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Abstract

This paper aims to present thermo-electrical free vibration characteristics of functionally graded material
(FGM) sandwich beam placed on the two-parameter elastic foundation. The beam is constructed of a foam
core, two middle FGM layers, and two outer piezoelectric layers. It is assumed that the beam is subjected to a
constant voltage and a uniform/linear temperature distribution. Physical properties of the core and two middle
layers vary smoothly through the thickness according to the cosine and power-law forms, respectively. Lagrange
equations in conjunction with the Reddy third-order beam theory is employed to derive the governing equations
of motion. A simple polynomial trial function-based Ritz method is adopted for the approximation of the dis-
placement field to obtain the vibration response. The correctness of the study is verified by comparisons with
other authors’ published results. Influences of geometry parameters, material property distribution, applied
voltage, elastic foundation, temperature distribution, temperature change, porosity coefficient, span-to-height
ratio, and boundary conditions are investigated through parametric studies.

Keywords: thermo-electrical vibration; porous sandwich beam; functionally graded material; thermo-
piezoelectricity; Ritz method; two-parameter foundation.
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1. Introduction

Sandwich beams consisting of two outer layers and a porous core is a form of the lightweight
beam structure. While the face layers are thin but strong to carry the bending and in-plane loads, the
thick porous core connects the face layers, sustains the shear force and minimizes the self-weight.
Besides, the porous core with porosities inside enhances good functions, such as sound absorption,
thermal insulation, energy dissipation, etc.

Over the past few years, the mechanical behavior of this beam type has been investigated by us-
ing many beam models and computational methods. The Euler-Bernoulli beam theory that neglecting
transverse shear deformation is the most simple model commonly used for preliminary design pur-
poses. For the thicker beams, the Timoshenko beam model known as first-order beam theory (FOBT)
is an appropriate choice, but the shear correction factor must be included. To overcome this difficulty,
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higher-order beam theories (HOBTs) are proposed. The sandwich beam composed of a porous core
and isotropic face sheets have been used as lightweight structures in many areas and extensively stud-
ied. Chen et al. [1] investigated the nonlinear free vibration of sandwich Timoshenko porous beams
by employing the Ritz method. The free vibration analysis of porous sandwich beams having metal
foam core and interacting with Winkler–Pasternak foundation was conducted by Wang and Zhao [2]
using the Chebyshev collocation method and the FOBT. Grygorowicz et al. [3] dealt with the elastic
buckling of a porous sandwich beam with a metal foam core by both analytical and numerical meth-
ods. Srikarun et al. [4] studied the linear and nonlinear bending of sandwich beams with foam cores
under different kinds of distributed load utilizing the GramSchmidt-Ritz procedure together with the
third-order beam theory (TOBT).

The sandwich beam with face sheets made of functionally graded materials (FGMs) is the choice
for the beams that working in higher temperature environments. Obviously, the porous sandwich beam
with FG face sheets is an advanced lightweight structure and has multi-advantages for applications.
Therefore, studying to comprehend the mechanical behavior of this beam has received attention from
engineers and scientists. Wang et al. [5] studied the time history response of the beam subjected to
a non-uniformly distributed moving mass based on the HOBT and Chebyshev–Ritz technique. Hung
and Truong [6] examined analytically the natural frequencies of the beam resting on the Winkler
foundation using different beam theories. Developing a 1D mesh-free method in conjunction with
TOBT, Chinh et al. [7] investigated the static bending of the beam under distributed loads. Mu and
Zhao [8] dealt with the first frequency of the beam by the extended Galerkin method. Derikvand and
coworkers [9] presented the buckling characteristics of the beam with a porous ceramic core using the
differential transform method, TOBT, and a two-variable refined shear deformation theory.

