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Abstract

This study presents an effective method based on long short-term memory to reduce the computational cost
in nonlinear static analysis of functionally graded plates. Data points representing a load-deflection curve in a
dataset are generated through isogeometric analysis. The order of these data points is always maintained as a
sequential series of observations; therefore, it is referred to as a time series. Dataset is divided into three sets
including training, testing, and prediction sets. Both training and testing sets are used for the training process
by the long short-term memory to gain optimum weights. Based on these obtained weights, data points in the
prediction set are directly predicted without using any analysis tools. The effectiveness and accuracy of the
proposed method are demonstrated by comparing the obtained results to those of isogeometric analysis.
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1. Introduction

Functionally graded materials (FGMs) are known as advanced materials with properties that
change in a specific direction, which are often made up of two or more components. Metal and ceramic
materials are frequently used in structural applications because of their advantages. Specifically, the
ceramic phase is excellent at withstanding high temperatures, while the metal phase has a high fracture
toughness. Overcoming laminated composite drawbacks, the FGMs completely eliminate undesirable
stress discontinuity between two layers in laminated composites. Therefore, FGMs have been used in
a wide range of fields, including aircraft engineering, nuclear power plants, and electrical engineering
as in Refs. [1–4].

Isogeometric analysis (IGA) [5] was proposed as a way to combine computer-aided design (CAD)
and finite element analysis (FEA). The same non-uniform rational B-spline (NURBS) is used in IGA
to represent exact CAD geometry and approximate FEA solution fields. Furthermore, even at the
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coarsest discretization level, the exact geometry is preserved, and this method is effective in reducing
degrees of freedom (DOFs) for high-order elements. As a result, IGA has been widely applied in a
variety of engineering fields [6–8]. For example, Kim et al. [6] proposed IGA for geometrically exact
shell considering the first-order shear deformation. The accuracy and robustness of the approach have
been demonstrated by the test results of numerical examples using the developed method, which show
a higher convergence rate. In modeling of the plate structure, the formulation can be reduced to a linear
problem. However, the real response of structures is usually deviated by linear solutions. Therefore,
geometrically nonlinear analysis is necessary to investigate the plate behavior. To solve such non-
linear problems, many methods have been introduced such as Picard method [9], Newton–Raphson
method [10], modified Newton–Raphson method [11], modified Riks method [12], arclength tech-
nique [13], and other methods. Most of the above methods require many iterations to obtain nonlinear
solutions. As a result, it necessitates a significant amount of computational cost. In order to overcome
this issue, this study proposes an approach that uses long short-term memory (LSTM) [14] to directly
predict the nonlinear behavior of the FG plate without using any analysis tools. Therefore, it saves
a significant amount of computational cost while maintaining the accuracy of the obtained solution.
LSTM is a deep learning technique for time series prediction. Deep learning is currently one of the
most popular fields, with numerous studies [15–19] etc. For example, Huynh et al. [15] proposed
machine learning-assisted numerical methods for predicting compressive strength of fly ash-based
geopolymer (FAGP) concrete. Different methods including artificial neural networks (ANN), deep
neural networks (DNN), and deep residual networks (ResNet) were evaluated based on experimen-
tally collected data in terms of R-squared (R2), root mean square error (RMSE), and mean absolute
percentage error (MAPE). Lieu et al. [18] presented a simple and effective adaptive surrogate model
based on DNN to structural reliability analysis. With only a few experiments, the surrogate model for
MCS-based failure probability assessment becomes more precise.

LSTM is a type of recurrent neural network (RNN) that excels at learning and predicting sequen-
tial data. The ability of RNN to maintain long-term memory is limited. As a result, the LSTM was
created to overcome this restriction by adding a memory structure that can maintain its state over time,
with gates that determine what to remember, forget, and output. The LSTM performs well in a variety
of inherently sequential applications, including speech recognition [20], language modeling and trans-
lation [21], speech synthesis [22], emotion recognition [23] and handwriting recognition [24], etc. For
example, Chien et al. [20] proposed a combination of deep feedforward and recurrent neural networks
for the acoustic model. Under various tasks and conditions, this combination improved noisy speech
recognition performance. Do et al. [25] proposed LSTM and multi-layer neural network for predict-
ing the crack propagation in risk assessment of engineering structures. This approach helps reduce the
amount of computational cost when it can directly predict the propagation of a crack without using
any analysis tools. According to the literature, the use of LSTM in the structural engineering field
is still limited. Therefore, LSTM is proposed for the first time in this study to predict the nonlinear
behavior of FG plates. This research will contribute to the filling of a gap in the literature.

