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Abstract

This study presents a numerical model for buckling analysis of the functionally graded sandwich plates (FGSP)
laid on the elastic foundation through the Moving Kriging interpolation-based meshless method using a refined
quasi-3D third-order shear deformation theory. The in-plane displacements encompassed a new third-order
polynomial in terms of the thickness coordinate, will satisfy the natural vanishing of transverse shear stresses
on the top and bottom surfaces. Furthermore, the displacement fields approximated by only four variables with
accounting for the thickness stretching effect can lead to the reduction of computational time. Comparison
investigations are studied to justify the accuracy of the present method. The influence of the aspect ratios,
gradient index, and elastic foundation parameters on the normalized buckling load of FGSP is also studied and
discussed.
Keywords: functionally graded plates; third-order shear deformation theory; Moving Kriging interpolation-
based method; Pasternak’s foundation.
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1. Introduction

The sandwich-structured composite consists of two or more homogeneous elastic layers com-
bined together to form a high-performance material. This feature made it widely applied in many
engineering branches. Nevertheless, the unexpected change in material properties among the layers
may cause through-thickness failure because of interlaminar stresses. To overcome this drawback,
the functionally graded materials (FGM) with continuously mechanical varying properties for layers
are used. Nowadays, the model of FGM plates laid on elastic supports has been widely employed
for many engineering problems. It is well-known that the 2-dimensional shear deformation theories
(2DSDTs) including the classical plate theory [1] (CPT), first-order shear deformation theory [2]
(FSDT), third-order shear deformation theory [3] (TSDT), higher-order shear deformation theory [4]
(HSDT) and refined plate theory [5] (RPT) can be employed for the FGM plate analysis. Because the
transverse displacement is assumed constant across the plate thickness, these 2DSDTs ignore the in-
fluence of thickness extending (i.e., εzz = 0.) on numerical models. Carrera et al. [6] reported that the
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effect of thickness extending can not be ignored for the moderately thick FGM plates. Consequently,
many researchers suggested quasi-3-dimensional shear deformation theories (Q-3DSDT) based on
Murakami’s zigzag-shaped function [7] (MZF) or Carrera’s unified formulation (CUF) [8] for study-
ing the mechanical behaviour of the plates with considering the thickness stretching. However, the
MZF-based and CUF-based theories are complex and costly since they utilize an enormous amount
of displacement unknowns, e.g. Carrera et al. [9] employed 15 displacement unknowns, Talha and
Singh [10], Ganapathi and Makhecha [11] employed 13 displacement unknowns, Chen at al. [12]
and Reddy [13] employed 11 displacement variables, Ferreira et al. [14–16] and Neves et al. [17–19]
employed 9 unknowns in the displacement field. Recently, Zenkour [20] presents a simple quasi-3D
shear deformation theory (SQ-3DSDT) wherein the displacement field is approximated by only four
variables as the same case of the CPT, but accounting for the thickness stretching. Furthermore, one
of the main conveniences of the SQ-3DSDT is that it has shear locking free for thin plates and fewer
variables than those of the FSDT and HSDT. Nevertheless, the SQ-3DSDT needs the shape function
based on the displacement field must be at least C1 continuous, as the result, it obstructs the natural
use of the conventional finite element method (FEM) which possessed the C0 continuity. To overcome
this obstacle, one of the solutions is to use meshless method (MM) in which its shape functions could
be easily established for any orders of continuity.

According to the formulation procedure, MM can be classified into three groups including weak
forms, strong forms, and weak–strong forms. Among the weak-form-based approaches, a well-known
MM using the moving Kriging interpolation-based (MKI) [21] with the shape function having the
Kronecker delta property possessed the boundary conditions enforced explicitly as for the FEM with-
out using any special techniques. Unfortunately, the correlation parameter had a significant impact
on the quality of traditional MKI shape functions, resulting in unstable solutions. Van et al. [22, 23]
has recently attempted to overcome this limitation by improving the quality of the MK shape function
through the key improvement in order to get rid of the correlation parameter effect. Utilizing this
enhanced MKI-based meshfree method [22], Van et al. [24] analyzed the static bending and free vi-
bration problems of functionally graded porous plates laid on elastic foundation based on the refined
quasi-3D sinusoidal shear deformation theory.

