varying from 0.06 to 0.2 cm2/kG.
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Figure 2. Distribution of factors on their ranges

2.3. Data Analysis

The Pearson correlation coefficient (R) was concisely utilized to estimate the correlation between
each couple of input factors:

R =

n∑
i=1

(xi − x)(yi − y)√
n∑

i=1
(xi − x)2

√
n∑

i=1
(yi − y)2

(1)

The perfectly positive linear correlation gets the absolute R-value of 1; meanwhile, for two factors
with no linear relationship, R equals 0. Fig. 3 shows the scatter plot for the correlation of Cc with the
most relevant features (i.e., W, e, γd , and γ). A relatively strong correlation was observed in the pair
of Cc with W (R = 0.861) and e (R = 0.859). These observations are consistent with the empirical
equations proposed in the literature. In contrast, in the case of γd , and γ the negative R values were
obtained, indicating the negative correlation with Cc of these parameters, expressed in the downward
trend of the scatterplot.

(a) (b)
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(c) (d)

Figure 3. Geographical scatterplots in pairs: (a) Cc and W (P = 0.86); (b) Cc and e (P = 0.86);
(c) Cc and γd (P = -0.82); (d) Cc and γ (P = -0.80)

3. Methodology

3.1. Boosting learning

Figure 4. Boosting learning concepts

Boosting is a well-known branch of ensemble
learning used to improve model performance. A
chain of “weak” learners is sequentially added to
the ensemble in a stepwise fashion to yield a po-
tentially better one (as presented in Fig. 4).

3.2. Extreme Gradient Boosting (XGB)

Extreme gradient boosting is engineered from
the well-known boosting algorithm, especially
emphasized in [13] for decreasing the great
amount of risk of overfitting problems and en-
hancing model efficiency. Overfitting is a state-of-
the-art issue to all the machine learning models, in
which the model performs excellently on the train-
ing data but poorly on the previously unseen data
(i.e., test set).

Owing to the simplicity, the Decision tree (DT) is chosen as the weak learner that is sequentially
added to the ensemble stepwise fashion to enhance the overall performance. Given an instance xi, the
prediction ŷi of the target yi is obtained by utilizing predetermined K DTs as below:

ŷi =

K∑
k=1

f̂k(xi) =
K∑

k=1

f̂k(xi) + ρK f̂K(xi) (2)
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where F =
{
f(x) = wq(x)|q : Rm → T ; w ∈ RT

}
is the family of DT f(x), q is the structure of each tree

that represents an instance to the corresponding leaf index. T represents the number of leaves in the
tree; each leaf contains a continuous score w; ρ represents the learning rate.

Chen & Guestrin resettled the high risk of overfitting issue inherent in boosting models by regu-
larizing the original objective functions (Eq. (3)) to favor the less complexity model (e.g., simple DT
structure with low w on each leaf)

L(ŷ) =
n∑

i=1

l(yi, ŷi) +
K∑

k=1

Ω( f̂k)

where

Ω( f ) = γT +
1
2
λ

T∑
j=1

w2
j (3)

Here l is a differentiable convex loss function that computes the difference between and yi; n is the
number of data; γ and λ are regularized hyperparameters; Ω( f )regularized functions.

During the training process, the new DTs are added to the ensemble in the direction determined
by the gradient descent concept to minimize the objective function (Eq. (3)). For details, the kth f̂k

is trained with the pseudo database
{

xi, rik =
∂Lk

∂ f̂ (x)

∣∣∣ f̂ (x) = f̂k(x)
}

to focus on specific rows. The

objective function becomes as follows:

Lk =

n∑
i=1

l(yi, ŷ(k−1) + ρk f̂k(xi)) + γTk +
1
2
λ

T k∑
j=1

(wk
j)

2 (4)

3.3. Hyperparameter tuning

The hyperparameters are used to manage the distance between the testing and training errors and
enhance model performance. Considering the computational expense, the Bayesian optimization [14]
coupled with the K-fold cross-validation was adopted to tune the hyperparameters of the XGB. Table 2
summarizes the XGB hyperparameters.

3.4. Train-Test set

Machine learning models conduct specific tasks in accordance with the patterns extracted from the
databases. The training or learning process is the procedure of identifying the regularity and pattern
of the database. Once the learning phase is finished, the trained model can appropriately execute a
given task on the formerly unseen inputs, and this capability is experienced as generalization. This
study utilized 80% of the database (i.e., training data) for training the model, and the remaining 20%
(i.e., test set) was to evaluate the model’s generalized capacity.

4. Results and Discussion

4.1. Evaluation metrics

Standard evaluation metrics for regression models, including root mean squared error (RMSE),
mean absolute error (MAE), coefficient of determination (R2), and coefficient of determination (R),
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Table 2. A summary of the hyperparameters of XGB

Hyperparameters Descriptions
Search space/
Distribution

XGB

Number of estimators (K) Determine the number of DTs [10, 500]/ Uniform 162

Regularized parameters (λ, γ) Penalty the model complexity [1 × 10−5, 5]/
Log-Uniform

0.427
0.168

Learning rate (ρ) Adjust the generalization capacity [0.01, 1]/
Log-Uniform

0.3

Maximum depth Control the maximum depth of DT [1, 20]/ Uniform 4

Subsample ratio Subsample ratio of training in-
stances

[0, 1]/
Uniform

0.912

Column subsample by tree Subsample ratio of columns when
constructing each DT

[0, 1]/
Uniform

0.683

were utilized to evaluate predictive performance. The high R-values, accompanied by low RMSE and
MAE values, prove the outstanding presentation of the developed XGB.

