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Abstract

This paper aims at investigating the optimum location of a single longitudinal stiffener having various cross-
section types of steel plate girders subjected to bending loading. The optimum location is found using a
gradient-based Interior-Point (IP) optimization algorithm. The optimization procedure involves a linear elastic
buckling analysis with the finite element method, which is coupled with the aforementioned IP algorithm and
used to calculate the buckling coefficient, which is maximized. Based on the optimization results, the effect of
the various cross-section types of the stiffener and the web slenderness ratio on the optimum stiffener position
is investigated. It is found that closed cross-sections of the stiffener and larger web slenderness ratios lead to
higher critical buckling coefficients.
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1. Introduction

In recent years, longitudinal stiffeners have been commonly used in girder webs to eliminate the
web crippling failure, which leads to a significant reduction of the resistance of the girder. There are
various types of longitudinal cross-sections such as flat, T-shaped, L-shaped, rectangular, triangular,
and trapezoidal sections, among others. Numerous researches have been performed to investigate
the behavior of the steel plate girder reinforced by longitudinal stiffeners under bending loading,
especially for flat stiffeners. Regarding the optimum location of the flat stiffeners, many researchers
have reported that it is at 0.2D (where D is the web depth of the girder) from the compression flange
of the girder with the assumption of simply supported longitudinal edges of the girder web [1–4].
Recently, by using the FE method, several researchers have found that the optimum position of a
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single stiffener for the plate girder is at about 0.42Dc (Dc is the web depth in compression in the
elastic range) regardless of any asymmetry of the girder section [5–8].

Regarding the optimum location of the stiffener having various cross-section types, based on
buckling analysis of the stiffened plate under bending, Maiorana et al. [9] reported that the optimum
position of various stiffener types consisting of flat, T-shaped, L-shaped, rectangular, triangular, and
trapezoidal section types is at 0.2D regardless of the stiffener type. However, in the study mentioned
above, the presence of the girder flange, which may affect the buckling response and its optimum
location, has not been taken into consideration.

This work aims to determine the optimum position of a longitudinal stiffener having various cross-
section types based on maximizing the critical buckling load of the girder plate at which it is placed
under bending loading. A similar optimization procedure proposed by Vu et al. [3, 4] is employed. In
addition, the optimized buckling coefficients for the various stiffener cross-section configurations are
compared to determine the most effective stiffener cross-section type of the girder under bending.

2. Methodology

2.1. Formulation of the linear elastic buckling problem

In Fig. 1, longitudinally stiffened plate girders having various stiffener cross-section types subject
to bending loading, which are considered in this study, are shown. The plate girders are comprised of
a web plate, a top flange under compression, and a bottom flange under tension. After the reference
load P exceeds a critical value Pcr, the web of the plate girder buckles. Linear elastic buckling analysis
is performed in this study to estimate the critical load Pcr. This analysis is comprised of the following
two analyses:

a) A standard linear perturbation static analysis in which a (unit) reference load pattern F is
applied to the structure. The stresses and/or loads that are calculated from this static analysis are then
used to form the geometric stiffness matrix KG used in the buckling analysis.

b) The solution of the following eigenvalue problem:

(K + λKG) u = 0 (1)

where K is the stiffness matrix of the model and λ is the multiplier of the reference load pattern F.
Eq. (1) is solved for the lowest positive value of λ, which is the buckling eigenvalue denoted as λcr, as
well as the buckling mode shapes (eigenvectors) u.

After the two above analyses are carried out, the buckling load is calculated by the following
equation:

Fcr = λcrF (2)

Besides this, the critical buckling load of a plate girder subject to bending loading can be calcu-
lated by a relation adapted from the classical buckling theory of plates under pure compression, as
follows:

Fcr = kb
π2Et3

w

12
(
1 − v2)D (3)

Eqs. (2) and (3) above are used to calculate the buckling coefficient kb. In Eq. (3), E is the elastic
Young’s modulus, tw is the web plate thickness, v is the Poisson’s ratio, and D is the depth of the web
plate.

