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Abstract

This paper deals with the free vibration and dynamic responses of composite sandwich plates. The sandwich
plate has three layers in which two face sheets are made of isotropic material, and the core layer is made
of auxetic honeycomb structures with a negative Poisson’s ratio. A smoothed finite element model based on
the first-order shear deformation theory is established for the analysis purpose. In the model, only the linear
approximation is necessary, and the discrete shear gap method for triangular plate elements is used to avoid
the shear locking. The Newmark direct integration technique is used to capture the dynamic responses of the
sandwich plates. The convergence study is made, and the accuracy of present results is validated by comparison
with available data in the literature. The influence of geometrical parameters, material properties, and boundary
conditions are explored and discussed. Numerical results show that auxetic materials have several different
responses compared to conventional materials, and these behaviors are strongly influenced by the internal
structure of the auxetic material.
Keywords: dynamic response; sandwich auxetic composite; finite element method; free vibration; honeycomb
core.
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1. Introduction

Sandwich structures possess many outstanding features such as high stiffness to weight ratios, ex-
cellent energy absorption, great blast resistance, and very good acoustic and thermal isolation, so they
are commonly used in light structural applications. The mechanical properties of sandwich structures
on the one side depending on the face sheets materials, but on the other side depending on the chosen
core material. Honeycombs with a negative Poisson ratio, named auxetic, have several specific me-
chanical properties compared to conventional ones, such as high shear modulus, fracture toughness,
and indentation resistance. Thus, honeycomb sandwich structures with negative Poisson’s ratio are
widely used in many areas, including civil aviation, marine, shipbuilding, automobile, civil construc-
tion due to their ultra properties such as higher stiffness, lightweight, and high-energy absorption.

There have been several studies and achievements on honeycomb sandwich structures using var-
ious theoretical models and computational methods. Scarpa and Tomlinson [1] analyzed the free
vibration of the simply supported composite sandwich plates (CSP) with in-plane negative Poisson’s
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ratio based on the first-order shear deformation plate theory (FSDT). Hadjigeorgiou and Stavroulakis
[2] proposed a sandwich beam model with piezoelectric face sheets and auxetic core for shape control
based on Timoshenko beam theory and finite element method (FEM). Ruzzene et al. [3] analyzed
and controlled wave propagation in CSP with the cellular core by using Kirchhoff plate theory and
FEM. Strek and co-workers [4] used a finite element model to study the effective properties and dy-
namic response of the sandwich panel with an auxetic core layer. Mukhopadhyay and Adhikari [5]
developed a closed-form formula to study how random structural irregularity in honeycomb core af-
fects the natural frequencies of sandwich panels. Imbalzano et al. [6] investigated the blast resistance
of sandwich panels composed of the auxetic cellular core. The buckling behaviors of a rectangular
auxetic material plate under uniaxial compression were reported by Yongcun and his colleagues [7].
Duc et al. [8] presented an analytical solution based on the FSDT and Galerkin method for nonlinear
vibration and dynamic analysis of cylindrical panels made by auxetic honeycomb composite sandwich
material. Using LS-DYNA, Novak et al. [9] built the computational model to validate experimental
results in studying blast respose of sandwich panels with chiral auxetic core. Cong et al. [10] analyzed
the nonlinear dynamic response of stiffened sandwich circular shells with auxetic honeycombs core
sourounded by elastic medium under mechanical and blast loads. Postbuckling analysis of CSP with
FG auxetic 3D lattice core subjected to thermomechanical loads has been introduce ted by Li et al.
[11]. Employing the classical plate theory inconjjunction with Galerkin method, Quan et al. [12] pre-
sented nonlinear dynamic and vibaritional characteristics of CSP composed of gold and piezoelectric
face sheets, and auxetic honeycomb core. Nguyen et al. [13] investigated vibrational characteristics,
buckling behavior and dynamic instability of CSP consist of auxetic honeycomb core and face sheets
reinforced by graphene nanoplatelets that have been instigated by using polygonal plate element and
are reported.

