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Abstract

Fly ash has been increasingly utilized in concrete industry owing to its advantages in improving workability of
fresh concrete and some properties of harden concrete, reducing material cost and adapting sustainable con-
struction requirements. This article introduces a Gaussian process regression using machine learning approach
to predict the behavior of reinforced fly ash concrete (RFAC) columns in the form of axial load (N) - mid-
height lateral displacement (∆) relation curve. A dataset collected from an experimental study conducted by
the authors and checked to be in accordance with TCVN 5574:2018, is used to train the model with the ratio
of 10%. Once being well validated by the remaining 90% of the dataset, it is shown that the model is capable
of predicting the N-∆ curves so that the behavior of the tested RFAC columns when subjected to various levels
of load eccentricity can be observed and the ultimate resistance of the columns under such condition can be
determined.
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1. Introduction

Fly ash (FA) is a by-product of coal combustion, which is mostly produced from electric power
plants. This material can be used as a partial mass replacement of ordinary Portland cement (OPC) to
compensate this expensive component of concrete. The use of fly ash in concrete industry is increasing
owing to its advantages in improving some properties of concrete, lowering material cost and adapting
sustainable construction requirements. Thanks to its pozzolanic and cementitious properties, fly ash
contributes to the performance improvement of fresh concrete and the strength gain of hardened
concrete [1]. Hence, fly ash can be introduced either as a separately batched material - a mineral
additive to reduce the high temperature occurred by hydration reaction in mass-concrete structures
- or as a component of blended cement in reinforced concrete structures [1, 2]. Fig. 1 illustrates the
applications of fly ash concrete in water damp and infrastructures.

In building structural systems, columns are the critical vertical elements carrying loads from slabs
and beams of upper floors to the lower levels and foundations [3–5]. Therefore, columns are primarily
compression members with or without eccentricities and will be influenced by slenderness [3–9].
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Figure 1. Application of fly ash concrete

Although second-order effect was experimental investigated on the behavior of slender reinforced
concrete (RC) columns subjected to eccentricities in a number of studies [10, 11], tests conducted
on reinforced concrete columns made of fly ash concrete, so-called RFAC columns, were mostly on
stocky specimens [12, 13].

(a) Column test by Cross et al. [12] (b) Column test by Yoo et al. [13]

(c) Column test by the authors [14]

Figure 2. Experiments on RFAC columns [12–14]
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Cross et al. [12] tested RFAC columns by applying concentric compression load until failure.
The column specimens had round cross-section of 152 mm in diameter and 457 mm height. It was
shown that the design procedure for RC columns following ACI 318-16 [6] can also be applied for
RFAC columns using 15-30% FA/OPC by-mass replacement ratio since the tested columns’ behavior
is similar to that of OPC columns (Fig. 2(a)). In the experiment conducted by Yoo et al. [13], hi-
volume fly ash concrete (HVFAC) with FA/OPC by-mass replacement ratio of 50% was applied for
six column specimens. The columns were stocky (Fig. 2(b)) and were concentrically compressed
until failed with the resistance lower than that of RC column by 14%. It was shown that the ACI
calculation method for RC columns [6] can also be applied for HVFAC columns as the failure criteria
of the tested specimens were similar to that of RC columns. The lack of experimental studies on
slender RFAC columns subjected to eccentricities motivated the authors to test three groups of eight
columns made of fly ash [14]. All the test specimens had identical geometric properties of 150×200
mm rectangular cross-section and 1.6 m-height. Two ends of the specimen were designed with larger
dimensions of 150×400 (in mm) to accommodate the uniaxial eccentricities of 0, 40, and 80 mm that
are parallel to the longer side of the column cross-section (Fig. 2(c)). Hence, the behavior of RFAC
columns incorporated second-order effect could be obtained from the tests in the form of axial load -
mid-height lateral displacement relationship [14].

Since it is costly and time consuming to design, prepare and conduct experiments, alternative
approaches are also adopted in the research of concrete structures, among which machine learning is
a modern technology having high-dimensional nonlinear computing capabilities, intelligent compre-
hensive analysis and judgment functions, self-learning knowledge reserve expression functions and
have been sufficiently applied in various aspects of structures [15–18].

