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Abstract

The ultimate aim of this study is to use experimental work for evaluating the modulus of elasticity (MOE)
of Geopolymer concrete (GPC) using marine sand as fine aggregate and seawater for the mix. Four different
groups of concrete mixtures, namely CP1a, CP1b, CP2a, CP2b were identified. While the CP1a mix was pre-
pared using GPC with marine sand and seawater, the CP1b was made by adding sodium sulfate (Na2SO4) into
the CP1a mix. The same procedure was applied for CP2a and CP2b mixtures; however, instead of using GPC,
Portland Cement was used as the binder for the CP2 group (OPC). A total of 12 test samples were cast and
tested to determine the development of MOE of GPC and OPC over time. The MOE of concrete was measured
at 3, 7, 28, 60, and 120 days. Experimental results were then compared to the MOE obtained using the empiri-
cal equation from ACI 318 - 2008. It was found that the experimental MOE of both OPC and GPC specimens
was higher than the estimated MOE values from ACI standards. The added sodium sulfate yielded a significant
effect on the MOE of OPC but produced a minimal influence on the MOE of GPC.
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1. Introduction

According to the World Meteorological Organization report [1], by 2025, more than half of the
world’s population would confront freshwater anxiety to some certain extent. Freshwater is not only
crucial for the daily needs of human beings but also for the industrial production of various commodi-
ties such as in the production process of cement and concrete. For instance, about 1.5 billion tons of
freshwater are required to produce 25 billion tons of concrete per year [2, 3]. To avoid the dependence
on freshwater for concrete production, seawater is the best alternative candidate for the replacement of
freshwater in producing concrete, especially for offshore projects where seawater is readily available.

Besides freshwater stress, the scarcity of river sand is obvious and the search for an alternate
source of sand is unavoidable. Due to the overexploitation of river sand for the construction demand,
the natural environment has encountered many severe concerns including instability of riverbank
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or lowering of water aquifers [4]. Many restrictions on river sand extraction over the world caused
the price of river sand to increase significantly [5, 6]. One possible solution to provide a low-cost
alternative to fine aggregate which has a less environmental impact in producing concrete is to replace
the traditional fine aggregate with marine sand and seawater for the mix. However, the reinforced
concrete using Portland cement is proven not suitable for using marine sand and saltwater [7–10].
Recent research, however, showed the high potential of using GPC with marine sand and seawater in
the production of concrete [11–13].

Geopolymer concrete is an eco-friendly material that employs geopolymer as the main binder.
Geopolymer is formed under a process, called polycondensation, at low temperature. The constituents
of geopolymer include a mixture of aluminosilicate oxides and inorganic alkali polysilicates. The
combination of the two components produces a polymeric Silicate-Oxygen-Alkaline (Si-O-Al) bond
by the following chemical reaction process [14].
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Significant research effort related to the prediction of mechanical properties of GPC and OPC
using data-driven-based methods [15–21]. For instance, Awoyera et al. [15] and Pham et al. [17]
applied the Artificial Neural Networks (ANN) to predict the 28-day compressive strength of geopoly-
mer self-compacting concrete and GPC, respectively. In another study, Nguyen et al. [18] employed
ANN and an adaptive neuro-fuzzy inference system (ANFIS) to predict the compressive strength of
self-compacting concrete. The effects of changing ingredient inputs to the variation of concrete com-
pressive strength were observed in that study by performing the parameter sensitivity analysis.

Research has also been conducted to study the effect of marine sand and seawater on the quality of
conventional reinforced concrete. Some researchers have stated that the hydration process in concrete
was affected due to the presence of chemical ions in seawater [22–30], others concluded that the high-
level presence of chloride in marine sand and seawater could lead to the corrosion of reinforcing steel
in concrete [26, 27]. The influence of saltwater on setting time and strength enhancement was also
reported in several studies [28, 29]. To make the use of saline sand and seawater in the production of
concrete, different approaches have been presented in the literature. For example, instead of using the
normal steel bar, non-corrosive (i.e., glass-FRP) reinforcement was recommended for use in concrete
produced with marine sand and seawater [30]. Another potential solution to prevent the adverse effects
of chloride in concrete is to replace the OPC with GPC [31].

With regard to the study of using marine sand for fine aggregate replacement, Yang et al. [32]
used slag to replace Portland cement to produce alkali-activated slag concrete by replacing freshwater
and river sand with marine sand and seawater. The effects of seawater, marine sand, and the combina-
tion on the compressive, tensile, and shrinkage properties and resistance to chloride permeability of
concrete were investigated. It was found that the concrete strength of the four combinations is close
to each other, however, the resistance to chloride ion permeability is significantly improved. In an-
other study, Anbarasan and Soundarapandian [33] investigated the mechanical and microstructural
properties of GPC. Different experimental tests with various percentages of marine sand and seawater
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replacement were conducted. It was concluded that the river sand can be well substituted by the sea
sand in producing GPC.