In this study, a dataset is generated through analysis using IGA to ensure the accuracy of solution.
Data points in the dataset represent the load-deflection curve of the FG plate. These data will be re-
arranged as a supervised learning problem; however, the order of data points is always maintained in
the dataset. In each data pair in the supervised learning problem, the input and output variables are
data from the previous time step and data from the next time step, respectively. The dataset is divided
into three sets: training, testing and prediction sets. Training and testing sets are used to gain optimum
weights by using LSTM. Based on these weights, data in the prediction set are directly predicted
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without using any analysis tools. Specifically, data from the previous time step will be used to predict
data for the subsequent time step. This approach helps to save a significant amount of computational
cost while ensuring the accuracy of gained solutions. The effects of optimizers such as SGD, Adadelta
[26], Adamax [27], RMSprop [28], and Adam optimizer [27], as well as the number of neurons in
each hidden layer such as 10, 30, 50, 70, and 90 on method accuracy will be investigated in this study.
The effectiveness and efficiency of the proposed method are demonstrated by comparing the obtained
results to those of IGA.

2. Isogeometric nonlinear analysis of functionally graded plates

2.1. Functionally graded materials

Figure 1. A functionally graded material layer

Functionally graded materials (FGMs) are
novel materials made by combining two distinct
material phases, such as ceramic and metal, whose
properties change gradually with their dimensions,
as illustrated in Fig. 1. The volume fractions of the
FGMs are assumed to be determined by a power-
law function as follows:

Vc (z) =
(
1
2
+

z
h

)n

, Vc + Vm = 1 (1)

where n symbolizes power or gradient index; Vc and Vm represent ceramic and metal volume fractions;
h is thickness.

The variation of material properties along the thickness of the plate is reflected by the rule of
mixture as follows:

Pe = PcVc + PmVm (2)

where Pe symbolizes the effective material properties such as Young’s modulus (E), Poisson’s ratio
(ν), density (ρ); Pc and Pm symbolize the properties of ceramic and metal surfaces, respectively.

2.2. Plate formulation

The displacement field of an arbitrary point u = {u, v,w}T according to the generalized shear
deformation plate theory [7] can be described as follows:

u = u1 + zu2 + f (z) u3 (3)

in which u1 = {u0, v0,w0}
T represents displacement components in the x, y and z axes;

u2 = −
{
w0,x,w0,y, 0

}T
and u3 =

{
βx, βy, 0

}T
represent the rotations in the xz, yz and xy planes, re-

spectively; f (z) = z − 4z3
/(

3h2
)
.

In strain-displacement relations, the von Karman nonlinear theory is used as follows [29]:{
ε
γ

}
=

{
εm

0

}
+

{
zκ1
0

}
+

{
f (z) κ2
f ′ (z)β

}
(4)
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where

εm =

 u0,x
v0,y

u0,y + v0,x

 + 1
2


w2

0,x
w2

0,y
2w0,xw0,y

 = εL + εNL,

κ1 = −

 w0,xx

w0,yy

2w0,xy

 , κ2 =
 βx,x

βy,y

βx,y + βy,x

 , β =
[
βx

βy

] (5)

The nonlinear component of in-plane strain in Eq. (5) can be rewritten as follows:

εNL =
1
2

Aθθ (6)

where

Aθ =

 w0,x 0
0 w0,y

w0,y w0,x

 , θ =
{

w0,x
w0,y

}
(7)

The constitutive relation for the FG plate is as:{
σ
τ

}
=

[
C 0
0 G

] {
ε
γ

}
(8)

in which the matrices for the materials are as follows:

C =
Ee

1 − ν2e

 1 νe 0
νe 1 0
0 0 (1 − νe)/2

 , G =
Ee

2 (1 + νe)

[
1 0
0 1

]
(9)