To the best of the authors’ knowledge, though there are a number of works studying the fly-ash
concrete properties, this work is one of few attempts to investigate the RFAC column behavior under
eccentric loads. Moreover, no related database is available in literature at the time of conducting this
study. Thus, it is difficult to provide an exact predictive method for the RFAC column; that is why
a probabilistic approach is resorted to in this study. In this research, Gaussian Process regression is
introduced as a machine learning approach to be effectively applied to predict the RFAC columns’ be-
havior based on the limit dataset obtained from experiments [14]. It is shown that the proposed model
after being trained and validated is capable of testing the axial load - mid-height lateral displacement
curves with other levels of load eccentricities that were not able to be incorporated in the experimental
study.

2. Behavior of RC columns under eccentric loads

In real situations, due to architectural arrangements, unequal column grid-lines, lateral actions
(such as wind pressure and ground shaking during earthquakes), column position, construction imper-
fection, and the reduced column cross-section at upper floors, most columns are subjected to bending
about two principal axes, so-called biaxially-loaded columns. In another case such as plane frames in
industrial buildings, bending moment about the minor axis is significantly smaller than that about the
major axis. For simplicity, the smaller bending moment is often neglected. Single-axis bending about
either the major or the minor axis of the column cross-section is termed as uniaxial bending. In the
case of braced high-rise buildings, bending moments of columns at lower floors can be significantly
smaller than axial force so as they can be ignored in simplified analysis, resulting in pure compression
or axially-loaded columns.
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Consider three pin-ended columns having the same cross-section properties and are subjected to
an axial load N with the same eccentricity e at both ends, so-called the first-order eccentricity. As the
columns bend in single curvature under such an applied load, the most critical section is located at the
column mid-height. The three columns have different lengths. Column No. 1 has the shortest length l1
with the smallest slenderness (which is the ratio between the effective length l1 and the inertia radius
r of the cross section) while No. 3 is the longest and most slender column with length l3. Regardless
of their lengths, the interaction diagrams at the critical cross-sections of the three columns can be
considered the same (Fig. 3(d)).

Figure 3. Behaviour of short and slender columns under eccentric load

The structural behaviour of the three columns subjected to gradually-increasing-from-zero axial
load N is illustrated in Fig. 3. Under the same value of axial load N, due to their different slenderness
ratios, column No. 1 sustains the smallest mid-height lateral deformation while column No. 3 reaches
the most. Those lateral deformations are considered as additional eccentricities during the test.

In the case of column No. 1, since the additional eccentricity δ1 is small, it can be neglected. Thus,
the bending moment M equals to Ne at all stages, providing a linear load-moment OF1 path. Failure
occurs when the path reaches the interaction diagram at point F1, indicating the material failure mode
in the extreme compressed concrete fibre. This column then can be considered as a short column.

For columns No. 2 and No. 3, since the additional eccentricities δi at their critical cross-sections
cannot be ignored, the maximum bending moments Mi is equal to N(e + δi). These P-δ induced
moments cause an increase in lateral deflections, which in turn lead to an increament in the moments,
resulting in non-linear paths. Then, both the columns can be considered as slender columns. For
column No. 2 which has a moderate length, material failure occurs when the non-linear curve OF2
intersects with the interaction diagram at point F2, but at a lower failure load N2, compared to that
of column No. 1. For column No. 3 which is very slender, due to its significant lateral deflection,
the bending moment increases so rapidly that at a certain deformation δ3, the value of the derivation
∂M/∂N approaches infinity before becoming negative, so that the moment resistance reduces with
further deflections. When this occurs, the column becomes unstable, resulting in stability failure.
At this failure point F3, the critical load N3 is smaller than the failure load N2. It is noted that for
column No. 2, if the failure load N2 is still lower than its stability critical load, the material failure
occurs before the stability failure takes place. When these two phenomena happen simultaneously, the
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combined failure is said to be occurred.
It can be shown that for slender columns, there is significant reduction in the axial load resistance

due to additional moments resulting from pronounced lateral deflections. As shown in Fig. 4(a), due to
the P-δ effect, the moment is magnified so that point A1 is shifted to B1. Alternatively, the interaction
curve itself can incorporate the P-δ effect by shifting from B1 back to A1. As a result, the interaction
diagram of slender columns is smaller than that of short columns (Fig. 4(b)).

