
Journal of Science and Technology in Civil Engineering, HUCE (NUCE), 2022, 16 (2): 22–37

A HYBRID ARITHMETIC OPTIMIZATION ALGORITHM
AND DIFFERENTIAL EVOLUTION FOR OPTIMIZATION
OF TRUSS STRUCTURES SUBJECTED TO FREQUENCY

CONSTRAINTS

Dieu T. T. Doa, Tan-Tien Nguyenb, Quoc-Hung Nguyenb, Tinh Quoc Buic,∗

aDuy Tan Research Institute for Computational Engineering, Duy Tan University,
254 Nguyen Van Linh street, Da Nang, Vietnam

bFaculty of Engineering, Vietnamese-German University,
Le Lai street, Thu Dau Mot city, Binh Duong province, Vietnam

cDepartment of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo, Japan

Article history:
Received 16/10/2021, Revised 31/01/2022, Accepted 15/02/2022

Abstract

A new hybrid arithmetic optimization algorithm (AOA) associated with differential evolution (DE) is devel-
oped for truss optimization. The development is named as ADE with the goal of maintaining a balance between
low computational cost and good solution quality. Besides, several limitations of the AOA, which include the
inefficiency of the exploration phase and the inconvenient use of two parameters MOA and MOP to find the
optimal solution, as well as how to overcome them are also discussed. In terms of AOA in ADE, the exploration
phase is removed, and both math optimizer accelerated (MOA) and math optimizer probability (MOP) param-
eters are adjusted to be independent of the maximum number of iterations. Moreover, the exploitation phase is
modified to exploration which helps to limit local solutions and maintain a balance between exploitation and
exploration in ADE algorithm. Through a probability parameter, the DE with DE/best/1 operator is executed
in ADE to improve exploitation capability as well as convergence rate. Four truss structures with continuous
design variables are considered to demonstrate the performance of the current algorithm. The obtained results
show that the developed algorithm has a low computational cost, indicating its computational efficiency.

Keywords: arithmetic optimization algorithm; differential evolution; meta-heuristic; truss structure; frequency
constraints.
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1. Introduction

Structural optimization is the process of designing structures under certain constraints to achieve
better performance and lower manufacturing costs. Many different types of structures have been inves-
tigated in real applications. In particular, truss optimization has been extensively studied as a bench-
mark problem in a variety of publications using different optimization techniques [1–8]. For example,
Kaveh et al. [5] reviewed meta-heuristic methods such as genetic algorithm (GA), particle swarm op-
timization (PSO), harmony search (HS), firefly algorithm (FA) and several algorithms for structural
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optimization with frequency constraints. Lieu et al. [6] proposed an adaptive hybrid evolutionary fire-
fly algorithm (AHEFA), which is a hybridization of the differential evolution (DE) algorithm and
the firefly algorithm (FA) for truss optimization problems. Ho-Huu et al. [9] proposed an improved
differential evolution (IDE) method for solving size and shape optimization problems of truss struc-
tures. A new selection scheme based on multi-mutation operators was proposed in the IDE’s mutation
phase to help to maintain an effective balance between exploration and exploitation abilities. When
compared to other algorithms in the literature, improvements in IDE help to save computational cost
while providing acceptable optimal solutions. Besides, an enhanced differential evolution named as
ANDE was proposed by Pham [8] for solving those truss problems. In which, the traditional differ-
ential evolution (DE) has been modified in three ways: the adaptive p-best strategy, the directional
mutation rule, and the nearest neighbor comparison method. ANDE with these modifications is able
to maintain the balance between exploration and exploitation, and help to save the computational cost.
Those methods can be divided into two major categories: gradient-based and non-gradient-based al-
gorithms. Optimality criterion (OC) [10], force method [11] and sequential quadratic programming
(SQP) [12] , for example, are some of the most common approaches in the first group. Although these
approaches have a relatively fast convergence rate, sensitivity analyses are always required. Their
mathematical analysis performances are quite complicated and more importantly, they are costly and
even unsuccessful in many other cases. Furthermore, the search ability focuses only on derivative data
provided by sensitivity analyses; therefore, obtained solutions are frequently trapped in local areas.
The non-gradient-based approaches in the second group, also known as metaheuristic methods such
as genetic algorithm (GA) [13], differential evolution (DE) [14], flower pollination algorithm (FPA)
[15], and their variants [16–18], have been developed to overcome the aforementioned limitations.
Sensitivity analysis is no longer required due to stochastic searching techniques that are used to select
candidates in a given domain at random. A global optimal solution can be found without a great deal
of mathematical expertise. Nonetheless, because of low convergence rate, the process thus takes more
effort.