Stress resultants are given by
N
M
P
Q

︸  ︷︷  ︸
σ̂

=


A B E 0
B D F 0
E F H 0
0 0 0 Ds

︸                  ︷︷                  ︸
D̂


εm

κ1
κ2
β

︸  ︷︷  ︸
ε̂

(10)

where

Ai j, Bi j,Di j, Ei j, Fi j,Hi j =

h/2∫
−h/2

(
1, z, z2, f (z) , z f (z) , f 2 (z)

)
Ci jdz,

Ds
i j =

h/2∫
−h/2

[
f ′ (z)

]2 Gi jdz

(11)

The variation of total energy of the plate can be calculated using the virtual displacement principle
as follows:

δΠ = δUε − δV =
∫
Ω

δε̂T σ̂dΩ −
∫
Ω

δuT fzdΩ = 0 (12)

in which fz symbolizes the transverse load.
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2.3. Isogeometric nonlinear analysis

In this study, isogeometric approach (IGA) [5] is utilized for the nonlinear analysis of the FG
plates because it is more computationally efficient than the traditional finite element method [30]. In
IGA, the knot vector, which is given as a set of parameters Ξ =

{
ξ1, ξ2, ..., ξi, ..., ξn+p+1

}
, ξi ≤ ξi+1

with n symbolizing the number of the basis functions, is utilized to construct the B-splines basis
function of degree p. The univariate B-spline basis functions N p

i (ξ) are determined recursively on the
corresponding knot vector using the Cox-de Boor algorithm as follows:

N p
i (ξ) =

ξ − ξi
ξi+p − ξi

N p−1
i (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
N p−1

i+1 (ξ) ,

For p = 0, N0
i (ξ) =

{
1, if ξi ≤ ξ < ξi+1
0, otherwise

(13)

In general, the multivariate B-spline basis functions are created as:

N p
i (ξ) =

d∏
α=1

N pα
iα

(
ξα

)
(14)

where d = 1, 2, 3 corresponds to 1D, 2D and 3D spaces, respectively.
Non-uniform rational B-spline (NURBS) provides a more generalized approach in the form of

rational functions for some conic shapes (e.g., circles, spheres, ellipses, etc.):

Rp
i (ξ) = N p

i (ξ) ζi

/∑
j

N p
j (ξ) ζ j (15)

in which ζi is the weight corresponding to B-spline basis function N p
i (ξ).

The displacement variables are defined based on NURBS basis functions as follows:

uh (ξ) =
∑

A

RA (ξ) qA (16)

where qA =
[
u0A, v0A, βxA, βyA,w0A

]T
stands for the vector of nodal degrees of freedom related to the

control point PA.
The generalized strains can be expressed by substituting Eq. (16) into Eq. (5) as

ε̂ =

(
BL +

1
2

BNL
)

q (17)

where BL stands for the linear infinitesimal strain

BL
A =

[ (
Bm

A

)T (
Bb1

A

)T (
Bb2

A

)T (
Bs

A

)T
]T

(18)

in which

Bm
A =

 RA,x 0 0 0 0
0 RA,y 0 0 0

RA,y RA,x 0 0 0

 ; Bb1
A = −

 0 0 RA,xx 0 0
0 0 RA,yy 0 0
0 0 2RA,xy 0 0


Bb2

A =

 0 0 0 RA,x 0
0 0 0 0 RA,y

0 0 0 RA,y RA,x

 ; Bs
A =

[
0 0 0 RA 0
0 0 0 0 RA

] (19)

5



Do, D. T. T., et al. / Journal of Science and Technology in Civil Engineering

And BNL denotes the nonlinear strain

BNL
A (q) =

[
A0
0

]
Bg

A (20)

where

Bg
A =

[
0 0 RA,x 0 0
0 0 RA,y 0 0

]
(21)

From Eqs. (12) and (17), the governing equation of the problem can be described as follows:

(KL +KNL) q = F (22)

in which KL and KNL symbolize the linear and nonlinear stiffness matrices, respectively; F is the load
vector. They can be expressed as:

KL =

∫
Ω

(
BL

)T
D̂BL

dΩ,

KNL =
1
2

∫
Ω

(
BL

)T
D̂BNL

dΩ +
∫
Ω

(
BNL

)T
D̂BL

dΩ +
1
2

∫
Ω

(
BNL

)T
D̂BNL

dΩ,

F =
∫
Ω

RT fzdΩ

(23)