With the development of new materials and their application in different engineering structures,
many computational models have been developed to predict these structures’ responses. For the plates
and shell, the models are based on the displacement-based theories, which can be classified into three
categories: classical plate theory (CPT), first-order shear deformation theory (FSDT), and higher-
order shear deformation theory (HSDT). While the models based on the CPT [14] are simple but
only provides accurate results for thin plates and shells, the models based on HSDT [15–18] are so
complicated, the models based on FSDT [19, 20] can be used for both thin and thick plates and
shells. However, models based on FSDT often suffer from two major drawbacks; (1) the "shear lock-
ing"phenomena, which pollute the numerical results in the thin limit, and (2) the overly stiff behavior,
which leads to poor accuracy and low convergence of numerical solutions. To avoid these problems
of the FSDT model, a smooth finite element model, so-called the cell-based smoothed discrete shear
gap method (CS-DSG3) using the cell-based strain smoothing technique and three-node triangular
elements, has been developed by T Nguyen-Thoi et al. [21]. In the CS-DGS3 model, the strain com-
ponents of each triangle element are calculated through the strain components of three sub-triangles,
so the calculation time of the CS-DSG3 model will be more than that of the flat element model.

It can be seen that to avoid the shear locking phenomenon when using FSDT, a smooth finite
element method with more computation time than conventional FEM can be used. However, to eval-
uate the efficiency of this combination as well as to enrich the computational models, in this paper,
a sandwich plate with auxetic honeycomb core layer (AHCL) and isotropic face sheets is chosen to
study. Free vibration and dynamic response analysis of auxetic composite sandwich plates are an-
alyzed. After some comparative examples for validating the model, a few new investigations about
the influence of material properties, geometrical parameters, and boundary conditions on vibrational
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characteristics of the auxetic sandwich composite plates are conducted.

2. Sandwich composite plate with auxetic core

2.1. Description of the problem

A rectangular sandwich plate with length a, width b, and total thickness hp, as shown in Fig. 1,
is considered in this study. The thicknesses of the bottom, core, and top layers are h1, h2, and h3,
respectively. The top and bottom outer skin layers are made of isotropic aluminum materials, while
the core is made of an auxetic honeycomb structure using the same aluminum material.
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Figure 1. Model of an AHCL sandwich plate. 

2.2. Auxetic honeycomb materials  

The mechanical properties of a honeycomb unit cell depend not only on the 
original material properties but also on the vertical cell rib length h, the inclined cell 
rib length l, and the inclined angle θ. 

 

 
Figure 2. Unit cell layout for the honeycomb structure. 

The material properties of the AHCL are given by [22]: 
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Figure 1. Model of an AHCL sandwich plate
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Figure 2. Unit cell layout for the honeycomb
structure

2.2. Auxetic honeycomb materials

The mechanical properties of a honeycomb unit cell depend not only on the original material
properties but also on the vertical cell rib length h, the inclined cell rib length l, and the inclined
angle θ.

The material properties of the AHCL are given by [22]:
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where E,G, and ρ are Young’s moduli, shear moduli, and mass density of the original material;
subscript symbol “C” refers to the core layer.
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3. Formulations

3.1. Equations of motion for plate element

According to FSDT, the displacement field is defined as

u (x, y, z, t) = u0 (x, y, t) + zθx (x, y, t)

v (x, y, z, t) = v0 (x, y, t) + zθy (x, y, t)

w (x, y, z, t) = w0 (x, y, t)
(2)

where t is the time; u0, v0, and w0 are displacements of a point at the mid-plane; θx and θy are rotations
of the transverse normal in yz and xz planes, respectively. The strain fields can be written as follows

εxx

εyy

γxy

 =


u0,x
v0,y

u0,y + v0,x

 + z


θx,x

θy,y

θx,y + θy,x

 = εm + zκ

{
γxz

γyz

}
=

{
θx + w0,x
θy + w0,y

}
= γ

(3)

where εm, κ and γ are membrane, bending, and shear strains, respectively; the subscript “comma”
represents the partial derivative to the spatial coordinate succeeding it.

Hooke’s law for the AHCL sandwich plates is defined as follows:
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(5)

In Eq. (4) and (5), “T”, “B”, and “C” refer to the top, bottom, and core layers. Applying Hamilton’s
principle, the equations of motion are derived by:

δ

t1∫
t0

[T − (U + W)] dt = 0 (6)

where δ is the notation of variation, W is the external work. Meanwhile, T is the kinetic energy, and
U is the strain energy of the plate.
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The strain energy of the plates is determined as follows

U =
1
2

∫
V

(
σxxεxx + σyyεyy + σxyγxy + τxzγz + τyzγyz

)
dV
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1
2
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κ

γ
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(7)

where
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2∫
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2
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i jdz +
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2

ksQT
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in which ks =
5
6

is the shear correction factor.
The kinetic energy of the plate is expressed as

T =
1
2

∫
V

[
(u̇)2 + (v̇)2 + (ẇ)2

]
dV =

1
2

b∫
0

a∫
0

(u̇)T mu̇dxdy (10)

where

m =


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in which

(I0, I1, I2) =

−
h2
2∫
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ρB(1, z, z2)dz +
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2
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The external work due to uniform transverse pressure loading q is given as