Among the aforementioned algorithms in the second group, arithmetic optimization algorithm
(AOA) [19] was proposed recently and has attracted many researchers. The four primary arithmetic
operators in mathematics, such as division (D), multiplication (M), addition (A), and subtraction (S),
are all used in AOA. AOA is a mathematically implemented and modeled optimization algorithm
that works in a vast scope of search spaces. The exploration and exploitation phases are the two
main phases of the AOA. In the study [19], although the AOA has applied successfully to solve 29
benchmark functions and 5 real-world engineering problems, it still has several limitations when
solving other real-world problems. Consequently, a number of improved AOA versions have been
proposed. For example, Agushaka et al. [20] presented an advanced arithmetic optimization algorithm
to solve mechanical engineering problems, in which, the optimization process begins by using the
beta distribution to initialize the candidate solutions. Moreover, the exponential (E ‘e’) and natural
log operator (L ‘ln’) are used instead of division (D), multiplication (M) in the exploration. The
effectiveness of the method was demonstrated through benchmark functions and three engineering
problems. Besides, an improved AOA was proposed to gain an optimal design for a cruise control
system in an automobile, in which, the exploration task was handled by AOA, and the exploitation
task was handled by another algorithm, the Nelder-Mead. Several other improved versions of AOA
can be found as [21, 22].

Besides, DE is a popular non-gradient-based method inspired by nature. Because of its effective-
ness in finding a global optimal solution in given spaces, this method has been widely applied to a
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variety of disciplines [23–26]. Different improved versions of the DE algorithm have been developed
to reduce the computational cost or improve the quality of the solutions such as [27, 28]. For exam-
ple, Huynh et al. [29] proposed Q-learning differential evolution for truss optimization to maintain
a balance between exploration and exploitation. Tan and Li [30] introduced a modified version of
the DE with mixed mutation strategy based on deep Q-network. According to the theory of no free
lunch [31], even though many optimization algorithms have been proposed, none of them can solve
all optimization problems. This motivates us to propose a hybrid arithmetic optimization algorithm
and differential evolution as called ADE in this work.

This paper aims to apply the developed ADE to optimize truss structures subjected to frequency
constraints. In addition, limitations of the AOA are also discussed, as well as how to overcome them.
In each iteration, a randomly generated probability parameter is used to determine whether AOA or
DE that would be used to generate new candidate solutions in the population. The exploration phase
with division (D) and multiplication (M) operators is removed from AOA of ADE because it does
not contribute significantly to finding optimal solutions as investigated in the numerical examples.
The MOA parameter, which is used to determine whether the exploration or exploitation phase will
be carried out, will be modified. MOP parameter is also modified to be independent of the number
of iterations and the maximum iteration. Furthermore, in the new algorithm, the exploitation phase is
modified to exploration which helps to limit local solutions. The proposed algorithm uses a DE with
DE/best/1 operator to improve the exploitation ability as well as convergence rate of the algorithm.
Testing for optimization of truss structures with frequency constraints demonstrates the effectiveness
of ADE. The optimal results of the proposed method are compared to those obtained by others in the
literature.

2. Truss optimization problem

The goal of truss structure optimization problems with frequency constraints is to minimize the
weight of the truss by designing member sizes or/and shape. Member cross-sectional areas as well
as nodal coordinates have been considered as continuous design variables. Connectivity data of the
structure is predetermined and assumed to remain constant throughout the optimization process. Fur-
thermore, each variable is created within a predetermined range. As a result, this issue can be ex-
pressed mathematically as

Minimize: f (A, x) =
m∑

i=1

ρiAiLi
(
x j

)

Subject to


ωl ≥ ω

∗
l

ωk ≤ ω
∗
k

Amin
i ≤ Ai ≤ Amax

i
xmin

j ≤ x j ≤ xmax
j

(1)

where A = {A1, ..., Am} and x = {x1, ..., xn} are the cross-sectional area and nodal coordinates design
variable vectors, respectively; n represents the total number of constraints on nodal coordinates; m
represents the total number of members in the structure; the length and the material density of ith
member, respectively, are represented by Li and ρi ; the lth and kth natural frequencies of the structure
are denoted by ωl and ωk , respectively; ω∗l and ω∗k symbolize the lower and upper bounds; Ai’s lower
and upper bounds are Amin

i and Amax
i , respectively, while x j’s lower and upper bounds are xmin

j and
xmax

j , respectively.
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The penalty function method, which is one of the most widely used constraint handling approaches
[32], is used in this study to convert the constrained optimization problem in Eq. (1) into an uncon-
strained one. As a result, the above problem can be reformulated as follows:

fcost (A, x) = (1 + ε1υ)ε2 f (A, x)

υ =

p∑
r=1

max {0, gr (A, x)} (2)

In which, υ symbolizes the sum of design constraint violations; gr (A, x) represents the rth constraint;
p represents the number of constraints; the parameters ε1 and ε2 are chosen based on the exploration
and exploitation rates of the search space. In this study, ε1 and ε2 are respectively set to be 1 and 1.5
at the beginning of the iteration and gradually increased by 0.05 in each iteration until it reaches 3 as
studied in [6].