2.4. Solution procedure

An iterative Newton–Raphson technique is utilized for solving the nonlinear equilibrium equation
in Eq. (22). The residual force depicting the error in the approximation and tending to zero can be
given as follows:

φ (q) = (KL +KNL (q)) q − Fext → 0 (24)

If the approximate trial solution at the ith iteration iq produces an unbalance residual force, a
solution i+1q is introduced as

i+1q = iq + ∆q (25)

where ∆q is the increment displacement, which is defined as follows:

∆q =
[
F −

(
KL +

iKNL
(
iq

))
iq

]/
KT (26)

where tangent stiffness matrix KT can be defined as

KT =
∂φ

(
iq

)
∂iq

= K̃NL +Kg (27)

in which
K̃NL =

∫
Ω

(
BL + BNL

)T
D̂

(
BL + BNL

)T
dΩ,

Kg =

∫
Ω

(
Bg

)T
[

Nx Nxy

Nxy Ny

] (
Bg

)
dΩ.

(28)
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3. Time series forecasting

Time series forecasting involves fitting a model to historical data in a time series to predict future
values. A time series is a set of time-sequenced observations. To solve such problem, time series
forecasting will be re-framed as a supervised learning problem. In this problem, the input and output
variables are the values from previous time steps and the values from the next time steps, respectively.
As a result, values from previous time steps are used to forecast values for subsequent time steps.
The regular linear and nonlinear machine learning algorithms can be accessed more easily with this
re-framing.

In the supervised learning, an algorithm is used for learning the mapping function between avail-
able input (x) and output (y) variables as y = f (x). The algorithm performs predictions on the training
data, which includes input and output variables, iteratively and is corrected through updates. Once the
algorithm has reached a satisfactory level of performance, it will be terminated. It is noticed that the
order of observations is always maintained in the dataset.

After the dataset has been reorganized as a supervised learning problem, classical or machine
learning methods will be used to resolve the problem. Classical methods such as Autoregression
(AR), Moving Average (MA), Autoregressive Integrated Moving Average (ARIMA), Seasonal Au-
toregressive Integrated Moving Average (SARIMA), and others have several drawbacks, including no
support for missing or corrupted data, and only being effective for linear relationships. While ma-
chine learning methods such as long short-term memory, recurrent neural networks, and others can
overcome these limitations of classical methods. As a result, long short-term memory for solving
nonlinear static analysis of functionally graded plates has been examined in this study. LSTM will be
presented in the subsequent section. For the sake of brevity, readers can refer to the detailed solving
process of the supervised learning problem in some studies such as [31–33].

4. Long short-term memory

Long short-term memory (LSTM) [14] is a temporal sequence model that is based on an recurrent
neural network (RNN) extension that basically extends its memory. Specifically, RNNs are a type of
artificial neural network that can be used to process sequential data. This algorithm is the first to
use internal memory to remember its input. As a result, RNN is well-suited to problems involving
sequential data in machine learning.

The units of an LSTM are used to construct layers, which is often referred to as an LSTM network.
LSTM stores their data in memory and can read, write, and delete from that memory, which is similar

Figure 2. A LSTM’s repeating module including four interacting layers
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to that of a computer. As a result, the LSTM can remember information for longer periods of time. In
contrast to RNN, this method distinguishes between relevant and irrelevant data. The input, forget, and
output gates make up a typical LSTM unit. The input gate determines how much new data flows into
the cell, the forget gate determines how much data remains in the cell, and the output gate determines
how much data from the cell is used to compute the LSTM unit’s output activation. LSTM architecture
is often unfolded into the form of a chain of repeating modules of neural networks to make analysis
easier, as shown in Fig. 2.

The LSTM diagram will be explained step by step. The first step in the LSTM shown in Fig. 3 is
to determine that what information from the cell state will be discarded. A sigmoid layer known as
the “forget gate layer” will make this decision. It examines hidden state ht−1 and input in thetth state
of the model named xt, and returns a number between 0 and 1 for each number in the cell state ct−1. A
1 means “keep it completely” while a 0 means “get rid of it completely”. The activation of the forget
gate at time t is represented by ft, which is computed as follows:

ft = σ
(
W f · [ht−1, xt] + b f

)
(29)

where σ is the sigmoid function; W f and b f denote the weight and bias parameters, respectively;
ht−1 is the hidden state vector, also known as the LSTM unit’s output vector, and it is a set of values
that summarizes all of the information about the system’s past behavior that is required to provide a
description of its future behavior; and xt denotes the LSTM unit’s input vector.