Figure 4. Interaction diagrams of slender columns

3. Experimental results on RFAC columns [14]

Figure 5. Experimental results on uniaxial load
resistance [14]

In the experimental program conducted by the
authors [14], the RFAC column specimens were
based on 30 MPa cylinder compressive strength
control concrete and were labeled by eccentricities
of 0, 40 and 80 mm, which were C-30-00, C-30-
40 and C-30-80, respectively. There were 8 speci-
mens distributed in the order of 2:3:3 in the three
test series. They were all pin-connected at both
ends in the test. The test results of six columns,
namely C-30-00 (No. 1 and No. 2), C-30-40 (No. 1
and No. 2) and C-30-80 (No. 1 and No. 2), were
introduced in [14]. In this article, the test results
of the remaining two column specimens (C-30-40
No. 3 and C-30-80 No. 4) are also combined for
the dataset of Gaussian Process regression (Fig. 5
and Table 1).

The experimental relationship between the axial load Ntest and lateral deflection ∆test at column
mid-height measured from all the specimens are shown in Fig. 5, in which the peaks of the curves are
also the uniaxial bending resistance of the specimens [14].

It is noted that the initial eccentricity is determined as e0 = e1+ea, where e1is the static eccentricity
and equals to 0, 40 and 80 mm corresponding to the three groups; ea is the accidental eccentricity
ea = max (Lc/600; hc/30; 10) = 10 mm. Hence, the initial eccentricities of the groups C-30-00, C-
30-40 and C-30-80 were 10, 50 and 90 mm, respectively. The maximum bending moment at column
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mid-height corresponding to the maximum axial load then can be calculated as Mtest = Ntest(e0+∆test).
The calculated values are shown in Table 1. It should be noted that the ratio (e0 + ∆test)/e0 is also the
experimental bending moment magnification ratio.

Table 1. Experimental results on load resistance of RFAC columns [14]

Group C-30-00 (e1 = 0) C-30-40 (e1 = 40 mm) C-30-80 (e1 = 80 mm)
Specimen No. 1 No. 2 No. 1 No. 2 No. 3 No. 1 No. 2 No. 3

Ntest (kN) 738.9 756.19 446.15 434.90 447.89 301.96 291.83 293.39
∆test (mm) 4.39 3.60 6.46 6.57 6.95 9.77 9.01 10.55

Mtest (kNm) 10.635 10.288 25.191 24.601 25.505 30.127 28.850 29.500

4. Validation of second-order effect on RFAC columns in [14]

In this section, the second-order effect in terms of moment magnification factor of the tested
RFAC columns in [14] will be validated by using TCVN 5574:2018 [9].

The mean compressive strengths measured on 150 mm cubes at 28-day age of groups C-30-00,
C-30-40 and C-30-80 were 31.664, 30.890 and 31.704 MPa, respectively. The mean tensile stength of
longitudinal rebars was 362.6 MPa. The experimental moduli of elastic for concrete and reinforcing
steel were 20.3 and 205 GPa, respectively.

Specimen C-30-80-1 is taken for calculation illustration. It is shown in Table 1 that in the test,
this specimen failed at the axial load of Ntest = 301.96 kN with the corresponding mid-height lateral
displacement of ∆test = 9.77 mm.

The column geometrical properties include its cross-section width b = 150 mm and height h =

200 mm; distances from the extreme concrete fiber in compression to the centroidal axes of tensile
and compressive longitudinal rebars’ cross section are a = 27 mm and a′ = 27 mm, respectively,
meaning that their distance is zs = 146 mm; the cross-sectional areas of tensile and compressive
rebars (2φ14+2φ14) are As = A′s = 307.9 mm2; the effective length of column is L0 = 1630 mm;
the effective depth of column cross section is h0 = 173 mm; the accidental eccentricity is ea =

max (Lc/600; hc/30; 10) = 10 mm;
Since the test column is determinate, the initial eccentricity can be calculated as e0 = e1 + ea =

90 mm where the static eccentricity is e1 = 80 mm. Hence, the relative eccentricity of the axial load
is δe = e/h = 0.45 ∈ [0.15, 1.5]. The factor accounting for long-term effect of loading is determined

as ϕL = 1 +
ML1

ML
≤ 2. Since testing was conducted in a short period of time, one can set ϕL = 1.

Then, the effective factor of cracks in concrete is kb =
0.15

ϕL(0.3 + δe)
= 0.20. Moment of inertia of

un-cracked concrete in the column cross-section is Ib = bh3/12 = 100,000,000 mm4. Moment of
inertia of longitudinal rebars is Is = (As + A′s) · (0.5h − a)2 = 3,281,343 mm4.