3. A hybrid arithmetic optimization algorithm and differential evolution

3.1. Arithmetic optimization algorithm

AOA is inspired by traditional arithmetic operators such as division, multiplication, subtraction,
and addition, which are commonly used to study numbers. AOA consists of initialization, exploration
and exploitation phases. The AOA’s main procedure is briefly described as follows:

- Initialization phase: An initial population of NP individuals is generated at random in a given
search space, as follows:

xi, j = xmin
j + rand (0, 1)

(
xmax

j − xmin
j

)
(3)

where i = 1, 2, ...,NP; j = 1, 2, ...,D; D is the number of design variables; xmax
j and xmin

j are the upper
and lower bounds of the xi, j; rand (0, 1) is a random number with a uniform distribution within the
range [0, 1].

The Math Optimizer Accelerated (MOA) function, which is used to select exploration or exploita-
tion phases, is calculated as follows:

MOA(cIter) = Min + cIter ×
( Max − Min

mIter

)
(4)

where cIter and mIter symbolize the current iteration and maximum number of iterations, respec-
tively; the terms Min and Max represent the accelerated minimum and maximum values of the func-
tion, respectively.

- Exploration phase: In this phase, if a random number r1 > MOA, new candidates are generated
by using the Division (D), or Multiplication (M) operators, which aims to reinforce exploration ability,
as described below:

xi, j =

 xbest
j ÷ (MOP + ε) ×

((
UB j − LB j

)
× µ + LB j

)
, r2 < 0.5

xbest
j × MOP ×

((
UB j − LB j

)
× µ + LB j

)
, otherwise

(5)

in which xbest
j is the jth position in the best solution obtained so far; ε is a small number; the lower

and upper bound values of the jth position are denoted by LB j and UB j, respectively; µ is a control
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parameter for adjusting the search process, and it is set to be 0.5; r2 is a random number in the range
[0, 1]; Math Optimizer probability called MOP is a coefficient and defined as follows

MOP (cIter) = 1 −
cIter1/α

mIter1/α (6)

where the value of α is set to be 5.
- Exploitation phase: If r1 ≤ MOA, either subtraction or addition operators is performed to find the

near-optimal solutions that may be discovered after several iterations. This search strategy is described
as follows:

xi, j =

 xbest
j − MOP ×

((
UB j − LB j

)
× µ + LB j

)
, r3 < 0.5

xbest
j + MOP ×

((
UB j − LB j

)
× µ + LB j

)
, otherwise

(7)

in which r3 is a random number in the range [0, 1].

3.2. Differential evolution

The differential evolution (DE) is a population-based algorithm that was first introduced by Storn
and Price [14]. Four major phases of DE are as follows:

- Initialization phase: Eq. (3) is used to generate individuals in the initial population, just as it is
in the initialization phase of AOA.

- Mutation phase: Then, using mutation operations, each individual xi in the population is used to
create a mutant vector vi. The DE frequently employs the following mutation operations:

DE/rand/1: vi = xR1 + F ×
(
xR2 − xR3

)
DE/best/1: vi = xbest + F ×

(
xR1 − xR2

)
DE/rand/2: vi = xR1 + F ×

(
xR2 − xR3

)
+ F ×

(
xR4 − xR5

)
DE/best/2: vi = xbest + F ×

(
xR1 − xR2

)
+ F ×

(
xR3 − xR4

) (8)

where R1, R2, R3, R4, R5 are integers chosen at random from 1, 2, ...,NP and must satisfy R1 , R2 ,

R3 , R4 , R5 , i; F is the scale factor selected at random from [0, 1]; xbest is the best individual in
the current population.

- Crossover phase: Following the completion of mutation, each target vector xi creates a trial
vector ui by binomial crossovering several elements of the vector xi with elements of the mutant
vector vi.

ui, j =

{
vi, j if rand [0, 1] ≤ Cr or j = jrand

xi, j otherwise
(9)

where i = 1, 2, ...,NP; j = 1, 2, ...,D; the integer jrand is chosen from 1 to D, and the crossover control
parameter Cr is chosen from the range [0, 1].