W =

b∫
0

a∫
0

uT qdxdy (13)

5



Quoc, T. H., et al. / Journal of Science and Technology in Civil Engineering

3.2. CS-DGS3 Finite Element Model
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The domain Ω of the plate is discretized
into Ne triangular elements with Nn number of
nodes. Each triangular element Ωe, as shown
in Fig. 3, is divided into three sub-triangles
∆1,∆2 and ∆3. The displacement vector de

O ={
ue

0O, v
e
0O,w

e
0O, θ

e
xO, θ

e
yO

}T
of the connecting point

O is assumed to be the simple average of three dis-
placement vectors de

i =
{
u0i, v0i,w0i, θxi, θyi

}T
, (i =

1, 2, 3) of three nodes as,

de
O =

1
3

(
de

1 + de
2 + de

3

)
(14)

By using the DGS3 formulation and Eq. (14), the membrane, bending, and shear strains in the
sub-triangle ∆1 can be expressed as

ε∆1
m =

[ 1
3

b∆1
m1

+ b∆1
m2

1
3

b∆1
m1

+ b∆1
m3

1
3

b∆1
m1

]
︸                                           ︷︷                                           ︸

B∆1
m


de1

de2

de3

 = B∆1
m de (15)

κ∆1
b =

[ 1
3

b∆1
b1

+ b∆1
b2

1
3

b∆1
b1

+ b∆1
b3

1
3

b∆1
b1

]
︸                                          ︷︷                                          ︸

B∆1
b


de1

de2

de3

 = B∆1
b de (16)

γ∆1
s =

[ 1
3

S ∆1
1 + S ∆1

2
1
3

S ∆1
1 + S ∆1

3
1
3

S ∆1
1

]
︸                                            ︷︷                                            ︸

S ∆1


de1

de2

de3

 = S ∆1de (17)

where b∆1
mi
, b∆1

bi
and S ∆1

i (i = 1, 2, 3) are determined similarly as the strain gradient matrices bmi
, bbi

and
S i of the flat element DSG3 [21]. The cyclic permutation easily obtains the membrane, bending, and
shear strains for the second sub-triangle ∆2 and third ∆3, respectively.

The smoothed membrane, bending, and shear strain (ε̄m, κ̄b, γ̄s) on the triangular element Ωe can
be obtained by applying the corresponding cell-based formulas.

ε̄m = B̄mde; κ̄b = B̄bde; γ̄s = S̄ de (18)

where B̄m, B̄b and S̄ are the smoothed membrane, bending and shear gradient matrices, and given by

B̄m =
1
Ae

3∑
i=1

A∆i B
∆i
m ; B̄b =

1
Ae

3∑
i=1

A∆i B
∆i
b ; S̄ =

1
Ae

3∑
i=1

A∆iS
∆i (19)

The equilibrium equation for dynamic analysis of the sandwich plate is obtained by substituting
Eq. (18) into Eq. (7), then substituting the results to Eq. (6) and using some mathematical calculations:

Md̈ + Kd = F (20)
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In Eq. (20), d and d̈ are, respectively, the nodal displacement vector and the second-order deriva-
tive of displacement, while K, M and F are the global stiffness matrix, global mass matrix and global
nodal force vector which are assembled from elemental stiffness matrices, elemental mass matrices
and elemental nodal force vectors as follow

K =

Ne∑
i=1

KCS−DS G3
e ; M =

Ne∑
i=1

Me; F =

Ne∑
i=1

Fe (21)

in which
KCS−DS G3

e =

∫
Ωe

[
B̄T

mAB̄m + B̄T
mBB̄b + B̄T

b BB̄m + B̄T
b DB̄b + S̄ T DsS̄

]
dΩ (22)

Me =

∫
Ωe

NT mNdΩ (23)

Fe =

∫
Ωe

NT qdΩ (24)

where N is the shape function matrix.
For free vibration analysis, the equation is given as

Md̈ + Kd = 0 (25)

4. Numerical results

4.1. Validation and Convergence study

Before proceeding with the parametric studies, convergency and comparison studies are con-
ducted first.