Since only the lowest eigenvalue is required in Eq. (1), the Lanczos eigensolver has been used.
Besides, the boundary conditions specified for the applied loads of the static perturbation analysis and
the antisymmetry boundary conditions for the buckling modes are identical.
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Figure 1. Geometry of longitudinally stiffened plate girders having various stiffener cross-section types

2.2. Optimization method of longitudinally stiffened plates

It is generally desired that the plate girder is designed so that its critical buckling load is max-
imized, and this is the objective of optimizing the stiffener location. Therefore, in this study, the
optimum stiffener location is found based on maximizing the bending buckling coefficient kb. In a
more compact form, the optimization problem can be formulated as follows:

Find ds that maximizes kb given by Eq. (4):

kb (dS ) =
12
(
1 − v2

)
D

π2Et3
w

(F (dS ))cr (4)

subject to the following constraint regarding the stiffener position:

0 ≤ dS /D ≤ 1 (5)

During the above optimization process, it is assumed that the stiffener forms a nodal line at the
stiffener-plate junction since this situation corresponds to a much higher buckling coefficient, which
is something desirable according to the first optimization step. The condition of nodal line forma-
tion is ensured by checking that the out of plane displacements along the nodal line, due to buckling
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deformation, do not exceed some nonzero positive tolerance, as follows:

r ≤ rtol (6)

where rtol is the tolerance and the normalized parameter r is given by the relation:

r =
max (|wS |)
max (|ww|)

(7)

In Eq. (7), wS is the out-of-plane displacement of the stiffener and ww is the out-of-plane displacement
of the web plate.

2.3. Optimization procedure

For the solution of the optimization problem formulated in Eqs. (4) to (7), several methods can be
used, such as using metaheuristic algorithms [10–12], direct optimization methods [13], etc. In this
study, an Interior Point algorithm (IP), one of the robust direct optimization methods, was used [14–
16]. This gradient-based algorithm uses direct Newton or conjugate gradient steps to proceed from
an initial guess to the optimum solution. The whole optimization procedure has been implemented in
Abaqus [17] and Matlab [18], using Abaqus2Matlab [19, 20] as the coupling software that links the
two formers. Abaqus2Matlab has been used for integrating Abaqus and Matlab within the optimiza-
tion loop. The optimization procedure for computing the optimum stiffener location, as mentioned in
Section 2.2, is presented in Fig. 2. Detailed steps of this procedure are described below:

Step 1: Define the design parameters/variables of the optimization problem.
Step 2: Build a Matlab function that accepts the design parameters (variables) as input and auto-

matically generates the corresponding Abaqus input file (*inp) of the model.
Step 3: Define and build the objective function of the optimization problem.
Step 4: A main Matlab code is constructed, including the initial guess for the solution, lower

bound and upper bound values, and optimization algorithm (Matlab nonlinear programming solver
fmincon using the IP algorithm).

Step 5: The objective function is evaluated. The Abaqus input file is created in Matlab and run
by Abaqus (inside Matlab). After the Abaqus analysis is completed, the results are loaded in Matlab
using Abaqus2Matlab.

Step 6: The optimization procedure using the IP algorithm is implemented.
Step 7: Check if the termination criterion is met. This criterion varies among the various opti-

mization algorithms; however, in this study, limits for the function, step and optimality tolerances
were used. If the criterion is satisfied, the process will terminate. Otherwise, go to the next step.

Step 8: A new Abaqus input file is created by changing the design variables’ values.
Step 9: The Abaqus analysis is run again.
Step 10: Repeat steps 6-9 until convergence is obtained within the specified tolerance.
Step 11: The values of the design variables at the termination point of the optimization algorithm

are accepted as the final solution.
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3. Finite element simulation

The buckling response of the longitudinally reinforced plate girder shown in Fig. 1 is calculated
through FE analysis of the structure. For this purpose, ABAQUS commercial finite element software
[17] has been used.

In this study, FE models of the girder having various stiffener cross-sections (T-shaped, L-shaped,
triangular, rectangular sections are established based on the FE model of the girder having the flat
longitudinal stiffener used in the paper of Vu et al. [7, 8]. All geometric descriptions of the girder
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(except the stiffener dimensions), material properties, and modeling procedure are identical to that of
the girder having the flat longitudinal stiffener mentioned in the papers of Vu et al. [7, 8]. In particular,
the height and thickness of the webs are selected as 3.0 m and 9.0 mm, respectively. The flange width
and thickness of the girder are chosen as 600 mm and 54 mm, respectively. The panel aspect ratio
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Figure 3. Loading and boundary conditions of different plate girder configurations: (a) T-shaped, (b)
L-shaped, (c) Rectangular, (d) Triangular section

(the length–to–depth ratio of the girder) is fixed at 1.0. All materials are linear elastic with Young’s
modulus and Poisson’s ratio E = 210 GPa and v = 0.3, respectively. It is assumed that vertical edges
of the stiffened web plate girder are simply supported. All elements used for the model are simulated
by 4-node shell elements S4R which is available on the ABAQUS element library. The mesh size is
40 mm, as mentioned in references [7, 8]. Loading and boundary conditions for different stiffener
types are illustrated in Fig. 3.