As a result, the stiffness of the whole column cross section at ultimate limit states is D = kbEbI +

0.7EsIs = 8.775E + 11 Nmm2.

The conventional critical axial load is Ncr =
π2D
L2

0

= 3,259,703 N.

Then, the analytical moment magnification factor is η =
1

1 − N/Ncr
= 1.102 where N = Ntest =
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301.96 kN. The experimental moment magnification factor is. ηtest = (e0 + etest)/e0 = 1.109. Hence,
the validation factor is kη = η/ηtest = 0.994.

Table 2 presents the validation results for all the test specimens.

Table 2. Validation results of moment magnification factor

Group C-30-00 (e1 = 0) C-30-40 (e1 = 40 mm) C-30-80 (e1 = 80 mm)
Specimen No. 1 No. 2 No. 1 No. 2 No. 3 No. 1 No. 2 No. 3

δe 0.15 0.25 0.45
kb 0.333 0.273 0.200

D (Nmm2) 11.49E+11 10.25E+11 8.775E+11
Ncr (kN) 4,266.745 3,808.993 3,259.703

η 1.209 1.215 1.133 1.129 1.133 1.102 1.098 1.099
ηtest 1.439 1.361 1.129 1.131 1.139 1.109 1.100 1.117
kη 0.840 0.893 1.003 0.998 0.995 0.994 0.998 0.984

Mean (COV) 0.867 (0.037) 0.999 (0.004) 0.992 (0.007)

As shown in Table 2, the mean values of the three test series C-30-00, C-30-40 and C-30-80 are
0.867, 0.999 and 0.992, respectively, with the corresponding coefficient of variation (COV) of 0.037,
0.004 and 0.007. If the value of ϕL is set to 2, the corresponding mean values are 0.952, 1.050 and
1.023. Hence, with the accuracy within the range of [−13.3%, 5.0%], it is validated that the second-
order effect obtained from the tests was in accordance with TCVN 5574:2018 [9].

In the next section, one presents an alternative and complementary approach that not only pro-
vides point estimates of axial force but also associates with uncertainty estimation, which cannot
be obtained by using the calculation from TCVN 5574:2018. On the other hand, the GP model is a
data-driven approach; thus, its performance objectively depends on the RFAC column database under
investigation rather than some subjective assumptions which are predefined for general RC beams yet
not specialized for RFAC columns.

5. Gaussian Process regression

In this section, a probabilistic machine learning model is developed to predict the force-
displacement relationship (Ntn-∆tn) of RFAC columns tested in [14]. Recently, a large number of re-
gression models ranging from simple linear regression to feature-based machine learning models and
to over-parameter deep learning models have been developed to predict the performance of concrete-
based structural members [19–21]. However, the performance of these models highly depends on the
volume and quantity of data because there are a lot of models’ parameters to determine. In reality,
performing experiments related to structural components is usually tedious and expensive; therefore,
the available experimental data are usually limited compared to other applications. Hence, using an
over-parameter model for limited data could lead to the overfitting problem, i.e., the model achieves
highly accurate results on training data but provide low accuracy on unseen test data.

On the other hand, during experiments, there are uncontrolled process factors such as environ-
mental conditions, lab technician skills, device sensibility, etc. Thus, two experimental series with
exactly the same inputs still yield more or less different results, i.e., one input various outputs. Thus,
it is desirable to estimate the uncertainty of obtained results. One of the practical ways is to resort
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to probabilistic models such as Bayesian neural network, Dropout-based neural network, Gaussian
Mixture model, Gaussian Process, etc. Among these models, Gaussian Process has lower model com-
plexity than deep probabilistic neural network-based models, i.e., there are significantly fewer model
parameters to be determined. It neither requires sophisticated theory such as Bayesian probability,
Variational Inference nor introduces additional problem-specific hyper-parameter such as Dropout
rate, number of layers, and number of neurons. For these reasons, one selects a quasi non-parameter
machine learning model, namely, the Gaussian Process (GP) model [22], as the regression model for
this study.

Given a set of observed data including inputs X1, X2, . . . , XN and their respective outputs Y1,Y2,

. . . ,YN , the backbone idea of the GP model is that the more similar two inputs Xi and X j, the more
correlated the outputs Yi and Y j. The Gaussian Process assumes the probability of an output Y by a
multivariate Gaussian distribution:

p(Y | X,W) = N(µ,Σ) (1)

where W is the parameters of GP, µ is the vector of mean value and Σ ∈ RN×N is the covariance matrix,
Σ
(
Xi, X j

)
is used to measure the similarity of inputs, it has three following properties: (i) positive

semi-definite Σ
(
Xi, X j

)
≥ 0, (ii) achieving maximum value when Xi = X j, i.e., Σ

(
Xi, X j

)
≤ Σ (Xi, Xi)

with every X j, and (iii) symmetric, i.e., Σ
(
Xi, X j

)
= Σ

(
X j, Xi

)
.