Figure 3. The first step in LSTM Figure 4. The second step in LSTM

Second, it will be decided whether or not to store new information in the state cell. This procedure
is divided into two parts: The first step is to determine which values will be updated by a sigmoid
layer known as the “input gate layer” as shown in Eq. (30); A tanh layer then creates a vector of new
candidate values c̃t to add to the state, as in Eq. (31). The procedure is depicted in Fig. 4.

it = σ (Wi · [ht−1, xt] + bi) (30)

c̃t = tanh (Wc · [ht−1, xt] + bc) (31)

The next step is depicted in Fig. 5. The old cell state ct−1 has been updated into the new cell state
ct, as shown in this figure. To create an update to the state, the values obtained in the previous step
have been combined, it ∗ c̃t. After multiplying ct−1 by ft, the new state is constructed by adding it ∗ c̃t

as Eq. (32).
ct = ft ∗ ct−1 + it ∗ c̃t (32)

8
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Figure 5. The third step in LSTM Figure 6. The last step in LSTM

The last step is to choose an output, as shown in Fig. 6. As in Eq. (33), parts of the cell state will
be determined to give output by sigmoid layer. As shown in Eq. (34), the cell state is passed through
the tanh layer and multiplied by the generated output.

ot = σ (Wo · [ht−1, xt] + bo) (33)

ht = ot ∗ tanh (ct) (34)

The sigmoid and tanh functions are expressed as follows:
- The sigmoid function:

f (x) =
1

1 + e−x (35)

- The tanh function:

f (x) =
ex − e−x

ex + e−x (36)

5. Numerical examples

In this study, two boundary conditions for nonlinear analyzing of the plates have been considered
as follows:

- Simply supported condition with movable edge (SSSS1):{
v0 = w0 = βy = 0 on x = 0, L
u0 = w0 = βx = 0 on y = 0,W

(37)

- Simply supported condition with immovable edge (SSSS3):

u0 = v0 = w0 = 0 on all edges (38)

The non-dimensional deflection w̄ and load parameter P̄ are given as follows:

w̄ =
w
h

; P̄ =
fza4

Emh4 (39)

Firstly, a moderate isotropic square plate with L/h = 10, a = b = 10 in, Young’s modulus
E = 7.8 × 106 psi, and Poisson’s ratio ν = 0.3 as in the study by Reddy [29] is considered, which
is subjected to a uniformly distributed load. Fig. 7 shows how the central deflection w̄ of this plate
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Figure 7. The load-deflection curves of the isotropic plate

varies with the load parameter P̄ under two different boundary conditions: SSSS1 and SSSS3. From
the figure, it can be seen that the current solutions are very similar to those reported by Reddy [29]
using FEM.

This load-deflection curve of the isotropic square plate under the SSSS1 boundary condition has
been used to validate the effectiveness of LSTM in predicting the nonlinear behavior of the plate.
This curve is divided into 125 data points which are considered as data in a dataset. The dataset is
divided into three sets: training, testing, and prediction. Training and testing sets are used for training
process of LSTM to obtain optimum weights. Based on these weights, data in prediction set will be
predicted. LSTM’s architecture with one hidden layer, batch-size of 2 and 1500 epochs has been used
for training and predicting the nonlinear behavior of the plate. In addition, the first example considers
the impact of optimizers such as SGD, Adadelta, Adamax, RMSprop, and Adam optimizer, as well as
the number of neurons in LSTM such as 10, 30, 50, 70, and 90 on method accuracy. In all subsequent
examples, the most appropriate optimizer will be chosen based on the obtained results.

Figure 8. The convergence history of the loss function of the chosen LSTM model
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The first example uses 30% of the 125 data for training and testing, and 70% for prediction.
The training set accounts for 80% of the data in the training process, while the testing set accounts
for 20%. Mean absolute percentage error (MAPE) for training, testing and prediction process, and
computational time for all three processes are tabulated in the Table 1. Based on the investigation, the
LSTM architecture with Adam optimizer and 30 neurons in one hidden layer is chosen for subsequent
examples. Because this option helps to save computational cost (26.6313 seconds) while still ensuring
the accuracy of the method (the accuracy achieves 99.6% for training, 99.8% for testing, and 99.5%
for prediction). Fig. 8 depicts the convergence history of the chosen model’s loss function with 30%
of the training data.