RMS E =

√√
1
n

n∑
i=1

(yobs.
i −ypred.

i )2

R2 = 1 −

n∑
i=1

(
ypred.

i − yobs.
i

)2
n∑

i=1

(
yobs.

i − ȳobs.
)2 ; MAE =

1
n

n∑
i=1

∣∣∣∣yobs.
i − ypred.

i

∣∣∣∣
(5)

where n is data samples; ypred.
i and yobs.

i are observed and predicted Cc.
In addition, five empirical equations for predicting Cc in terms of LL, w, or in-situ void ratio (e0)

[15] were utilized to validate the XGB model performance.

4.2. Results

Table 3 and Fig. 5 summarize the evaluation results for the performance of the presented XGB-
PTF, along with the broadly used empirical equations. The RMSE and MAE values of XGB were the
lowest in comparison with all empirical models on the same dataset, whereas the R2 value of XGB was
higher than all empirical models that demonstrate the superior performance of the developed XGB.

Further elaboration on the model performance was carried on by analyzing the residual errors
ypred. − yobs. of the presented models. In Table 4, the mean value of residual error in the case of XGB
is -0.006, and the standard deviation is 0.09, which is relatively low compared to the remaining. This
means the predicted value of XGB does not fluctuate greatly and is adaptable to many types of soils.
Furthermore, the interquartile range (Q3 – Q1) of the residual error distribution of XGB was close to
the zeros line, ranging from -0.045 to 0, as shown in Fig. 6. The amplitude obtained in the case of
XGB is smaller than the rest, especially box D, which ranges from -0.197 to -0.55. Box D has a large
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Table 3. RMSE, R2, MAE comparison between XGB and five empirical equations

Regression Metrics Criteria XGB A B C D E

RMSE RMSE→ 0 0.089 0.106 0.111 0.575 0.636 0.095
R2 R > 0.8 0.903 0.864 0.849 0.749 0.796 0.891

MAE MAE→ 0 0.055 0.087 0.092 0.563 0.474 0.072

Note: A: Cc = 0.37(e0 + 0.003LL− 0.34) [16]; B: Cc = 0.009w+ 0.002LL− 0.10 [16]; C: Cc = 0.141Gs(
γw

γd
)

12
5 ;

D: Cc = 1.15(e0 − 0.35) [5]; E: Cc = −0.156 + 0.411e0 + 0.00058LL [17].

(a) RMSE (b) R2

(c) MAE

Figure 5. Comparison between XGB and empirical equations

amplitude because it only considers one factor, e0, which will lead to low performance compared to
other models. Consequently, these results again show the predictive ability of the XGB model.

In Table 5, the XGB model, which applies to various types of soil, performs better values of RMSE
and R2 than SVM, which present inconsistent results. In particular, SVM models have a grateful
prediction only for coarse-grained, whereas the prediction for fine-grained and organic peat is not
good at all. It is acceptable that XGB is a preeminent model for prediction Cc.

Fig. 7 indicates the impact on the expected accuracy of given features on the model. Among them,
the moisture content showed the most substantial influence, expressed by the highest value of feature
importance. This is supported by the experimental results reported in the literature, which were later
developed into the empirical equation describing the linear correlation between Cc and W.
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Figure 6. Residuals comparison between XGB and empirical equations

4.3. Discussion

The evaluation results demonstrated that the presented XGB-PTF outperformed the empirical
formulas broadly used for predicting Cc. Note that the XGB-PTF consistently performed excellently
on various soil types. The flexibility in considering multiple input features for predicting Cc of the
XGB-PTF, instead of one or two independent variables like those empirical equations, responds to the
improvement in the prediction accuracy. Also, the remarkable capacity to learn complex data patterns
allows the XGB-PTF to be workable on a wide range of soil types.

The feature importance indicates the critical role of W in predicting Cc. This obtained result is
supported by the theoretical interpretation from soil mechanics and experimental results reported in
the literature. Nevertheless, limited in the relatively small database may mislead the understanding of
the impacts of the remaining features (such as Atterberg limits and attributes describing grain size
distributions). Therefore, further studies should be carried on to explore the potential influence of
those relevant factors.

Table 4. Residuals statistical summarization on the test set

XGB A B C D E

Mean -0.006 -0.053 -0.056 -0.563 -0.474 -0.041
Std 0.090 0.092 0.097 0.117 0.427 0.086
Min -0.255 -0.330 -0.335 -1.320 -2.113 -0.359
Q1 -0.045 -0.093 -0.102 -0.581 -0.550 -0.078

Median -0.023 -0.067 -0.071 -0.534 -0.301 -0.047
Q3 0.000 -0.031 -0.034 -0.508 -0.197 -0.012

Max 0.410 0.209 0.264 -0.282 -0.052 0.200
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Table 5. RMSE and R2 comparison between XGB and SVM model used in predicting compression index Cc
(Scott Kirts et al., 2017)

XGB SVM

Train Test Coarse grained Fine grained Organic peat

RMSE 0.117 0.089 0.111 0.391 1.090
R2 0.923 0.903 0.910 0.650 0.770

Figure 7. Features Importance of model

5. Conclusions

This study developed the XGB-PTF for predicting compression index. The XGB-PTF was imple-
mented on the geological data from a system of boreholes around Ho Chi Minh city and its vicin-
ity. Also, the hyperparameters of XGB were tunned with the aid of Bayesian optimization coupled
with the K-fold cross-validation. Standard evaluation metrics (RMSE, MAE, and R2) were utilized
to evaluate the performance of the developed model. For comparison, five empirical formulas were
utilized to evaluate the performance of XGB. The statistical metrics demonstrated excellent perfor-
mance of the model over the empirical formulas in predicting the compression index of soil (e.g.,
RMS E = 0.089 and R2 = 0.903). Consequently, using machine learning models, especially XGB-
PTF, is highly suggested to develop reliable models for identifying the compression index Cc and for
advanced application in geotechnical infrastructures.
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