In this work, for the first time, the buckling analysis of FGSP resting on the elastic Pasternak foun-
dations by a new refined quasi-3D third-order shear deformation theory (RQ-3DTSDT) integrated
with MKI-based meshfree method based on the quadric correlation function [23] is presented.

2. Theoretical formulations

A considered rectangular FGSP with the thickness h and the width a and depth b is shown in
Fig. 1(a). It consists of three homogeneous or FGM layers having the same Poisson’s ratio υ laying on
Pasternak’s foundation. The effective Young’s modulus Ee f f (z) of FGM layers can be determined by
using the power-law distribution defined by Eq. (1)

Ee f f (z) = Em + (Ec − Em) Vc (z) (1)

where Ec and Em are the Young’s moduli of the ceramic and metal constituents, respectively; Vc (z) =

(0.5 + z/h; )β with βis the gradient index, respectively.

2.1. FGSP with homogeneous core and FGM skins (Type-A)

The FGSP type-A consists of a homogeneous core and two skins whose metal-rich at surfaces
z = z1, z = z4 and ceramic-rich at surfaces z = z2, z = z3, is shown in Fig. 1(b). The volume fraction
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of the P-FGM skins can be computed by Eqs. (2), (3), and (4)

V (1)
c (z) =

(
z − z1

z2 − z1

)β
, z ∈ [z1, z2] (2)

V (2)
c (z) = 1, z ∈ [z2, z3] (3)

V (3)
c (z) =

(
z4 − z
z4 − z3

)β
, z ∈ [z3, z4] (4)

where (z2 − z1) and (z4 − z3) are thicknesses of bottom and top skins. The thickness index of each
plate layer (z4 − z3) / (z3 − z2) / (z2 − z1) is defined as the various ratios 2/1/2; 2/2/1 and so on.

(a) Plate geometry (b) Type-A (c) Type-B

Figure 1. The sandwich FG plate

2.2. FGSP with FGM core and homogeneous skins (Type-B)

Fig. 1(c) depicts the FGSP type-B consisting of a P-FGM core and two homogeneous layers. The
volume fraction of this FG sandwich can be found in Eqs. (5), (6), and (7)

V (1)
c (z) = 0, z ∈ [z1, z2] (5)

V (2)
c (z) =

(
z − z2

z3 − z2

)β
, z ∈ [z2, z3] (6)

V (3)
c (z) = 1, z ∈ [z3, z4] (7)

where V (i)
c , (i = 1, 2, 3) is volume fraction function of layer i; (z3 − z2) is core thickness.

2.3. An proposed RQ-3DTSDT integrated with the MKI element-free Galerkin method

Let Ω be a domain R2 located in the mid-plane of the plate. Regarding the tension effect in z
direction, the plate displacements u, v and w in the x, y and z directions, respectively can be modeled
with only four displacement variables [20] as follows:

u(x, y, z) = u0(x, y) − z
∂w0,1(x, y)

∂x
+ f (z)

∂w0,2(x, y)
∂x

(8)

v(x, y, z) = v0(x, y) − z
∂w0,1(x, y)

∂y
+ f (z)

∂w0,2(x, y)
∂y

(9)

w(x, y, z) = w0,1(x, y) + w0,2(x, y)g(z) (10)
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in which u0 (x, y),v0 (x, y) and w0,1 (x, y) are the displacements of the middle plane (z = 0) in the x, y, z
direction, while w0,2 (x, y) is the additional displacement that considered an effect of normal stress.