- Selection phase: Finally, the target vector xi is compared to each trial vector ui. The one that is
better value will be passed down to the next generation.

xi =

{
ui if f (ui) ≤ f (xi)
xi otherwise

(10)
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3.3. A hybrid arithmetic optimization algorithm and differential evolution

ADE is a hybrid algorithm that combines AOA and DE to reduce the computational cost which
has been shown in this section. ADE includes three major phases described as follows:

- Initialization phase: An initial population with NP individuals is created randomly as in the
initialization phase of AOA or DE.

- Exploration phase with modified Arithmetic Optimization Algorithm: Firstly, MOP and MOA
in the AOA are adjusted to be independent of the number of iterations and the maximum number of
iterations. Because it will be more convenient to solve complex problems without having to limit the
number of iterations. MOA is updated as follows:

+ From the formulations of MOA and MOP, it can be seen that MOA starts with a small value
(nearly 0) and gradually increases after each iteration, eventually reaching a greater value (nearly 1)
in the final iteration, whereas MOP does the opposite. This allows exploration to be employed at an
early stage of the search process and exploitation to be done later. Therefore, after investigating, MOA
and MOP are set to be 0.4 and 0.7 in the first iteration, respectively. These values will help to improve
the convergence rate.

+ If the solution obtained by the current MOA at ith iteration is better than xi then both MOA
and MOP are kept. Because the MOA and MOP parameter values provide useful information for the
search for the optimal solution.

+ Otherwise, MOA = MOA + β and MOP = MOP − β. In which β is a small value. In this
study, β is set to be 10−3. These formulas help with the transition from exploration to exploitation.
If MOA > 0.9, MOA is created randomly in the range [0.4, 0.9]. Besides, if MOP < 0.2, MOP is
created randomly in the range [0.2, 0.7]. The ranges of values of two parameters, MOA and MOP,
have been investigated by the authors and selected appropriate values for the problems in this study.
For the sake of brevity, the authors will not present this survey in the study.

The goal of this update is to improve exploration ability in the early stage while also increasing
exploitation ability later on. It aids in the search process by lowering computational cost and limiting
local solutions.

Secondly, according to our survey, implementing exploration phase does not actually improve the
quality of solutions, so it is recommended that the exploration phase should be removed from ADE
algorithm. It is demonstrated in the numerical example part.

Next, exploitation phase of the AOA is performed; however, xbest
j in Eq. (7) is replaced by xk

j
which is chosen randomly in the population. This helps to improve exploration ability in this phase.

From the above modifications, it can be seen that exploration ability is reinforced in this phase.
- Exploitation phase with DE: Das et al. [33] found that the balance of exploitation and exploration

abilities has a significant impact on the success of most population-based optimization algorithms.
In which the exploration ability refers to the global search capability, which has a significant impact
on the accuracy of the achieved optimal solution. The exploitation describes the ability to perform
local searches, which has a significant impact on the convergence of the algorithm. Clearly, if the
exploration ability is greater than the other, a global optimal solution can be found, but convergence is
slow. This is because the algorithm must require a significant amount of computational cost in order
to find the best solution in a given domain. The algorithm, on the other hand, converges quickly, but
local optimum solutions may emerge. As a result, if the above two abilities are adjusted to achieve a
better balance, the solution accuracy and convergence rate can be achieved at the same time. From
above discussion, it can be seen that the exploitation should be reinforced in this phase. As a result,
DE algorithm with DE/best/1 operator is used to balance between the exploration and exploitation
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abilities in ADE. The flowchart of the proposed ADE algorithm is depicted in Fig. 1.

Figure 1. Flowchart of the proposed ADE algorithm

4. Numerical examples

Four truss optimization problems with frequency constraints are investigated to show the effi-
ciency of ADE in terms of the computational cost and quality of the solution. The original AOA, DE,
and several other algorithms are used as reference solutions for our comparison purpose. In which,
DE with DE/rand/1 operator is used for comparison. Similar to previous studies, a population size NP
of 20 is used in all examples. F and Cr are set to be 0.8 and 0.9, respectively for all examples. The
values of F and Cr are the same as the exploitation phase with DE of ADE algorithm. The truss anal-
ysis is performed with a two-node linear bar element. The optimization process is terminated when
the relative error between the best and mean objective function values of the population is less than
or equal to the specified tolerance, or when the maximum number of structural analyses (MaxEval)
is reached. In this study, tolerance is set to be 10−6 for all problems. Each of the algorithms is run 30
independent times as same as the previous examples. MaxEval is set to be 20000 for the 10-bar truss
problem and to 40000 for the others. Data for truss problems is tabulated in Table 1.