One of the most adopted kernels is the squared exponential function whose formula for 1-dimensional
input is written as below:

ΣSE
(
Xi, X j

)
= σ2 exp

−
(
Xi − X j

)2

2λ2

 (2)

where σ is the variance, λ is the length scale. A small value of λ means that the kernel function
changes quickly with increasing distance between Xi and X j, while a large value of λ mean a slow rate
of change. The variance σ indicates the variation of the function, which corresponds to the width of
the bell shape of the function as shown in Fig. 6.

Figure 6. Squared exponential kernels with different values of σ and λ

Because the input Xi for the investigated problem is multidimensional; thus the original squared
exponential function is expanded to the additive squared exponential function, which is the sum of
individual squared exponential function as follows:

ΣSE
(
Xi, X j

)
=

D∑
k=1

σ2
k exp

−
(
Xk

i − Xk
j

)2

2λ2
k

 (3)
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Hence, the hyper-parameters to determine of the GP model are W = [σ1, . . . , σD, λ1, . . . , λD].
In general, the number of available data samples is significantly greater than the number of hyper-
parameter that is two dimensional; that is why GP is classified into the quasi-non-parameter family of
methods. Next, W is determined by maximizing the log marginal likelihood function which is written
by:

log p(Y | X,W) = −
1
2

YT Σ−1
SEY −

1
2

log |ΣSE| −
n
2

log(2π) (4)

where n is the number of observed data. The minimum value of log p (Y | X,W) is obtained by setting
its gradient to zero as below:

∂ log p(Y | X,W)
∂W

= 0 (5)

After determining W and ΣSE, one can use the GP model to calculate the output for new input data
by: [

Y∗

Y

]
= N

([
µY∗

µY

]
,

[
ΣSE(X, X) ΣSE

(
X, X∗

)
ΣSE

(
X, X∗

)
ΣSE

(
X∗, X∗

) ])
(6)

where X and X∗ are the observed and input data, while Y and Y∗ are the outputs of the observed data
and the new input data, respectively.

In short, the implementation steps of the GP model are summarized, as below:
- Step 1: Randomly initialize the model parameters;
- Step 2: Calculate the covariance matrix squared exponential kernels using observed (training)

data per Eq. (3);
- Step 3: Run the model, predict new outputs per Eq. (6) and calculate the LLL loss per Eq. (4);
- Step 4: Compute the gradient of LLL loss with respect to the model parameters;
- Step 5: Perform a step of gradient descent optimization by modifying the parameter by a small

amount in the negative direction of gradients;
- Step 6: Repeat steps 2 to 4 until the maximum number of iterations or stopping criteria is met

(if applied).

6. Analysis results of Gaussian Process regression

The experimental data obtained from a series of experiments with different values of eccentricity
of 0, 40 and 80 mm measured in [14] are structured into a tabular dataset, as exemplified in Table 3.

Table 3. Examples of experimental data of fly ash concrete columns

L (mm) FA % Rebar Stirrup e1 (mm) b (mm) h (mm) Rmean (MPa) Rs (MPa) ∆test (mm) Ntest (kN)