New transverse shear deformation functions that satisfying naturally the vanished condition at
the outer surfaces of the plate for transverse shear stresses are chosen as f (z) = 7z/4 − 7z3/3h2

and g (z) = 7/12 − 7z2/3h2, respectively. The functions f (z) and g (z), which represent the realistic
parabolic distribution of transverse shear strains and stresses across the plate thickness, are carefully
chosen to satisfy the traction-free boundary conditions and obtained through numerical comparisons
of the obtained results with available analytical solutions. The strain-displacement relations are given
by Eqs. (11) and (12)

ε̄ =
{
εxx εyy γxy εzz

}T
= ε̄0 + zε̄1 + f (z)ε̄2 + g′(z)ε̄3 (11)

γ̄ =
{
γxz γyz

}T
=

[
f ′(z) + g(z)

]
ε̄s (12)

wherein ε̄s =

{
∂w0,2

∂x
∂w0,2

∂y

}T

, ε̄0 =

{
∂u0

∂x
∂v0

∂y
∂u0

∂y
+
∂v0

∂x
0
}T

, ε̄1 = −

{
∂2w0,1

∂x2

∂2w0,1

∂y2

2
∂2w0,1

∂x∂y
0
}T

, ε̄2 =

{
∂2w0,2

∂x2

∂2w0,2

∂y2 2
∂2w0,2

∂x∂y
0
}T

, ε̄3 =
{
0 0 0 ws

}T
while f ′ (z) =

∂ f (z)
∂z

,

g′ (z) =
∂g (z)
∂z

and are the first derivatives with respect to z, respectively. The stress-strain behaviour

can be formed in general Hooke’s law as

σxx

σyy

σzz

τyz

τxz

τxy


=



Q11 (z) Q12 (z) Q13 (z) 0 0 0
Q12 (z) Q22 (z) Q23 (z) 0 0 0
Q13 (z) Q23 (z) Q33 (z) 0 0 0

0 0 0 Q44 (z) 0 0
0 0 0 0 Q55 (z) 0
0 0 0 0 0 Q66 (z)





εxx

εyy

εzz

εyz

εxz

εxy


(13)

where σ =
{
σxx σyy σzz τyz τxz τxy

}T
and ε =

{
εxx εyy εzz εyz εxz εxy

}T
are stress ten-

sor and strain tensor, respectively. The elastic coefficients Qi j (z) can be given below:

Q11 (z) = Q22 (z) = Q33 (z) =
Ee f f (z) (1 − υ)
(1 − 2υ) (1 + υ)

(14)

Q12 (z) = Q13 (z) = Q23 (z) =
Ee f f (z) υ

(1 − 2υ) (1 + υ)
(15)

Q44 (z) = Q55 (z) = Q66 (z) =
Ee f f (z)
2 (1 + υ)

(16)

Considering an FG plate with two-parameter elastic foundation, the total potential energy can be
written as below:

Ξ =
1
2

∫
V

[
σxxεxx + σyyεyy + σzzεzz + τxzγxz + τyzγyz + τxyγxy

]
dV + ...

... +
1
2

∫
Θ

kww2 + ks

(∂w
∂x

)2

+

(
∂w
∂y

)2 + F0
x
∂2w
∂x2 + F0

y
∂2w
∂y2 + 2F0

xy
∂2w
∂x∂y

 dΘ

(17)

where kw and ks are the Winkler’s stiffness and shear stiffness coefficients of the elastic foundation,
respectively; F0

x , F
0
y and F0

xy are the in-plane compressive forces per unit length.
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2.4. Meshless formulation for buckling analysis of the FG plates rested on the elastic foundations

Let us consider a distribution function u (xi) that was approximated in the sub-domain ℘x (℘x ⊆ Θ)
over a number of n scattered nodes x1, x2, ..., xn. The MK interpolation function uh (x) ,∀x ∈ ℘x can
be expressed as follows:

uh(x) =
[
p̆T (x) ¯̆A + r̆T (x) ¯̆B

]
u(x) (18)

or

uh(x) =

n∑
I=1

Ni(x)uI (19)

in which the MK shape function Ni(x) is set by

Ni(x) =

m∑
j=1

p̆ j(x)Ă jI +

n∑
k=1

r̆k(x)B̆kI (20)

with
¯̆A =

( ¯̆PT ¯̆R−1 ¯̆P
)−1 ¯̆PT ¯̆R−1 (21)

¯̆B = ¯̆R−1
(¯̆I − ¯̆P ¯̆A

)
(22)