In the first comparison, the fundamental frequencies of a simply supported sandwich plate are
computed and compared with those reported by Tran et al. [23] using plate elements within the frame-
work of the finite element method and FSDT. The results are presented in Table 1. The square plate
has length a = b = 2 m, thickness hp = h2 + h1 + h3 = a/20. The plate has three-layer, the top and
bottom layers have thickness h1 = h3 = h f , the core has thickness hc = h2 = 1.5h f . All layers have
the same material properties: E = 69 GPa, ρ = 2700 kg/m3, and υ = 0.33. It can be seen from Table 1
that with the mesh 12×12×2 elements, the obtained results show good agreement with solutions by
Tran et al. [23]. So this meshing will be used throughout the numerical examples.

In the following example, the dimensionless central deflection w̄ =
wEhp

q0a2 as functions of dimen-

sionless time t̄ = t
√

E/
(
a2ρ

)
for an isotropic square plate subjected to a suddenly applied uniform

load with q0 = −106 N/m2 is plotted and compared with those of Reddy [24] as seen in Fig. 4. From
this figure can be observed that present results well match with Reddy’s report [24], in which the
finite element method and third-order shear deformation theory are used.
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Table 1. Comparison of fundamental frequency f (Hz) of the AHCL sandwich plate (hp = 0.1 m,
a = b = 20hp, t/l = 0.1385)

θ◦ Mesh
h/l = 0.5 h/l = 1 h/l = 4

Present [23] Present [23] Present [23]

θ◦ = −10◦
6×6 158.280

150.087

159.877

151.609

160.460

152.407
8×8 153.598 155.147 155.712

10×10 151.348 152.872 153.428
12×12 150.040 151.549 152.340

θ◦ = −35◦
6×6 181.633

172.323

157.957

149.783

159.976

152.196
8×8 176.247 153.284 155.243

10×10 173.637 151.039 152.966
12×12 172.111 149.734 152.129

θ◦ = −55◦
6×6 167.264

158.642

150.678

142.858

158.989

151.753
8×8 162.311 146.223 154.285

10×10 159.923 144.087 152.023
12×12 158.531 142.848 151.687

θ◦ = −80◦
6×6 175.079

166.087

62.185

58.716

152.765

148.721
8×8 169.891 60.283 148.247

10×10 167.380 59.432 146.077
12×12 165.915 58.959 148.661
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In the following example, the dimensionless central deflection  as 

functions of dimensionless time  for an isotropic square plate subjected 

to a suddenly applied uniform load with q0=-106 N/m2 is plotted and compared with 
those of Reddy [24] as seen in Fig. 4. From this figure can be observed that present 
results well match with Reddy's report [24], in which the finite element method and 
third-order shear deformation theory are used. 

 
Figure 4. Dimensionless central deflection versus dimensionless time curves for an 

isotropic square plate subjected to a suddenly applied uniform load. 

4.2. Parametric studies 

2
0
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w
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Figure 4. Dimensionless central deflection versus dimensionless time curves for an isotropic square plate
subjected to a suddenly applied uniform load

4.2. Parametric studies

Consider a square plate with thickness hp = 0.1 m, length a = b = 20hp. The plate has three layers,
in which the upper and lower layer are isotropic material, while the core layer is auxetic honeycomb
material. Material properties are taken as E = 69 GPa, ρ = 2700 kg/m3, and ν = 0.33. It is noted that
the symbols C, F, and P denote the clamped, free, and pinned boundary conditions, respectively.

8



Quoc, T. H., et al. / Journal of Science and Technology in Civil Engineering

a. Free vibration of the ACL sandwich plate
Table 2 lists three first natural frequencies f (Hz) of the AHCL sandwich plate with t/l = 0.1385

for various boundary conditions (BC) and different values of inclined angle θ. It is seen that with
the investigated BC herein, the CCCC plate has the highest value of fundamental frequency while
the CFFF plate has lowes one. This observation is due to the existence of more boundary constraints
in the CCCC condition, which results in higher stiffness of the plates. In this specific example, the
second and the third natural frequencies of the SSSS and CCCC plates are similar. This phenomenon
is suitable for the symmetrical plate structures under the same boundary. It is also observed that the
natural frequencies of the AHCL sandwich plate decrease corresponding to the change of the inclined
angle from −100 to −800.