Saranya et al. [34] investigated the compressive and flexure strength, split tension, water absorp-
tion, sorptivity of M40 grade GPC using marine sand, river sand, and crushed sand as fine aggregate.
Portland cement was replaced with fly ash and ground granulated blast furnace slag, and a combina-
tion of hydroxide and silicates of sodium is used as reaction liquid. Three types of concrete specimens
with the same proportion by volume using different types of sands were cast and tested. Results from
the experimental investigation stated that “The performance of GPC with marine sand and crushed
sand is comparable or marginally higher than that of GPC made of river sand in terms of mechanical
and durable properties.”

The application of marine sand and seawater in the GPC mix has been argued for years [31–34].
Regarding the compressive strength of GPC, researchers [31–33] have reported that marine sand and
seawater produced no or little negative effects, while others reported positive effects [34]. Specifically,
Shinde and Kadam [32] found comparable 28-day compressive strength of fly ash-based GPC using
desalinate marine sand to that of concrete produced using river sand. In another study, Anbarasan
and Soundarapandian [33] reported that the splitting tensile strength and flexural strength at 28 days
of slag-based GPC using marine sand was found lower than that of GPC using river sand. On the
contrary, the rise in the compressive strength of GPC using marine sand was reported in a study by
Saranya et al. [34].

The purpose of this experimental study is to investigate the development of the MOE of GPC
and OPC using marine sand and saltwater to replace the river sand and freshwater in the mixture.
Additionally, the authors would like to explore the effects of marine sand and seawater on the MOE of
GPC and OPC. To achieve the goals, four different mixtures were produced with the different major
binder (i.e., Geopolymer and Portland cement) and dosage of sodium sulfate. The MOE of the test
samples was evaluated at the ages of 3, 7, 28, 60, and 120 days to monitor the growth of MOE over
time. Experimental results were then compared with the MOE obtained from the empirical equation
in ACI 318 standards. Details are presented in the following sections.

2. Materials and methods

2.1. Material preparation

A combination of fly ash (FA) and blast furnace slag (BFS) with the chemical composition in
terms of percentage by mass, listed in Table 1, was used in producing the GPC mixtures in this
study. The solid alkaline substance which includes the combination of sodium silicates and sodium
hydroxide was used as the activator for the GPC mix.

Table 1. Chemical composition of cementious materials

Oxides SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O SO3 TiO2

FA (%) 57.3 25.2 6.06 1.09 1.68 5.29 0.16 0.09 0.83
BFS (%) 43.7 12.9 1.47 28.7 6.29 1.22 0 1.35 0.84

The coarse aggregate utilized in this study was the natural crushed rock with a maximum size of
less than 40 mm. The fine aggregate was natural marine sand collected from the local beach having a
particle size of less than 5 mm. Details of sieve analysis followed by TCVN 7572-2 [35] are presented
in Table 2.
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Table 2. Sieve analysis for coarse and fine aggregates

Type Sieve size (mm) Cumulative retained (%)

Coarse aggregate 40 0
20 8.2
10 50.3
5 95.5

< 5 100

Fine aggregate 5 0
2.5 8
1.25 27.6
0.63 52.3
0.315 78.4
0.14 93.6

Seawater with the chemical compositions, as in Table 3, collected directly from the local ocean
was used in this study. Ordinary Portland cement (PC40) was used for the conventional mix. The
physical properties of the commercial PC40 are listed in Table 4.

Table 3. Chemical composition of seawater used for concrete mix

pH Cl– (g/l) Ca+ (g/l) Mg+ (g/l) SO4
2 – (g/l) K+ (g/l) Na+ (g/l)

6.8 15.3 0.3 1.1 2.4 0.35 8.5

Table 4. Physical properties of Portland cement PC40

Physical properties Unit Value

Specific gravity 3.1
Specific surface (Blaine) cm2/g 2800
Initial setting time min 45
Final setting time min 420
Compression strength 3 days N/mm2 23.1
Compression strength 7 days N/mm2 46.2

2.2. Mixture design

Two GPC mixtures, namely CP1a and CP1b, with different levels of sodium sulfate (Na2SO4)
were prepared. The first mix (i.e., CP1a) included coarse aggregates, marine sand, activator, FA, BFS,
and seawater. The second mix (i.e., CP1b) had the same components as in the first mix, however, an
amount of sodium sulfate of 2.4 percent by mass of cementitious materials was added to the mix.

Two mixtures using OPC, namely CP2a and CP2b, were also prepared. The component and the
quantity of each element in the CP2a and CP2b mix were almost identical except for the level of
sodium sulfate dosage (i.e., 2.4% Na2SO4 added to the CP2b mix). The detailed mixture proportion
per cubic meter of GPC and OPC batch used in this study is presented in Table 5.