Matrix ¯̆I denotes an identity matrix, and in Eq. (18) p̆T (x) and r̆T (x) are defined by:

p̆T (x) =
[
p̆1(x), p̆2(x), . . . , p̆m(x)

]
(23)

r̆T (x) = [R (x1, x) ,R (x2, x) , . . . ,R (xn, x)] (24)

In Eq. (21) matrix ¯̆Pn×m comprised values of the vital functions determined by Eq. (25) while
¯̆R
[
R

(
xi, x j

)]
n×n

included the so-called correlation matrix determined by Eq. (26) at the given nodes,
they are shown as below:

¯̆Pn×m =


p̆1 (x1) p̆2 (x1) · · · p̆m (x1)
p̆1 (x2) p̆2 (x2) · · · p̆m (x2)
...

...
. . .

...

p̆1 (xn) p̆2 (xn) · · · p̆m (xn)

 (25)

¯̆R
[
R

(
xi, x j

)]
=


1 R (x1, x2) · · · R (x1, xn)

R (x2, x1) 1 · · · R (x2, xn)
...

...
. . .

...

R (xn, x1) R (xn, x2) · · · 1

 (26)

In order to enhance the quality of the conventional MKI shape function, we use the quadric corre-

lation function [23] R(xi, x j) =
(
1 − ri j/lx

√
2

)2
. Also, lx denotes the mean distance between the given

nodes xi (i = 1, ..., n) within the support domain. The influence domain was determined by dm = αdc,
wherein dc is a characteristic length, and α denotes a scaling factor.
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2.5. Discrete governing equations

Generalized displacements of the FG plate in Eqs. (8), (9), and (10) can be approximated in terms
of the displacements at nodes

w̃h =
[

w̃h
0,1 w̃h

0,2 w̃h
0,3 w̃h

0,4

]T
and w̃I =

[
w̃0,1I w̃0,2I w̃0,3I w̃0,4I

]T
(27)

Substitute Eq. (19) into Eqs. (11) and (12), we obtain the strain expressions after some algebraic
manipulations:

¯̆ε1 =

n∑
I=1

¯̆Bb1
I w̃I (28)

¯̆ε2 =

n∑
I=1

¯̆Bb2
I w̃I (29)

¯̆ε3 =

n∑
I=1

¯̆Bb3
I w̃I (30)

¯̆ε4 =

n∑
I=1

¯̆Bb4
I w̃I (31)

¯̆ε5 =

n∑
I=1

¯̆Bb5
I w̃I (32)

where ¯̆Bb1
I ,

¯̆Bb2
I ,

¯̆Bb3
I ,

¯̆Bb4
I and ¯̆Bb5

I are given by

¯̆Bb1
I =


NI,x 0 0 0

0 NI,y 0 0
NI,y NI,x 0 0
0 0 0 0

 (33)

¯̆Bb2
I =


0 0 −NI,xx 0
0 0 −NI,yy 0
0 0 −2NI,xy 0
0 0 0 0

 (34)

¯̆Bb3
I =


0 0 0 NI,xx

0 0 0 NI,yy

0 0 0 2NI,xy

0 0 0 0

 (35)

¯̆Bb4
I =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 NI

 (36)

¯̆Bb5
I =

[
0 0 0 NI,x

0 0 0 NI,y

]
(37)
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Using Eqs. (13), (17) and applying a weak formulation [25], the discretized equations for the buck-
ling analysis of the FG plate can be obtained by solving the eigenvalue problem:

(
K∆ − λcrK∆g

)
ū = 0

in which K denoting the global stiffness can be determined by

K∆ =

∫
V


¯̆Bb1

I
¯̆Bb2

I
¯̆Bb3

I
¯̆Bb4

I


T 

Td1 Td2 Td4 Td5

Td2 Td3 Td6 Td7

Td4 Td6 Td8 Td9

Td5 Td7 Td9 Td10




¯̆Bb1
I

¯̆Bb2
I

¯̆Bb3
I

¯̆Bb4
I

 dV +

∫
V

( ¯̆Bb5
I

)T
Ds

¯̆Bb5
I dV

+

∫
Θ

NT
I kwNIdΘ +

∫
Θ

ks

[( ¯̆Bg1
I

)T ¯̆Bg1
I +

( ¯̆Bg2
I

)T
B̄g2

I

]
dΘ

(38)

wherein {
T d1

i j ,T
d2
i j ,T

d3
i j ,T

d4
i j ,T

d5
i j

}
=

h/2∫
−h/2

{
1, z, z2, f (z) , g′ (z)