1600 20 4D14 D6 0 200 150 31.664 362.6 0.00 0.00
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1600 20 4D14 D6 0 200 150 31.664 362.6 4.39 738.90
1600 20 4D14 D6 40 200 150 30.890 362.6 0.00 375.12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1600 20 4D14 D6 40 200 150 30.890 362.6 4.64 446.15
1600 20 4D14 D6 80 200 150 31.704 362.6 0.00 00.00
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1600 20 4D14 D6 80 200 150 31.704 362.6 9.77 301.96
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It is noted that two last columns of dataset shown in Table 3 are also the coordinates of individual
points of the curves shown in Fig. 5. Hence, the table has 1634 rows and 11 columns corresponding
to the eccentricity, horizontal displacement at the middle of the column, axial load recorded from the
load cell, fly ash replacement, rebar details, column cross-section, concrete and steel strengths. In this
study, the GP model is trained to predict the value of axial loads N based on other properties. In order
to extend the generality of the GP model in the future study, the GP model is designed to encompass
8 input variables, including the column length, FA replacement percentage, rebar ratio, eccentricity,
two cross-section dimensions, concrete compressive strength, and horizontal displacement. Mean-
while, the output under investigation is the predicted axial load. In this study, due to the limitation of
experimental data, two input properties that vary from sample to sample are the eccentricity and the
horizontal displacement ∆. In addition, the concrete compressive strength is slightly different between
sample groups, as shown in Table 3. Other properties are the same for all rows. Note that the intent
of keeping these columns with unchanged values is to extend the Gaussian Process in the future to
take into account more properties as input, just by appending new data to this table without requiring
any modification. Because the GP model has a small number of parameters to determine; thus, only a
small part of the dataset serves as training data. Specifically, 10% of the data, i.e., 165 data samples,
are randomly selected to train the GP model, and the remaining of 90%, thus 1469 samples are used
to validate the final model.

Fig. 7(a) represents the evolution of the log-likelihood loss function on the validation dataset in
function of the numbers of learning iterations using a learning rate λ = 0.001. It can be seen that the
loss function steadily decays for the first 400 iterations, then slightly decreases from iteration 400 to
iteration 600 before showing a stable trend without clear improvement.

(a) Learning rate λ = 0.001 (b) Learning rate λ = 0.01

Figure 7. Evolution of the loss function in function of the number of interations with

It is noteworthy that one of the advantages of the GP model is that it requires significantly less
training data than its counterparts. For example, neural network-based methods usually need a ma-
jor part of data for the training process; only a small number of data is left for validation. Hence,
additional technique, such as the K-fold method, is required to ensure the reliability of the model
evaluation. Meanwhile, in this study, one uses only 10% of the data for training the GP model, yet up
to 90% of data can be used for validating the trained model, as presented above.

To show the impact of the training size on the model performance, Table 4 enumerates the loss
function LLL of the training process and other popular evaluation metrics for regression problems
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such as the coefficient of determination (R2), mean absolute value (MAE), and root mean square
error (RMSE) on the validation dataset. It can be seen that using 10% of data is enough to provide
reasonably accurate results in this study as its measure metrics are slightly higher than other amounts
but its CPU times is considerably faster.

Table 4. Influence of training data volume on the training process results

Training data 10% 20% 30% 40% 50% 60% 70% 80% 90%

LLL −0.83 −0.82 −0.87 −0.87 −0.88 −0.84 −0.87 −0.88 −0.89

R2 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99

MAE 10.59 10.58 10.50 10.40 10.36 10.31 10.27 10.08 10.04

RMS 15.78 15.57 15.55 15.47 15.39 15.21 15.03 14.98 14.86

CPU time (s) 7.6 14.2 32.3 40.6 52.1 70.5 98.8 126.3 158.1

To clearly show the performance of the learned model, Fig. 8 presents the comparison results
between the predicted axial loads and the experimental ones for the training dataset. In the figure, the
45-degree red line denotes an ideal scenario of perfect agreement between prediction and experimen-
tal results, while for each scattered dot, its abscissa and ordinate are the experimental and the predicted
values, respectively. As expected, scatter dots closely lie to the ideal line; these dots are apparently
equally distributed on two sides of the line, implying that the predicted results are not biased.

Figure 8. Comparison results between GP model and
experiments on training data

Figure 9. Comparison results between GP model and
experiments on testing data

A similar agreement is obtained on unseen testing data with significantly more samples as shown
in Fig. 9.

Quantitatively, Fig. 10 depicts a histogram of relative errors in percentage between predicted
results and experimental ones, the errors have a mean of 1.06% and a standard value of 7.4%.

Figs. 11, 12 and 13 represent the N-∆ relation curves reconstructed by using the GP models. Note
that the predictions are repeated 100 times, then the mean values (solid blue line) and the 2σ-interval,
a.k.a, 95%-confidence interval area (gray shaded area) are derived. Obviously, almost all experimental
data are encompassed within the 95% CI, which reaffirms the viability of the Gaussian Process. In
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terms of the inference time, it takes only 256 ms to perform about 1469 test samples, i.e., about 25s
in total for repeating 100 times the inference.