Table 1. Data for four truss structures

Problem
Young’s modulus

E (N/m2)
Material density

ρ (kg/m3)
Added mass

(kg)
Frequency constraints

(Hz)

10-bar planar truss 6.98 × 1010 2770 454 ω1 ≥ 7, ω2 ≥ 15, ω3 ≥ 20
72-bar space truss 6.98 × 1010 2770 2270 ω1 = 4, ω3 ≥ 6
200-bar planar truss 2.1 × 1011 7860 100 ω1 ≥ 5, ω2 ≥ 10, ω3 ≥ 15
52-bar dome truss 2.1 × 1011 7800 50 ω1 ≤ 15.9155, ω2 ≥ 28.6479
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4.1. 10-bar planar truss

Figure 2. The 10-bar planar truss

The first example deals with a planar truss
comprised of ten bars as shown in Fig. 2. The
cross-sectional areas of 10 bars are considered as
10 continuous design variables with the boundary
condition 0.645 × 10−4 ≤ A ≤ 50 × 10−4. A non-
structural mass is added to all free nodes of the
structure as shown in the same figure.

A comparison on the numerical results among
the developed method and other algorithms is pre-
sented in Table 2, in which the effectiveness of the
exploitation and exploration phases of AOA is also
investigated. From the table, it can be seen that
ADE requires fewer finite element analyses than DE and AOA methods to get the optimal solution.
Despite the fact that ADE performs more evaluations than IDE and ANDE (6960 analyses for ADE,
6260 analyses for IDE and 6115 analyses for ANDE), the best solution obtained by ADE is supe-
rior to those two methods. Obviously, the present method requires the least number of FE analyses
to reach an optimal solution whilst guaranteeing the quality of the solution. Moreover, AOA with
only the exploration phase is ineffective and even violates constraints; therefore, it is removed from
the algorithm. Furthermore, natural frequencies gained by the present method satisfies all frequency
constraints as summarized in Table 3. From the above discussions, it can be found that ADE has the
ability to strike a balance between computational cost and quality of solution.

Table 2. Optimized designs for 10-bar truss structure gained by the algorithms

Design
variables
Ai (cm2)

DE PSO [34] HS [35] IDE [9] ANDE [8] AOA

AOA
with only

exploration
phase

AOA
with only

exploitation
phase

ADE

1 35.1056 37.712 34.282 35.0606 35.1829 35.2879 32.3598 36.3890 35.1932
2 14.7244 9.959 15.653 14.6851 14.5442 14.6805 17.6400 14.9800 14.6976
3 35.1445 40.265 37.641 35.0687 35.3286 34.2632 43.8873 34.9081 35.0309
4 14.6804 16.788 16.058 14.8095 14.6738 15.0572 19.4631 14.8197 14.7868
5 0.6450 11.576 1.069 0.6451 0.6450 0.6450 29.6481 0.6450 0.6451
6 4.5604 3.955 4.740 4.5578 4.5703 4.5699 6.7082 4.5474 4.5570
7 23.7704 25.308 22.505 23.5271 23.6857 23.8956 11.4955 23.7094 23.5778
8 23.6519 21.613 24.603 23.7998 23.9418 23.6186 25.8477 23.5835 23.7686
9 12.3541 11.576 12.867 12.5038 12.2272 12.2494 14.7538 11.8976 12.4797

10 12.4878 11.186 12.099 12.4599 12.3616 13.0026 25.0105 12.1935 12.4034

Best
weight (kg) 524.453 537.98 529.09 524.4627 524.4956 525.3479 664.6592 524.9197 524.4556

No. FE
analysis 17600 - - 6260 6115 20000 20000 20000 6960

Worst
weight (kg) 530.6943 - - 530.8448 534.3302 798.0008 896.632 534.3918 531.6511

Average
weight (kg) 525.4986 540.89 - 525.6162 525.3544 569.1844 758.8502 528.6061 527.4052

Standard
deviation 2.3423 6.84 - 2.3041 1.9951 84.426 55.1496 3.0588 3.0507
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Table 3. The first eight optimal frequencies of the 10-bar truss gained by the algorithms

Frequency
number DE PSO [34] HS [35] IDE [9] ANDE [8] AOA

AOA
with only

exploration
phase

AOA
with only

exploitation
phase

ADE

1 7.0000 7.000 7.0028 7.0000 7.0000 7.0000 6.9348 7.0000 7.0000
2 16.1903 17.786 16.7429 16.1853 16.2015 16.1782 19.0066 16.2494 16.1899
3 20.0000 20.000 20.0548 20.0000 20.0000 20.0008 21.1672 20.0002 20.0000
4 20.0001 20.063 20.3351 20.0006 20.0052 20.0820 26.9734 20.0388 20.0004
5 28.5562 27.776 28.5232 28.5775 28.5233 28.5627 34.3040 28.3432 28.5609
6 28.9690 30.939 29.2911 - - 29.2393 49.2161 28.7712 28.9896
7 48.5700 47.297 49.0342 - - 48.5526 50.2659 48.8067 48.5829
8 51.0656 52.286 54.7451 - - 51.1230 56.0438 51.2604 51.0885

Convergence histories of the different algorithms in terms of the number of FE analyses are si-
multaneously depicted in Fig. 3. The figure shows that ADE converges faster than the others while
AOA with only exploration phase completely fails to find the optimal solution.