} ¯̃Qi j (z) dz (39)

Ds
i j =

h/2∫
−h/2

[
f ′ (z) + g (z)

]2 ¯̃Gi j (z) dz (40)

{
T d6

i j ,T
d7
i j ,T

d8
i j ,T

d9
i j ,T

d10
i j

}
=

h/2∫
−h/2

{
z f (z) , zg′ (z) , f 2 (z) , f (z) g′ (z) , g′2 (z)

} ¯̃Qi j (z) dz (41)

Matrices ¯̃Q (z) and ¯̃G (z) express the material constitutive behaviors

¯̃Q (z) =


Q11 (z) Q12 (z) 0 Q13 (z)
Q12 (z) Q22 (z) 0 Q23 (z)

0 0 Q44 (z) 0
Q13 (z) Q23 (z) 0 Q33 (z)

 (42)

¯̃G (z) =

[
Q55 (z) 0

0 Q66 (z)

]
(43)

The global geometric stiffness matrix K∆g is expressed as follows

K∆g =

∫
Θ

( ¯̆Bg1
I

)T
[

F0
x F0

xy
F0

xy F0
y

]
¯̆Bg1

I dΘ +

∫
Θ

( ¯̆Bg2
I

)T
[

F̂0
x F̂0

xy
F̂0

xy F̂0
y

]
¯̆Bg2

I dΘ (44)

where ¯̆Bg1
I =

[
0 0 NI,x 0
0 0 NI,y 0

]
, ¯̆Bg2

I =

[
0 0 0 NI,x

0 0 0 NI,y

]
,
{
F̂0

x , F̂
0
y , F̂

0
xy

}
=

h/2∫
−h/2

{
F0

x , F
0
y , F

0
xy

}
g2 (z)dz.

A second-order polynomial basis p̆T (x̂) =
{

1 x y x2 xy y2
}

employed in Eq. (25). Further-
more, the quadratic polynomial basic function (m = 6) and the mesh with (4 × 4) Gauss points are
employed to constructing the MK shape function.
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3. Numerical results

3.1. Numerical validations

This section deals with the accuracy of the proposed method for predicting the normalized buck-
ling load of FGSP plates rested on the elastic foundation. The FGSP plate boundaries are noted by
the following symbols: (F) signifies a totally free border; (S) indicates a simply supported border;
and (C) pertains to a fully clamped border. First, we calculate the normalized buckling load of the
square plate Al/ZnO2 Type-A using the boundary conditions SSSS with a thickness-to-length ratio
a/h = 10 and Poisson’s ratio υ = 0.3. In this study, material properties of Metal (Aluminum, Al):
Em = 70× 109 N/mm2 and of Ceramic (Zirconia, ZrO2): Ec = 151× 109 N/mm2. In all examples, the
foundation parameters are expressed in non-dimensional forms as Kc

w = kwa4/Dc,Kc
s = ksa2/Dc with

Dc = Ech3/12
(
1 − υ2

)
. Table 1 shows the comparison of normalized buckling loads for the FGSP

plates rested on two-parameter elastic foundation calculated by the present method and expressed in
the normalized form of Ncr = λcra2/100h3 for several gradient indices under uni-axial and bi-axial

Table 1. Normalized buckling load Ncr of the simply-supported square plate (a/h = 10) Type-A Al/ZnO2 for
the uni-axial and bi-axial compression

Uni-axial compression Bi-axial compression

Schemes β Methods
(
Kc

w,K
c
s
) (

Kc
w,K

c
s
)