Figure 10. Histogram of relative differences between
GP model and experiments

Figure 11. The N-∆ relation curves curves
reconstructed by GP model for e1 = 0

Figure 12. The N-∆ relation curves reconstructed by
GP model for e1 = 40 mm

Figure 13. The N-∆ relation curves reconstructed by
GP model for e1 = 80 mm

Figure 14. The N-∆ relation curves predicted by GP model
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Recall that experimental data are only available for eccentricities of 0, 40, and 80 mm. Therefore,
the validated GP is used to derive the N-∆ relation curves for other values of eccentricity from 10 to
100 mm as shown in Fig. 14.

The axial load - mid-height lateral displacement relation curves depicted in Fig. 14 provide an
explicit strengthen of the observation from the test results on e1 = 0, 40 and 80 mm that the behavior of
RFAC columns under uniaxial load is negatively influenced by the static eccentricity e1. Furthermore,
the ultimate resistance of the investigated specimens can be directly determined from the peak of the
curves.

7. Conclusions

A number of conclusions can be withdrawn from the analytical study and machine learning inves-
tigation presented in this article as follows:

- There have been limited experimental results of the behavior of reinforced fly ash concrete
(RFAC) columns under eccentric loading condition in literature. Hence, it is important to investigate
the second-order effect on RFAC columns that is expressed via the axial load (N) - mid-height lateral
displacement (∆) relation curves;

- Based on the N-∆ relation curves measured in the testing program of the authors on a number
of eight RFAC column specimens, the second-order effect on the tested RFAC columns is validated
to be in accordance with TCVN 5574:2018;

- The Gaussian Process regression introduced in this paper is an efficient regression tool utilizing
machine learning approach. After being trained and well validated by the corresponding percentages
of 10% and 90% of the dataset collected from the experiment on eight RFAC columns, the proposed
model in capable of capturing a larger picture of the behavior that is an overall prediction of the N-∆
relation curves when the test RFAC columns are loaded in various eccentricities.

The results obtained in this paper can be further developed to prove the capability of applying fly
ash into concrete industry and structures sufficiently, taking into account the second-order effect on
the behavior to predict the resistance of RFAC columns closely and conservatively. For the next step
of the study, it is desirable to enrich the RFAC column databases with other eccentricity values, FA
replacement ratios, and more geometrical configurations to validate, then adjust the prediction curves
in Fig. 14 and to improve the generality of the GP model.
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Machine-Learning models for predicting creep behavior of concrete. Cement and Concrete Composites,
125:104295.

[21] Shamsabadi, E. A., Roshan, N., Hadigheh, S. A., Nehdi, M. L., Khodabakhshian, A., Ghalehnovi, M.
(2022). Machine learning-based compressive strength modelling of concrete incorporating waste marble
powder. Construction and Building Materials, 324:126592.

[22] Rasmussen, C. E., Williams, C. K. I. (2019). Gaussian processes for machine learning. London, England:
MIT Press.

43

https://doi.org/10.1016/j.engstruct.2013.06.013
https://doi.org/10.1016/j.engstruct.2013.06.013
https://doi.org/10.1155/2017/8208079
https://doi.org/10.1155/2017/8208079
https://doi.org/10.31814/stce.huce(nuce)2021-15(5v)-07
https://doi.org/10.31814/stce.huce(nuce)2021-15(5v)-07
https://doi.org/10.3151/jact.19.924
https://doi.org/10.3151/jact.19.924
https://doi.org/10.31814/stce.nuce2020-14(2)-05
https://doi.org/10.31814/stce.nuce2020-14(2)-05
https://doi.org/10.31814/stce.nuce2021-15(1)-03
https://doi.org/10.31814/stce.nuce2021-15(1)-03
https://doi.org/10.31814/stce.huce(nuce)2022-16(2)-09
https://doi.org/10.31814/stce.huce(nuce)2022-16(2)-09
https://doi.org/10.1016/j.conbuildmat.2022.126578
https://doi.org/10.1016/j.conbuildmat.2022.126578
https://doi.org/10.1016/j.cemconcomp.2021.104295
https://doi.org/10.1016/j.cemconcomp.2021.104295
https://doi.org/10.1016/j.conbuildmat.2022.126592
https://doi.org/10.1016/j.conbuildmat.2022.126592

	Introduction
	Behavior of RC columns under eccentric loads 
	Experimental results on RFAC columns 14
	Validation of second-order effect on RFAC columns in 14 
	Gaussian Process regression 
	Analysis results of Gaussian Process regression
	Conclusions 