Figure 3. The weight convergence histories of the
10-bar truss

Figure 4. The 72-bar space truss

4.2. 72-bar space truss

The optimization of the 72-bar truss structure as displayed in Fig. 4 is carried out. Each of the
four top nodes of this structure is added a non-structural mass of 2270 kg. Cross-sectional areas of all
truss members are divided into 16 groups which correspond to 16 design variables as presented in the
first column of Table 4. The boundary condition is 0.645 × 10−4 ≤ A ≤ 50 × 10−4.

A comparison between optimal results achieved by ADE and the other algorithms in the literature
is tabulated in Table 4. ADE offers optimal solution better than the other considered approaches. The
present method requires only 11400 analyses to reach the optimal solution whereas DE, HS, IDE and
AOA require 24640, 50000, 11620 and 40000 analyses, respectively. Although ANDE requires fewer
evaluations than the proposed method, the solution obtained by the proposed method is better than
that obtained by ANDE. With a standard deviation of 0.0596, ADE is fairly stable. Table 5 details
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the first five optimal frequencies gained by the various algorithms. None of the violated frequency
constraints obtained by ADE is found.

Table 4. Optimized designs for 72-bar truss structure gained by the algorithms

Design
variables
Ai (cm2)

DE PSO [34] HS [35] IDE [9] ANDE [8] AOA ADE

1-4 3.4596 2.987 3.6803 3.5863 3.4754 3.3714 3.4111
5-12 7.8528 7.849 7.6808 7.8278 7.8483 7.9593 7.8737
13-16 0.6450 0.645 0.6450 0.6450 0.6450 0.6450 0.6450
17-18 0.6450 0.645 0.6450 0.6450 0.6450 0.6450 0.6450
19-22 7.9739 8.765 9.4955 8.1052 8.0134 9.3141 7.9349
23-30 7.9194 8.153 8.2870 7.8788 7.9316 7.7193 7.9556
31-34 0.6451 0.645 0.6450 0.6451 0.6450 0.6460 0.6450
35-36 0.6451 0.645 0.6461 0.6450 0.6450 0.6450 0.6451
37-40 12.7297 13.450 11.4510 12.5157 12.6420 12.5836 12.7286
41-48 7.9625 8.073 7.8990 8.0102 7.9794 7.9411 7.9331
49-52 0.6450 0.645 0.6473 0.6450 0.6450 0.6450 0.6450
53-54 0.6451 0.645 0.6450 0.6452 0.6450 0.6471 0.6450
55-58 17.0386 16.684 17.4060 16.9997 17.0706 16.1596 17.1160
59-66 8.0168 8.159 8.2736 8.0362 7.9922 8.1451 7.9890
67-70 0.6450 0.645 0.6450 0.6451 0.6450 0.6450 0.6450
71-72 0.6450 0.645 0.6450 0.6453 0.6452 0.6450 0.6451

Best
weight (kg)

324.2232 328.823 328.334 324.2441 324.2226 324.7137 324.2028

No. FE
analysis

24640 - 50000 11620 8030 40000 11400

Worst
weight (kg)

324.3068 - - 324.6444 324.4292 706.7702 324.4245

Average
weight (kg)

324.2440 - 332.640 324.3379 324.2620 380.0288 324.2757

Standard
deviation

0.0196 - 2.390 0.1023 0.04760 130.4063 0.0596

Table 5. The first five optimal frequencies of the 72-bar truss gained by the algorithms

Frequency number DE PSO [34] HS [35] IDE [9] ANDE [8] AOA ADE

1 4.000 4.000 4.000 4.000 4.000 4.000 4.000
2 4.000 4.000 4.000 4.000 4.000 4.000 4.000
3 6.000 6.000 6.000 6.000 6.000 6.000 6.000
4 6.268 6.219 6.2723 6.278 6.2698 6.293 6.264
5 9.099 8.976 9.0749 9.112 9.1012 9.091 9.095
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4.3. 200-bar planar truss

Figure 5. The 200-bar planar truss

Next study is devoted to numerical investiga-
tion of a 200-bar planar truss structure as shown
in Fig. 5. Non-structural mass of 100 kg is added
to each of the upper nodes of this truss structure as
indicated in the same figure. The structure consists
of 29 member groups that are considered as 29
design variables. The boundary condition of this
structure is 1 × 10−5 ≤ A ≤ 25 × 10−4.