Table 2. Three first natural frequency f (Hz) of square AHCL sandwich plate
(hp = 0.1 m, a = b = 20hp, t/l = 0.1385)

θ◦ Mode
BCs

CCCC CSCS CCCF SSSS SCSF CFCF CFFF

−10◦
1 276.812 222.493 183.101 151.549 96.480 170.143 26.700
2 560.900 424.146 305.219 381.103 251.389 200.900 64.020
3 570.638 534.165 485.253 384.432 322.234 330.736 162.277

−35◦
1 273.555 219.835 180.901 149.734 95.317 168.091 26.373
2 554.523 419.200 301.638 376.621 248.441 198.500 63.246
3 564.157 527.940 479.567 379.912 318.390 326.858 160.323

−55◦
1 261.191 209.682 172.500 142.848 90.911 160.253 25.135
2 530.212 400.403 288.000 359.591 237.295 189.322 60.305
3 539.565 503.895 457.613 362.763 303.730 312.036 152.880

−80◦
1 108.599 86.324 70.787 58.959 37.417 65.599 10.268
2 221.938 167.253 119.884 149.021 99.017 77.937 24.771
3 229.777 208.464 188.723 151.263 125.066 129.850 62.712

Fig. 5 shows the variation of the natural frequencies f (Hz) with the inclined angle θ (◦) at various
h/l ratios for the AHCL sandwich plate with SSSS condition (a), with CCCC condition (b), with SCSF
condition (c), and with CFFF condition (d). From the figures, it can be observed that the fundamental
frequencies for the cases of h/l = 1, h/l = 1.4, and h/l = 4 increase with the decreased inclined angle
θ while those for the case of h/l = 0.5 do not follow any rule. Thus, in most cases, cell ribs with
smaller incline angles will have a small “grown-together” region around their connecting end, which
will make the microstructure stiffer.

Fig. 6 shows the natural frequencies f (Hz) variation with the thickness ratio hc/h f at various
inclined angles θ. The figure indicates that, unlike conventional materials, auxetic materials with neg-
ative Poisson coefficients have very unpredictable vibrational behavior. The free vibration behavior of
the AHCL sandwich plate can only be determined for a given set of input parameters. For example, in
the case of h/l = 0.5, the frequencies of the plate with θ = −35◦ are highest and increase rapidly with
the thickness ratios hc/hf while the frequencies of the plate with other values of the inclined angle θ
slightly increase. Especially in the case of h/l = 1.0, the frequencies of the plate with θ = −85◦ are
decreased while others increase with the thickness ratios hc/h f .
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Fig. 5 shows the variation of the natural frequencies f(Hz) with the inclined angle 
θ (o) at various h/l ratios for the AHCL sandwich plate with SSSS condition (a), with 
CCCC condition (b), with SCSF condition (c), and with CFFF condition (d). From the 
figures, it can be observed that the fundamental frequencies for the cases of h/l=1, 
h/l=1.4, and h/l=4 increase with the decreased inclined angle θ while those for the case 
of h/l=0.5 do not follow any rule. Thus, in most cases, cell ribs with smaller incline 
angles will have a small "grown-together" region around their connecting end, which 
will make the microstructure stiffer.  

Fig. 6 shows the natural frequencies f(Hz) variation with the thickness ratio hc/hf 
at various inclined angles θ. The figure indicates that, unlike conventional materials, 
auxetic materials with negative Poisson coefficients have very unpredictable vibrational 
behavior. The free vibration behavior of the AHCL sandwich plate can only be 
determined for a given set of input parameters. For example, in the case of h/l=0.5, the 
frequencies of the plate with θ=-35o are highest and increase rapidly with the thickness 
ratios hc/hf while the frequencies of the plate with other values of the inclined angle θ 
slightly increase. Especially in the case of h/l=1.0, the frequencies of the plate with θ=-
85o are decreased while others increase with the thickness ratios hc/hf.  
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0.1m, hc/hf = 1.5, a = b = 20hp, t/l = 0.1385) 
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Figure 6. Variations of fundamental frequency f(Hz) with the thickness ratio hc/hf 

(hp = 0.1m, CCCC, a = b = 20hp, t/l = 0.1385) 
When the core layer of the SCP is made of auxetic honeycomb material with a 

negative Poisson ratio, the influence of the ratio between the length of the vertical cell 
rib and the length of the inclined cell rib h/l should be considered since it is one of the 
most important geometrical parameters of an auxetic material.  