151



Nguyen, T. T., et al. / Journal of Science and Technology in Civil Engineering

Table 5. Mixture proportions of GPC and OPC

Material
Quantity for 1 m3 GPC (kg) Quantity for 1 m3 OPC (kg)

CP1a CP1b CP2a CP2b

BFS 255 255 - -
FA 85 85 - -
Cement PC40 - - 594.9 553
Marine sand 760 760 447 1065
Coarse aggregate 1050 1050 1037 212.1
Seawater 165 165 224.5 553
Activator 68 68 - -
Cement/seawater ratio - - 2.65 2.22
Na2SO4 - 2.4% - 2.4%

For each mixture, a set of three standard cylinder samples with the dimension of 150 × 300 mm
(D × H) was cast following the standard concreting procedure. Specimens were cast into the molds
and kept in for 24 hours. The specimens were then de-molded and cured at the normal conditions
until the testing date. The entire preparing mix, casting, and curing specimens complied with TCVN
3105:1993 [36].

2.3. Test procedure

This experimental study aimed at determining the MOE of OPC and GPC at the ages of 3, 7, 28,
60, and 120 days. Fig. 1 shows cylinder specimens ready for testing and a tested sample, respectively.
To perform the MOE test, the specimen was placed into the compression testing machine. The testing
procedure presented in ASTM C469 – 1994 [37] was used in this study. The testing load was increased
at a constant speed of 35 ± 7 psi/s (0.24 ± 0.05 MPa/s) until the stress in the specimen reached ap-
proximately 40% of cylinder compressive strength. The load and relative strain of the tested specimen
was recorded over time. An identical procedure was applied for all specimens in this study.
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2.4. Modulus of Elasticity

The MOE of GPC and OPC at different ages is presented in Fig. 2. It is worth noting that the MOE
of GPC and OPC specimens was calculated from experimental results using Eq. (1) from ASTM C469
– 1994.

E =
S 2 − S 1

ε2 − 0.00005
(1)

where E is the MOE of concrete, S 2 is the stress in the specimen at the point of 40% of the ultimate
load, S 1 is the stress (psi) in the specimen at ε1 = 0.000050, and ε2 is the strain in the specimen at
stress S 2.

Besides, the MOE was also estimated using the ACI 318-2008 [38] using Eq. (2)

E = 4730
√

f ′c
(
N/mm2

)
(2)

where E is the MOE of concrete, f ′c is the compressive strength of concrete.
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3. Results and discussion

3.1. Comparison between experimental results and calculation

Fig. 2 presents the MOE of the four concrete mixtures including experimental results and the
calculated ones using the empirical equation obtained from ACI 318 – 2008 standards. It can be seen
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that, for all concrete mixtures, the experimental results were higher than the results obtained from the
empirical equation. The difference of MOE values between experimental results and ACI 318 - 2008
for all concrete mixtures was found nearly constant after 28 days. Additionally, a difference of around
7% was found in GPC – CP1a mix (Fig. 2(a)) compared to approximately 16% for the rest of the
mixtures.

3.2. Effects of added sodium sulfate
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on MOE

The influence of added sodium sulfate on the
growth of MOE for GPC and OPC mixtures is pre-
sented in Fig. 3. It is shown that for both GPC
and OPC, the mixtures with added sodium sul-
fate experienced a decrease in MOE. The GPC
mixture (i.e., CP1a) had the highest MOE in the
four experimental mixtures. On the contrary, the
OPC mix with added sodium sulfate (i.e., CP2b)
experienced the lowest value of MOE. With the
same added sodium sulfate amount (i.e., 2.4%),
the MOE of the GPC mix was found higher than
that of the OPC mixture.

It is worth noting that sodium sulfate produced
significant effects on the development of MOE of
both GPC and OPC concrete. As expected, the
MOE of concrete specimens with added sodium
sulfate was slightly lower than that of without sodium sulfate added ones, with a reduced rate of 3.1%
for the GPC group, and 3.4% for the OPC group. The reduction in MOE is probably due to the form-
ing of ettringite (3 CaO ·Al2O3 · 3 CaSO4 · 32 H2O) in the concrete structure. The amount of calcium
sulfoaluminate or ettringite in specimens with added sodium sulfate is much greater than in specimens
without adding sodium sulfate, which leads to the reduction in the MOE.

4. Conclusions

The experimental work to determine the MOE of GPC and OPC using marine sand and seawater
was presented in this study. Four mixtures with different types of cementitious material and the level
of added sodium sulfate were investigated. MOE of all mixtures was measured at 3, 7, 28, 60, and 120
days, respectively. The MOE experimental results were compared with the calculated values obtained
from the empirical equation in the ACI 318 standards. It was shown that the experimental MOE in
all investigated mixtures was found to be higher than that obtained using the empirical equation. The
original GPC mix had the highest MOE values among all mixtures.

With regard to the effect of added sodium sulfate on the MOE of concrete, the MOE of the two
types of concrete decreased when the amount of sodium sulfate increased. Additionally, the MOE of
the GPC mix was found higher than that of the OPC mix with the same added sodium sulfate amount.
Regarding the influence of marine sand and saltwater on MOE, it was observed that the MOE of the
GPC mix met the required value at 28 and 120 days as in this study. In contrast, for the OPC mixture,
the MOE was developed significantly within 28 days and the rate of MOE development declined after
that. The MOE values at 28 and 120 days were found not to meet the designed requirement.
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