Table 1. The effect of optimizers and the number of neurons on the effectiveness of LSTM
in terms of error and computational time

Optimizer No. neurons
Mean absolute percentage error

Time (second)
Training Testing Prediction

SGD

10 33.1541 28.6092 43.7454 25.1310
30 35.6226 30.8990 46.9065 25.7333
50 35.0143 30.0525 45.8447 26.4011
70 37.7320 32.5965 49.5027 27.0310
90 35.3496 30.3923 46.2894 28.1742

Adadelta

10 1.1961 0.3358 0.7126 26.4610
30 1.1584 1.0962 2.1038 26.8710
50 1.0372 1.0508 2.0512 28.5641
70 1.7448 1.4741 2.4434 30.9525
90 0.3950 0.6831 1.7406 32.6538

Adamax

10 0.2383 0.2600 0.8842 25.9476
30 0.4673 0.2298 0.5096 26.3728
50 0.1995 0.2199 0.9091 28.0496
70 0.2659 0.0913 0.5559 28.3083
90 0.1606 0.1187 0.7008 30.0339

RMSprop

10 1.6880 1.0726 0.4040 25.4014
30 1.4149 0.8884 1.1799 26.1134
50 1.0193 0.7772 0.5514 27.0045
70 2.7480 1.4023 1.3136 28.7788
90 3.0675 1.1976 0.8437 30.0582

Adam

10 0.3090 0.3521 1.1557 26.1953
30 0.3851 0.1833 0.5057 26.6313
50 0.5561 0.3588 0.9157 27.6547
70 0.0762 0.0425 0.4958 28.7211
90 0.4495 0.1938 0.4714 30.9207

The chosen LSTM architecture has been used to train and predict nonlinear static behavior of
the isotropic plate using 30%, 50%, and 80% of training data under SSSS1, and SSSS3 boundary
conditions. The effectiveness of the method is demonstrated in Table 2 by the obtained results. From
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Table 2. Error and computational time obtained using the chosen LSTM architecture for the isotropic plate

Boundary
condition

Training
data

Mean absolute percentage error Training and prediction
time (second)

Analysis time
(second)Training Testing Prediction

SSSS1
30% 0.3851 0.1833 0.5557 26.6313

963.821050% 0.1432 0.0212 0.3148 38.0769
80% 0.0553 0.1103 0.2307 57.9372

SSSS3
30% 0.2667 0.1794 0.8900 26.6801

915.603550% 0.2273 0.3524 0.9132 39.7864
80% 0.2550 0.3831 0.5819 57.1417

the table, it can be seen that LSTM correctly predicted more than 99% of the nonlinear behavior of the
isotropic plate without using any analytical tools. Moreover, the current method saves a significant
amount of computational time when compared to the traditional analytical method. The nonlinear
static behaviors of the isotropic plate in these cases predicted by LSTM have been shown in Fig. 9. As
shown in the figure, the LSTM successfully predicted the load-deflection curve in comparison to the
IGA solution. Load parameter corresponding to the number of data (Nd) in x-axis can be calculated

as P̄ =
−250 × Nd

125
. In which, 250 is the maximum magnitude of the nondimensional load, 125 is the

number of data points in the dataset.

(a) SSSS1, 30% of training data (b) SSSS1, 50% of training data

(c) SSSS1, 80% of training data (d) SSSS3, 30% of training data
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(e) SSSS3, 50% of training data (f) SSSS3, 80% of training data

Figure 9. The load-deflection curves of the isotropic plate predicted by LSTM

The nonlinear behavior of an Al/ZrO2 plate (EAl = 70 GPa, νAl = 0.3, ρAl = 2707 kg/m3,
EZrO2 = 151 GPa, νZrO2 = 0.3, ρZrO2 = 3000 kg/m3) with a length of 0.2 m and a thickness of
0.01 m under SSSS1 boundary condition is then investigated. This plate is subjected to a uniformly
distributed load that is increased in 200 steps until it reaches fz = −107 N/m2. In this example, 200
data points have been used for investigating. The effectiveness of LSTM in predicting the nonlinear
behavior of the FG plate with the variation of power index n is demonstrated in Table 3. In the table,
two cases of percentage of training data are examined. The load-deflection curve of the FG plate was
accurately predicted by LSTM with over 99 percent accuracy, as shown in the table. Furthermore, this
method has helped to save a significant amount of computational time.