In this example, the optimal solutions gained
by ADE and DE show nearly the same between
each other, and they are better than those of CSS-
BBBC as indicated in Table 6. The number of
FE analyses required by ADE to find the optimal
solution is less than that required by DE, CSS-
BBBC, and AOA. In this case, ANDE obtains the
best solution with the fewest number of evalua-
tions, but it is unstable with a standard deviation
of 33.4775, whereas the proposed algorithm ADE
and DE maintain stability with a standard devi-
ation of less than 0.1. Moreover, the natural fre-
quencies achieved by ADE do not show any viola-
tion as shown in Table 7.

4.4. 52-bar dome truss

Figure 6. The 52-bar dome truss

A 52-bar dome truss structure as depicted in
Fig. 6 is studied for shape and size optimization.
For optimization design, all elements of the struc-
ture are separated into eight variable groups. A
concentrated mass of 50 kg is added to each free
node. Three coordinates (x, y, z) of each free node
shift within the range [−2, 2] m, and they are also
treated as design variables. The symmetry of the
entire structure must be maintained throughout the
design process. There are 13 independent design
variables in total, including 5 shape variables and
8 sizing ones. In terms of sizing variables, they
must satisfy the condition 1×10−4 ≤ A ≤ 1×10−3.

A comparison between the optimal results ob-
tained by ADE and other reference solutions is
then given in Table 8. In this case, the best weight
gained by ADE is close to those of the DE, and it is
better than the others. The efficiency of the present
method is demonstrated through the number of FE
analyses whereas ADE requires only 12660 analyses (33760 analyses for DE, 20000 analyses for HS,
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Table 6. Optimized designs for 200-bar truss gained by the algorithms

Design variables
Group Ai (cm2) DE CSS-BBBC [32] ANDE [8] AOA ADE

1 0.3005 0.2934 0.2912 0.3290 0.3048
2 0.4516 0.5561 0.4687 0.3910 0.4598
3 0.1000 0.2952 0.1003 0.1000 0.1000
4 0.1000 0.1970 0.1001 0.1000 0.1000
5 0.5139 0.8340 0.5531 0.5709 0.5075
6 0.8193 0.6455 0.8104 0.8151 0.8207
7 0.1001 0.1770 0.1000 0.1000 0.1001
8 1.4273 1.4796 1.4112 1.5098 1.4204
9 0.1000 0.4497 0.1000 0.1000 0.1000

10 1.5978 1.4556 1.5616 1.6406 1.5620
11 1.1590 1.2238 1.1891 1.1534 1.1583
12 0.1298 0.2739 0.1273 0.1050 0.1274
13 2.9740 1.9174 2.9704 3.0497 2.9828
14 0.1000 0.1170 0.1177 0.3752 0.1000
15 3.2598 3.5535 3.2731 4.2335 3.2612
16 1.5850 1.3360 1.5934 1.4906 1.5791
17 0.2566 0.6289 0.2037 0.5245 0.2555
18 5.0911 4.8335 5.0704 5.3419 5.1095
19 0.1004 0.6062 0.1489 0.1480 0.1004
20 5.4520 5.4393 5.4347 5.9477 5.4613
21 2.0973 1.8435 2.0755 2.0822 2.1078
22 0.6999 0.8955 0.4983 0.6488 0.6722
23 7.6705 8.1759 7.4376 5.9817 7.6301
24 0.1001 0.3209 0.1342 0.1554 0.1019
25 7.9648 10.9800 7.7775 6.9732 7.9284
26 2.8039 2.9489 2.6526 2.6465 2.7951
27 10.5086 10.5243 10.6951 15.4460 10.5555
28 21.3040 20.4271 21.9196 20.3103 21.3836
29 10.6992 19.0983 10.2209 11.6880 10.5765

Best weight (kg) 2160.6879 2298.6100 2158.8010 2217.9580 2160.7263
No. FE analysis 39500 - 11004 40000 19680

Worst weight (kg) 2160.8947 - 2302.6365 18646.8667 2161.0366
Average weight (kg) 2160.7168 - 2178.1891 7362.1928 2160.8514
Standard deviation 0.0371 - 33.4775 5976.6471 0.0946

Table 7. The first six optimal frequencies of the 200-bar truss gained by the algorithms