The efficiency of the FE model of the plate girder having flat longitudinal stiffener has been veri-
fied in Vu et al. [7, 8]. In this work, since the geometry, material properties, and modeling procedure
of the plate girder with various stiffener cross-section types are identical with those of the girder hav-
ing flat stiffener (only stiffener shapes are different), the accuracy of these FE models is acceptable. It
is noted that the cross-section area of the stiffeners with various cross-section types remains constant
for purposes of comparison.

Based on these FE models, the optimum stiffener position of different longitudinal stiffener cross-
section types will be determined (based on the procedure mentioned in section 2.3) and presented in
section 4 of this work.

4. Optimum location of stiffener having different cross-section types

4.1. Optimum location of various stiffener types

In this section, by using the optimization procedure mentioned in Section 2.3, the optimum loca-
tion of the longitudinal stiffener having various cross-section types consisting of T-shaped, L-shaped,
Rectangular, and Triangular cross-sections, along with the web height of the plate girder subjected to
pure bending, is investigated.

The optimum location of the longitudinal stiffener having various cross-section types is displayed
in Table 1. It is noted that the aspect ratio (ϕ = a/D) and web slenderness ratio (D/tw) are fixed as
1 and 333, respectively, for all stiffener types. It can be seen from Table 1 that the optimum location
of stiffeners is around 0.2D regardless of the cross-section type. This result is similar to Maiorana et
al. [9] for stiffened plates. It means that the stiffener type does not significantly affect the optimum
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stiffener location regardless of stiffened plates and stiffened plate girder under bending. In addition
to the above, it is apparent that kb of the stiffener with rectangular cross-section is maximum while
kb of the stiffener with T-shaped is minimum. It is also seen that the kb of the stiffeners with closed
cross-sections is much higher than with open cross-sections. Therefore, using stiffeners with closed
cross-sections significantly improves the buckling resistance of the girder compared to stiffeners with
open cross-sections. Fig. 4 shows the convergence history, while Fig. 5 shows the buckling mode
shapes of the stiffened plate girder under bending for the various stiffener cross-section types. It can
be observed from Fig. 5 that the mode shapes of the part of the girder web under the stiffener are
similar regardless of the stiffener type.

Table 1. Optimization results for the longitudinal stiffener with various cross-section types

Stiffener type ϕ λw ds/D ds/Dc kb

T-shaped 1 333 0.202 0.404 215.88
L-shaped 1 333 0.202 0.404 220.59

Rectangular 1 333 0.197 0.394 303.24
Triangular 1 333 0.199 0.399 291.34
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4.2. Effect of web slenderness on the buckling response of the stiffened girder

To investigate the effect of the web slenderness ratio on the buckling response of the stiffened
plate girder, different web slenderness ratios of 200, 300, and 333 are considered while the other
parameters are fixed. The results are shown in Table 2 and Fig. 6. It can be seen from Table 2 that
λw has a low effect on the optimum stiffener location for all stiffener types. When λw changes, the
optimum stiffener location remains roughly equal to 0.2D for all stiffeners considered. In addition, it
is observed that kb is reduced when λw decreases.

Table 2. Effect of web slenderness ratio on the buckling response of the stiffened girder

λw ϕ Stiffener type ds/D ds/Dc kb

333

1 T-shaped 0.202 0.404 215.88
1 L-shaped 0.202 0.404 220.59
1 Rectangular 0.197 0.394 303.24
1 Triangular 0.199 0.399 291.34

300

1 T-shaped 0.203 0.406 213.54
1 L-shaped 0.203 0.406 216.80
1 Rectangular 0.197 0.394 298.52
1 Triangular 0.199 0.398 291.34

200

1 T-shaped 0.205 0.41 198.38
1 L-shaped 0.205 0.41 199.72
1 Rectangular 0.199 0.398 279.08
1 Triangular 0.199 0.398 269.72
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5. Conclusions

In this study, the optimum position of a single longitudinal stiffener with various cross-section
configurations at the web of a plate girder subjected to bending loading is investigated, based on
buckling analysis with the finite element method. The optimum position is calculated through an
optimization procedure implemented in Abaqus and Matlab using Abaqus2Matlab to integrate the two
former software into the optimization loop. Optimum results for various stiffener cross-section types
consisting of T-shaped, L-shaped, Rectangular, and Triangular cross-sections are obtained. It is found
that the optimum stiffener location is approximately at a distance from the compression flange of 20%
of the web height, regardless of the stiffener type and the web slenderness ratio. Furthermore, closed
cross-sections of the stiffeners lead to a higher critical buckling coefficient than open cross-sections.
Moreover, higher values of the web slenderness ratio lead to a higher critical buckling coefficient as
well. The effect of other parameters on the optimum stiffener location, such as the aspect ratio, flange
slenderness ratio, and stiffener rigidity for the various stiffener cross-section configurations, can be
the subject of a future study.
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