0, 0 10, 10 100, 100 0, 0 10, 10 100, 100

2-1-2

0.0
Akavci [26] 5.1127 7.9382 33.3348 2.5563 3.9691 16.6674

Present 5.2723 8.1788 34.3170 2.6365 4.0902 17.1734

2.0
Akavci [26] 2.8455 5.6690 31.0244 1.4227 2.8345 15.5122

Present 2.9113 5.8178 32.1766 1.4558 2.9095 15.9928

10.0
Akavci [26] 2.4809 5.3040 30.6456 1.2404 2.6520 15.3228

Present 2.5379 5.4443 31.5965 1.2691 2.7228 15.8060

1-1-1
2.0

Akavci [26] 3.0116 5.8353 31.1957 1.5058 2.9177 15.5978

Present 3.0814 5.9879 32.0738 1.5408 2.9946 16.0778

10.0
Akavci [26] 2.6004 5.4235 30.7689 1.3002 2.7118 15.3845

Present 2.6593 5.5658 31.7486 1.3298 2.7835 15.8668

2-2-1
2.0

Akavci [26] 3.1761 6.0002 31.3670 1.5881 3.0001 15.6835

Present 3.2511 6.1576 32.2629 1.6257 3.0794 16.1627

10.0
Akavci [26] 2.7764 5.6002 30.9562 1.3882 2.8001 15.4781

Present 2.8395 5.7460 31.5850 1.4199 2.8736 15.9569

1-2-1
2.0

Akavci [26] 3.3125 6.1367 31.5059 1.6563 3.0683 15.7529

Present 3.3911 6.2977 32.4128 1.6957 3.1494 16.2327

10.0
Akavci [26] 2.8790 5.7025 31.0592 1.4395 2.8513 15.5296

Present 2.9447 5.8512 31.9025 1.4725 2.9262 16.0095
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compression with those reported by Akavci [26]. It is noteworthy that results obtained by the present
method are in good accuracy for all schemes of the FGSP. Furthermore, the normalized buckling
loads increase with decrease of the gradient index and strongly depend on the foundation stiffness
parameters.

3.2. Parametric studies

Investigations were carried out for the analysis of normalized buckling loads for the simply-
supported edges Al/ZnO2 Type-B (a/h = 10) under the bi-axial compression. Table 2 shows the
values of the normalized buckling loads of the plate using various schemes with respect to gradient
indices. The normalized stiffness coefficients of the Pasternak foundation are given as Kc

w = 10 and
Kc

s = 100. It can be observed from the table results that the increase of the gradient indices will lead
to the decrease of the normalized buckling loads. In the case of the gradient indices less than unity,
the normalized buckling loads increase with increasing in the core layer thickness, however, with de-
creasing the skin layer thickness. Meanwhile, the normalized buckling loads decrease with increase in
the core layer thickness and with decreasing of the skin layer thickness in case of the gradient indices
greater than 2.

Table 2. Influence of gradient index on the normalized buckling load Ncr for square SSSS plate a/h = 10
Type-B Al/ZnO2 with elastic foundation

(
Kc

w = 10,Kc
s = 100

)
Schemes

Gradient index β

0.0 0.5 1.0 2.0 5.0 6.0 8.0 10

1-1-1 15.7176 15.6698 15.6512 15.6375 15.6291 15.6282 15.6270 15.6263
1-3-1 15.8976 15.7351 15.6739 15.6310 15.6024 15.5983 15.5919 15.5872
1-5-1 16.0209 15.7780 15.6867 15.6224 15.5762 15.5687 15.5569 15.5479
0-1-0 16.4829 15.9317 15.7233 15.5723 15.4420 15.4166 15.3753 15.3431
3-1-3 15.6592 15.6475 15.6424 15.6381 15.6349 15.6345 15.6341 15.6338
5-1-5 15.6504 15.6441 15.6412 15.6386 15.6365 15.6362 15.6359 15.6357

In Fig. 2, the effect of the length-to-thickness ratio a/h on the normalized buckling loads of the
plate rested the Pasternak foundation

(
Kc

w = 10,Kc
s = 10

)
is displayed. It can be seen in this figure

that increasing the ratio of a/h leads to an increase in the normalized buckling loads for the case of
thick and moderately thick plates (a/h ≤ 50).