  

Figure 6. Variations of fundamental frequency f (Hz) with the thickness ratio hc/h f

(hp = 0.1 m, CCCC, a = b = 20hp, t/l = 0.1385)
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When the core layer of the SCP is made of auxetic honeycomb material with a negative Poisson
ratio, the influence of the ratio between the length of the vertical cell rib and the length of the inclined
cell rib h/l should be considered since it is one of the most important geometrical parameters of an
auxetic material.
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Figure 7. Variations of fundamental frequency f(Hz) with h/l ratio (hp = 0.1m, 

CCCC, a = b = 20hp, t/l = 0.1385) 

 

Variations of fundamental frequency f(Hz) with h/l ratio at different thickness 
ratios hc/hf are shown in Fig. 7 for various inclined angle θ with clamped at all four 
edges. Again, the results showed irregularities of auxetic materials. With increasing the 
h/l ratio, the natural frequencies of the plate with θ=-35o, -55o, -80o initially decrease 
while those of the plate with θ=-10o slightly increase at all hc/hf values. It is further 
observed that the influence of the inclined angle θ on the natural frequency of the AHCL 
sandwich plate is more significant than that of the h/l ratio. 

b. Dynamic response of the AHCL sandwich plates. 

Next, analyses were performed to characterize the dynamic response of an AHCL 
sandwich plate to suddenly applied uniform pressure loading. The Newmark direct 
integration scheme [25] is used to reduce the semi-discrete finite element equations to 
fully discretized equations. A square simply supported AHCL sandwich plate with 
thickness hp=0.1m under a suddenly applied uniform load q0= -106N/m2 is considered. 
The Rayleigh damping type is selected. In this damping model, damping matrix CR is 

Figure 7. Variations of fundamental frequency f (Hz) with h/l ratio
(hp = 0.1 m, CCCC, a = b = 20hp, t/l = 0.1385)

Variations of fundamental frequency f (Hz) with h/l ratio at different thickness ratios hc/h f are
shown in Fig. 7 for various inclined angle θ with clamped at all four edges. Again, the results showed
irregularities of auxetic materials. With increasing the h/l ratio, the natural frequencies of the plate
with θ = −35◦,−55◦,−80◦ initially decrease while those of the plate with θ = −10◦ slightly increase
at all hc/h f values. It is further observed that the influence of the inclined angle θ on the natural
frequency of the AHCL sandwich plate is more significant than that of the h/l ratio.

b. Dynamic response of the AHCL sandwich plates

Next, analyses were performed to characterize the dynamic response of an AHCL sandwich plate
to suddenly applied uniform pressure loading. The Newmark direct integration scheme [25] is used
to reduce the semi-discrete finite element equations to fully discretized equations. A square simply
supported AHCL sandwich plate with thickness hp = 0.1 m under a suddenly applied uniform load
q0 = −106 N/m2 is considered. The Rayleigh damping type is selected. In this damping model,
damping matrix CR is defined as a linear combination of mass and stiffness matrices which can be
written as CR = αM + βK. A timestep of ∆t = 10−5 s and the damping ratio ξ = 0.8% were used for
all the cases.
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Fig. 8 shows the effect of ratio a/h = (10, 20, 30) on the dynamic response of the AHCL sandwich
plate under suddenly applied uniform pressure loading. It is observed that the higher the a/h ratio, the
higher the amplitude of the plates. This reflects the fact that the higher the a/h ratio, the thinner plate,
which reduces the stiffness of the plate.
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Figure 8. Center defection w of AHCL sandwich plate at various thickness ratio a/h 

(SSSS, a=b, θ =-50o, hc/hf=1.5, h/l=2)  

Fig. 8 shows the effect of ratio a/h = (10, 20, 30) on the dynamic response of the 
AHCL sandwich plate under suddenly applied uniform pressure loading. It is observed 
that the higher the a/h ratio, the higher the amplitude of the plates. This reflects the fact 
that the higher the a/h ratio, the thinner plate, which reduces the stiffness of the plate. 

Fig. 9 illustrates the effect of the inclined angle θ on the amplitude–time curves of 
the AHCL sandwich plate. This figure shows that the plate with θ=-80o vibrates with 
different frequencies and amplitude compared with other plates. This observation 
corresponds to the previous conclusion in the above section. 

The influences of the hc/hf ratio are shown in Fig. 10. It is seen that the amplitude 
of vibration increases smoothly as increasing of the hc/hf ratio. This is because when the 
core layer thickness increases, the stiffness of the plate decreases, leading to an increase 
in deflection. 