Table 3. Obtained error and computational time using the chosen LSTM architecture for the FG plate

Power
index (n)

Training
data

Mean absolute percentage error Training and prediction
time (second)

Analysis time
(second)Training Testing Prediction

0
50% 0.2419 0.3793 0.9130 57.0963

1739.8815
80% 0.0491 0.0519 0.1770 89.1806

0.5
50% 0.4648 0.1887 0.6180 59.1823

1799.2372
80% 0.0477 0.0651 0.1924 89.8288

1
50% 0.3370 0.2976 0.5721 59.8002

1757.3990
80% 0.0634 0.0744 0.2021 90.3943

2
50% 0.6563 0.3238 0.5150 57.7218

1860.9100
80% 0.1425 0.0753 0.1979 90.4622

5
50% 0.6354 0.2982 0.4602 58.0472

1878.2629
80% 0.0498 0.0725 0.2008 90.3810

10
50% 0.4957 0.2413 0.3735 58.1756

1919.5960
80% 0.0868 0.1180 0.2451 90.1580

inf
50% 0.2140 0.0098 0.0281 56.7398

1971.3872
80% 0.1664 0.0766 0.1942 86.9989
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Although the chosen LSTM method is highly accurate in the above cases (over 99 percent), it
is less accurate in the case of 30% of the training dataset. For this problem, the LSTM structure is
enhanced with two hidden layers, each with 30 neurons, and 5000 epochs. The obtained results have
been tabulated in Table 4, and one can see that the current architecture of LSTM can overcome the
difficulty and the load-deflection curve is well captured with over 99.3% accuracy. Although the ar-
chitecture of LSTM has been enhanced, it still saves significant computational time when compared

Table 4. Obtained error and computational time using LSTM for the FG plate with 30% of the training data

Power
index (n)

Mean absolute percentage error Training and prediction
time (second)

Analysis time
(second)Training Testing Prediction

0 1.2794 0.4004 0.4000 119.0740 1739.8815
0.5 0.7587 0.2793 0.6243 118.3229 1799.2372
1 0.1616 0.0197 0.3758 117.3758 1757.3990
2 1.7952 0.3215 0.3244 120.4145 1860.9100
5 0.5020 0.2037 0.4536 119.5008 1878.2629
10 1.0916 0.2409 0.2367 119.7014 1919.5960
inf 1.0920 0.4104 0.1363 118.5780 1971.3872

(a) n = 0 (b) n = 0.5

(c) n = 1 (d) n = 2
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(e) n = 5 (f) n = 10

(g) n = inf

Figure 10. The load-deflection curves of the FG plate predicted by LSTM

to the IGA. Load-deflection curves of the FG plate predicted by LSTM have been shown in Fig. 10.
The computed results of the current method agree well with those obtained by the IGA. Load param-

eter corresponding to the number of data (Nd) in x-axis can be calculated as P̄ =
−22.8571 × Nd

200
.

In which, 22.8571 is the maximum magnitude of the nondimensional load, 200 is the number of data
points in the dataset. From the above discussions, it is clear that LSTM is a powerful tool that can
be used to replace analytical tools. The LSTM also is potential when it comes to solving complex
problems by enhancing the LSTM architecture.

6. Conclusions

We have presented an effective approach based on the LSTM for predicting the nonlinear static
behavior of isotropic, and functionally graded plates with high accuracy and less effort. Therefore,
the LSTM can be used in place of traditional analytical tools to save computational cost. With 50
percent and 80 percent of the data for training process, an LSTM architecture with a hidden layer
of 30 neurons and 1500 epochs can accurately predict the nonlinear behavior of the plate. For more
complex problems with only 30% of the training data, the LSTM architecture enhanced with two
hidden layers, each layer including 30 neurons, and 5000 epochs successfully predicted the nonlinear
behavior of the FG plate. Expanding the proposed method to more complex problems is promising.
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