Also, the plate ( 0-1-0) giving the smallest normalized buckling loads for the case of homoge-
neous metallic (β = 10) and the maximum values of those with the homogeneous ceramic (β = 0).
Furthermore, the effect of width-to-length ratio b/a on the normalized buckling loads for the plate
using two configurations of (1-8-1) and (8-1-8) is shown in Fig. 3. As shown in this figure the effect
of the shear stiffness coefficient is more effective than Winkler’s spring stiffness coefficient when
increasing the plate normalized buckling loads. It can be concluded that increasing the ratio of b/a
leads to increase in the normalized buckling loads.

Finally, the influence of the boundary conditions on the normalized buckling loads for the plate
using the scheme of (1-1-1) is given in Table 3. It is observed that, for all cases the normalized
buckling load decreases with the increasing of the gradient index but at different rates depending on
whether the plate boundary condition is simply supported, clamped or clamped – simply supported.
It is noticeable from Table 2 that the normalized buckling load Ncr increases with higher restraining
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(a) β = 0 (b) β = 10

Figure 2. Relationship of the normalized buckling load Ncr and the length-to-thickness ratio a/h for different
types of plate Type-B Al/ZnO2 (a/h = 10)

(a) 1-8-1 (b) 8-1-8

Figure 3. Relationship of the normalized buckling load Ncr and the width-to-length ratio b/a for different
types of plate Type-B Al/ZnO2 (a/h = 10)

Table 3. Effect of the boundary conditions on the normalized buckling load Ncr for square plate a/h = 10
Type-B Al/ZnO2 placed on an elastic base

(
Kc

w = 10,Kc
s = 10

)
Boundary conditions

Gradient index β

0.0 0.5 1.0 2.0 5.0 6.0 8.0 10

CFFF 1.8252 1.8184 1.8157 1.8139 1.8129 1.8128 1.8127 1.8127
SFSF 2.3712 2.3482 2.3395 2.3334 2.3303 2.3301 2.3298 2.3296
SFSS 2.4168 2.3913 2.3815 2.3748 2.3714 2.3711 2.3708 2.3706
CCCF 3.6838 3.6181 3.5917 3.5717 3.5588 3.5574 3.5557 3.5546
SCSC 4.6985 4.6038 4.5654 4.5357 4.5154 4.5131 4.5101 4.5081
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boundary conditions used at the plate borders regardless of the gradient index. In other words, the
lowest and highest values of the normalized buckling load correspond to the CFFF and SCSC plates,
respectively. Such behavior is due to the fact that higher constraints at the edges increase the plate
flexural rigidity, leading to a higher normalized buckling load.

4. Conclusions

In this article, the buckling behavior of the FGSP laid on the elastic Pasternak foundation under in-
plane compressive loads is analyzed. Both effects of the thickness stretching, and shear deformation
are incoperated in the proposed RQ-3DTSDT integrated with the MKI meshless method. The variable
unknowns of the present method is reduced to four resulting in considerably lower computation costs.
The accuracy of the present method is justified by comparing the numerical results with the available
ones. It can be concluded that the major parameters have considerable effects on the compressive
buckling behaviors of the FG plates. The shear stiffness factor of the Pasternak-type foundation plays
important role in increasing the normalized buckling load for the sandwich FG plates. The following
major points can be drawn from the present study for the buckling behaviors of the symmetric FGSP
with an FG core laid on the elastic foundations as follows:

- Increasing the gradient index leads to decreasing the normalized buckling load. The homoge-
neous ceramic plate has smaller values of normalized buckling loads than those of the corresponding
FGSP.

- As the gradient index is less than unity, the increase of the skin layer thickness leads to a decrease
significantly in normalized buckling load, and it is also clear that decreasing the plate-core thickness
leads to decrease normalized buckling loads.

- As the gradient index is greater than, decreasing the skin layer thickness causes in decreasing the
normalized buckling load, while increasing the core layer thickness leads to decreasing the normalized
buckling loads.

- For FGSP plates with all boundary conditions on Pasternak support, the normalized buckling
load is almost constant with respect to the variation of the gradient index.
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