Figure 8. Center defection w of AHCL sandwich plate at various thickness ratio a/h
(SSSS, a = b, θ = −50◦, hc/h f = 1.5, h/l = 2)
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Figure 9. Center defection w of the AHCL sandwich plate at various inclined 
angles θ (SSSS, a=b, a/h=20, hc/hf=1.5, h/l=2)  

 

Figure 10. Center defection w of the AHCL sandwich plate at different values of 
hc/hf  ratio (SSSS, a=b, a/h=20, , h/l=1)  50oq = -

Figure 9. Center defection w of the AHCL sandwich
plate at various inclined angles θ (SSSS,

a = b, a/h = 20, hc/h f = 1.5, h/l = 2)
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Figure 9. Center defection w of the AHCL sandwich plate at various inclined 
angles θ (SSSS, a=b, a/h=20, hc/hf=1.5, h/l=2)  

 

Figure 10. Center defection w of the AHCL sandwich plate at different values of 
hc/hf  ratio (SSSS, a=b, a/h=20, , h/l=1)  50oq = -

Figure 10. Center defection w of the AHCL
sandwich plate at different values of hc/h f ratio

(SSSS, a = b, a/h = 20, α = −50◦, h/l = 1)

Fig. 9 illustrates the effect of the inclined angle θ on the amplitude–time curves of the AHCL
sandwich plate. This figure shows that the plate with θ = −80◦ vibrates with different frequencies and
amplitude compared with other plates. This observation corresponds to the previous conclusion in the
above section.

The influences of the hc/h f ratio are shown in Fig. 10. It is seen that the amplitude of vibration
increases smoothly as increasing of the hc/h f ratio. This is because when the core layer thickness
increases, the stiffness of the plate decreases, leading to an increase in deflection.
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5. Conclusions

This study developed a cell-based smoothed discrete shear gap model based on the first-order
shear deformation theory for the free vibration and dynamic analysis of the sandwich composite plate
with the auxetic core. The accuracy and convergence of the model are validated through comparative
examples. The influence of geometrical parameters, material properties, and boundary conditions on
the dynamic responses and vibration of AHCL sandwich plates are computed. The results showed ir-
regularities of auxetic materials. Unlike conventional materials, auxetic materials with negative Pois-
son coefficients have very unpredictable vibrational behavior. Conducted investigations show that by
choosing the appropriate geometrical cell layout, it is possible to obtain desired mechanical behav-
ior of the sandwich plate. Enhanced stiffness can be achieved for some particular combinations of
geometrical cell units and geometrical plate parameters, thus increasing the structure’s natural fre-
quencies.
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[9] Novak, N., Starčevič, L., Vesenjak, M., Ren, Z. (2019). Blast response study of the sandwich composite
panels with 3D chiral auxetic core. Composite Structures, 210:167–178.

[10] Cong, P. H., Long, P. T., Nhat, N. V., Duc, N. D. (2019). Geometrically nonlinear dynamic response of
eccentrically stiffened circular cylindrical shells with negative poisson's ratio in auxetic honeycombs core
layer. International Journal of Mechanical Sciences, 152:443–453.

[11] Li, C., Shen, H.-S., Wang, H. (2020). Postbuckling behavior of sandwich plates with functionally graded
auxetic 3D lattice core. Composite Structures, 237:111894.

[12] Quan, T. Q., Anh, V. M., Mahesh, V., Duc, N. D. (2020). Vibration and nonlinear dynamic response of
imperfect sandwich piezoelectric auxetic plate. Mechanics of Advanced Materials and Structures, 1–11.

[13] Nguyen, N. V., Nguyen-Xuan, H., Nguyen, T. N., Kang, J., Lee, J. (2021). A comprehensive analysis of
auxetic honeycomb sandwich plates with graphene nanoplatelets reinforcement. Composite Structures,
259:113213.

[14] Reddy, J. N. (2006). Theory and Analysis of Elastic Plates and Shells. CRC Press.
[15] Reddy, J. N. (1984). A refined nonlinear theory of plates with transverse shear deformation. International

Journal of Solids and Structures, 20(9-10):881–896.
[16] Quoc, T. H., Tu, T. M., Tham, V. V. (2019). Free Vibration Analysis of Smart Laminated Functionally

Graded CNT Reinforced Composite Plates via New Four-Variable Refined Plate Theory. Materials, 12
(22):3675.