Frequency number DE CSS-BBBC [32] ANDE [8] AOA ADE

1 5.000 5.010 5.000 5.000 5.000
2 12.196 12.911 12.176 12.453 12.231
3 15.026 15.416 15.116 15.022 15.038
4 16.695 17.033 16.645 17.107 16.683
5 21.369 21.426 21.308 21.283 21.422
6 21.419 21.613 - 21.798 21.437
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Table 8. Optimized designs for 52-bar truss gained by the algorithms

Design variable
Z j, X j (m); Ai (cm2)

DE PSO [34] HS [35] IDE [9] ANDE [8] AOA ADE

ZA 6.0131 5.5344 4.7374 6.0052 5.9207 6.0000 6.0202
XB 2.3019 2.0885 1.5643 2.3004 2.2157 2.0000 2.2863
ZB 3.7375 3.9283 3.7413 3.7332 3.7166 4.3249 3.7457
XF 4.0000 4.0255 3.4882 4.0000 3.9344 4.0000 3.9999
ZF 2.5000 2.4575 2.6274 2.5000 2.5003 2.6030 2.5000
A1 1.0000 0.3696 1.0085 1.0001 1.0000 1.0000 1.0000
A2 1.0831 4.1912 1.4999 1.0875 1.1634 1.6093 1.0952
A3 1.2013 1.5123 1.3948 1.2135 1.2387 1.3902 1.2148
A4 1.4416 1.5620 1.3462 1.4460 1.4460 1.1975 1.4242
A5 1.4203 1.9154 1.6776 1.4315 1.3914 1.2543 1.4251
A6 1.0000 1.1315 1.3704 1.0000 1.0008 1.0000 1.0000
A7 1.5661 1.8233 1.4137 1.5623 1.6132 1.8336 1.5693
A8 1.3840 1.0904 1.9378 1.3724 1.3566 1.5711 1.3738

Best weight (kg) 193.1898 228.3810 214.9400 193.2085 193.2418 211.8887 193.1999
No. FE analysis 33760 - 20000 11040 6260 40000 12660

Worst weight (kg) 202.2523 - - 202.4215 214.0881 4121.7596 202.5693
Average weight (kg) 197.1309 234.3000 229.8800 196.0478 200.1415 1657.1428 197.5476
Standard deviation 4.5424 5.2200 12.4400 4.1823 4.85764 1474.6922 4.5636

Table 9. The first five optimal frequencies of the 52-bar truss gained by the algorithms

Frequency number DE PSO [34] HS [35] IDE [9] ANDE [8] AOA ADE

1 11.635 12.751 12.2222 11.603 11.292 14.965 11.543
2 28.648 28.649 28.6577 28.648 28.649 28.649 28.648
3 28.648 28.649 28.6577 28.648 28.649 28.649 28.648
4 28.648 28.803 28.6618 28.649 28.651 28.649 28.648
5 28.649 29.230 30.0997 28.653 28.663 29.293 28.649

Figure 7. The optimal shape of the 52-bar truss
gained using ADE

and 40000 analyses for AOA). In comparison to
IDE and ANDE, the current method requires more
evaluations, but the optimal solution gained by
ADE is superior to those of IDE and ANDE. Fur-
thermore, ADE is more stable than ANDE, with
a lower standard deviation. The optimal shape
achieved by ADE for 52-bar dome truss structure
is depicted in Fig. 7. The first five optimal fre-
quencies of this structure obtained by algorithms
are tabulated in Table 9 with no violation.

Through all the numerical examples, it can be
seen that the outstanding performance of the developed ADE. ADE can maintain a balance between
computational cost and quality of solution.
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5. Conclusions

In this paper, we have presented a new computational approach named as ADE, which is based
on a hybrid arithmetic optimization algorithm (AOA) associated with differential evolution (DE) for
solving optimization problems of truss structures subjected to frequency constraints. In ADE algo-
rithm, AOA with several modifications is performed to reinforce exploration ability whilst DE with
DE/best/1 operator is used to enhance exploitation ability. Therefore, the balance between exploration
and exploitation is always maintained in ADE. The improvements related to the two parameters MOA
and MOP can be applied to other algorithms to make them more flexible and user-friendly. In addi-
tion, the discovery related to the limitation of exploration phase of the original AOA algorithm can
be utilized in further studies on improving the AOA algorithm. From the numerical results, it is clear
that ADE has been proven to be an effective tool, not only saving the computational costs but also
guaranteeing the quality of gained solutions. When combined with other algorithms, this can yield
even more impressive results. Moreover, the proposed algorithm can be used as an option for users
for solving optimization problems. Besides, the efficiency of the algorithm on real-world constraint
problems (CEC 2020) will be studied in the future.
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