13

https://doi.org/10.1006/jsvi.1999.2600
https://doi.org/10.1006/jsvi.1999.2600
https://doi.org/10.12921/cmst.2004.10.02.147-160
https://doi.org/10.1106/104538902031865
https://doi.org/10.1106/104538902031865
https://doi.org/10.1002/pssb.201552024
https://doi.org/10.1061/(asce)em.1943-7889.0001153
https://doi.org/10.1061/(asce)em.1943-7889.0001153
https://doi.org/10.1016/j.compstruct.2015.09.038
https://doi.org/10.1016/j.compstruct.2015.09.038
https://doi.org/10.1016/j.cja.2016.06.010
https://doi.org/10.1016/j.cja.2016.06.010
https://doi.org/10.1016/j.ast.2017.08.023
https://doi.org/10.1016/j.ast.2017.08.023
https://doi.org/10.1016/j.ast.2017.08.023
https://doi.org/10.1016/j.compstruct.2018.11.050
https://doi.org/10.1016/j.compstruct.2018.11.050
https://doi.org/10.1016/j.ijmecsci.2018.12.052
https://doi.org/10.1016/j.ijmecsci.2018.12.052
https://doi.org/10.1016/j.ijmecsci.2018.12.052
https://doi.org/10.1016/j.compstruct.2020.111894
https://doi.org/10.1016/j.compstruct.2020.111894
https://doi.org/10.1080/15376494.2020.1752864
https://doi.org/10.1080/15376494.2020.1752864
https://doi.org/10.1016/j.compstruct.2020.113213
https://doi.org/10.1016/j.compstruct.2020.113213
https://doi.org/10.1016/0020-7683(84)90056-8
https://doi.org/10.3390/ma12223675
https://doi.org/10.3390/ma12223675


Quoc, T. H., et al. / Journal of Science and Technology in Civil Engineering

[17] Hanna, N. F., Leissa, A. W. (1994). A Higher Order Shear Deformation Theory for the Vibration of Thick
Plates. Journal of Sound and Vibration, 170(4):545–555.

[18] Tham, V. V., Quoc, T. H., Tu, T. M. (2019). Free vibration analysis of smart laminated functionally graded
carbon nanotube reinforced composite plates using four-variable refined plate theory. Journal of Science
and Technology in Civil Engineering (STCE) - HUCE, 13(3V):42–54. (in Vietnamese).

[19] Zhu, P., Lei, Z. X., Liew, K. M. (2012). Static and free vibration analyses of carbon nanotube-reinforced
composite plates using finite element method with first order shear deformation plate theory. Composite
Structures, 94(4):1450–1460.

[20] Quoc, T. H., Huan, D. T., Tu, T. M., Tan, N. H. (2017). Bending analysis of functionally graded cylindri-
cal shell panel under mechanical load and thermal effect-Analytical solution and Finite element model.
Journal of Science and Technology in Civil Engineering (STCE) - HUCE, 11(2):38–46.

[21] Nguyen-Thoi, T., Phung-Van, P., Thai-Hoang, C., Nguyen-Xuan, H. (2013). A cell-based smoothed dis-
crete shear gap method (CS-DSG3) using triangular elements for static and free vibration analyses of shell
structures. International Journal of Mechanical Sciences, 74:32–45.

[22] Qing, T. D., Zhi, C. Y. Wave propagation in sandwich panel with auxetic core.
[23] Tran, T. T., Pham, Q. H., Nguyen-Thoi, T., Tran, T.-V. (2020). Dynamic Analysis of Sandwich Auxetic

Honeycomb Plates Subjected to Moving Oscillator Load on Elastic Foundation. Advances in Materials
Science and Engineering, 2020:1–16.

[24] Reddy, J. N. (2000). Analysis of functionally graded plates. International Journal for Numerical Methods
in Engineering, 47(1-3):663–684.

[25] Newmark, N. M. (1959). A Method of Computation for Structural Dynamics. Journal of the Engineering
Mechanics Division, 85(3):67–94.

14

https://doi.org/10.1006/jsvi.1994.1083
https://doi.org/10.1006/jsvi.1994.1083
https://doi.org/10.31814/stce.nuce2019-13(3v)-05
https://doi.org/10.31814/stce.nuce2019-13(3v)-05
https://doi.org/10.1016/j.compstruct.2011.11.010
https://doi.org/10.1016/j.compstruct.2011.11.010
https://doi.org/10.1016/j.ijmecsci.2013.04.005
https://doi.org/10.1016/j.ijmecsci.2013.04.005
https://doi.org/10.1016/j.ijmecsci.2013.04.005
https://doi.org/10.1155/2020/6309130
https://doi.org/10.1155/2020/6309130
https://doi.org/10.1002/(sici)1097-0207(20000110/30)47:1/3<663::aid-nme787>3.0.co;2-8
https://doi.org/10.1061/jmcea3.0000098

	Introduction
	Sandwich composite plate with auxetic core
	Description of the problem
	Auxetic honeycomb materials

	Formulations
	Equations of motion for plate element
	CS-DGS3 Finite Element Model

	Numerical results
	Validation and Convergence study
	Parametric studies
	Free vibration of the ACL sandwich plate
	Dynamic response of the AHCL sandwich plates


	Conclusions