Piezoelectric materials are known as smart materials which are often integrated into structures
to control and/or monitor their response. To combine the advantages of piezoelectric materials and
FGMs, FGM beams integrated with piezoelectric layers have been proposed, and their mechanical re-
sponse should be analyzed. Several studies on FGM beams bonded with the piezoelectric layers have
been performed and reported in the open literature. Based on the closed-form solutions, Kiani et al.
[10] studied the thermal buckling of Timoshenko beams with/without surface-bonded piezoelectric
layers under both thermal and electrical loadings. Kargani et al. [11] presented an exact solution for the
post-buckling of piezoelectric FGM Timoshenko beams subjected to coupled thermo-electrical load-
ings. She et al. [12] investigated the thermal buckling and post-buckling of FGM beams with/without
piezoelectric outer layers using HOBT and a two-step perturbation method. Fu et al. [13] dealt with
the thermal buckling, nonlinear free vibration, and dynamic stability of piezoelectric FGM beam by
analytical solution, the classical beam theory and the physical neutral concept. Khiem et al. [14] in-
vestigated the effects of a piezoelectric patch bonded to FGM Timoshenko beams on the free vibration
of the beams by the dynamic stiffness method. Jankowski et al. [15] focused on the mechanical and
electrical buckling of piezoelectric FGM porous nanobeams based on a higher-order nonlocal elastic-
ity and strain gradient theory. In this work, the analytical solution in conjunction with Reddy’s beam
theory was used. Singh and Kumari [16] presented an analytical solution based on piezoelectricity for
two-dimensional free vibration analysis of axially FGM beam integrated with piezoelectric layers.

In order to more accurately predict the static and dynamic response of sandwich beams, finding
appropriate beam models and computational tools is always motivation for the researches of the sci-
entist. Other than the above-mentioned theories, Reddy third-order beam theory (ROBT) is used in
many published reports [4, 15, 17, 18]. This theory belongs to HOBTs, and accounts for the parabolic
distribution of the transverse shear strains through the height of the beam and satisfies zero shear
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stresses conditions on the surfaces of the beam. Although it is not as accurate as the 3D or quasi-3D
beam theories in reflecting the working of all types of beams, the ROBT is still the preferred choice
due to having the same dependent unknowns as in FOBT without using the shear correction factor.

There are many numerical methods commonly used to solve mechanical problems such as finite
element method, shooting method, mesh-free method, Ritz method, differential transform method,
Galerkin method, Chebyshev collocation method, etc. Among them, the Ritz method is a variational
method that is based on seeking an approximate solution in the form of a linear combination of
suitable approximation functions and undetermined parameters [19]. In spite of some limitations, such
as it is possible only if a suitable function is available, the number of terms is a key factor in deciding
the convergence, the accuracy, and stability of the solution are dependent on the accuracy of shape
function, etc. [20], Ritz method could be efficiently applied for simple configurations, such as single-
span beams, rectangular/circular plates, etc. It can also be an alternative selection for mechanical
problems with general boundary conditions when Navier’s method is limited.

The literature review reveals that there has not been any study on sandwich beams with metal
foam core subjected to simultaneous effects of mechanical, electrical and thermal loading. Thus, in
this paper, thermo-electrical free vibration frequencies of FGM sandwich beams resting on Pasternak
foundation are investigated. The beam has layer structure as a foam core, two middle FGM layers,
and two outer piezoelectric layers. Physical properties of the core and two FGM layers vary smoothly
across the thickness according to the cosine and power-law forms, respectively. The beam is pre-
stressed through a constant voltage and a uniform/linear temperature rise. Based on ROBT as well
as Lagrange equations, the governing equations of motion are derived. A simple polynomial trial
function-based Ritz method is adopted to obtain the approximate solution. The accuracy of the study
is verified by comparisons with other authors’ published results through numerical examples. In-
fluences of geometry parameters, material property distribution, applied voltage, elastic foundation,
temperature rises, temperature change, porosity coefficient, span-to-height ratio, and boundary con-
ditions on the vibration frequencies are examined and discussed.

2. Theory and basic equations

2.1. Geometrical parameters and layer structure of piezoelectric FGM sandwich beam

Consider a piezoelectric FGM sandwich beam of length L, cross-section b × h, and symmetric
layer structure as shown in Fig. 1. The thickness is h = 2ha + 2h f + hc. The beam places on the
two-parameter Pasternak foundation, and the x-axis coincides with the geometrical mid-surface.
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Figure 1. Geometry of piezoelectric FGM sandwich beam on elastic foundation. 

2.2. Physical property distribution 

The two piezoelectric layers are made of a homogeneous and isotropic material. 

The foam core and two FGM layers, respectively, have physical properties varied 

cross-sectionks

kw

L

o

b

h
x

z

h1

h2

h3

h4

metal foam

hc

h
f

 h
f

FGM layers
piezoelectric layers

ha

ha

Figure 1. Geometry of piezoelectric FGM sandwich beam on elastic foundation
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2.2. Physical property distribution

The two piezoelectric layers are made of a homogeneous and isotropic material. The foam core
and two FGM layers, respectively, have physical properties varied continuously according to the co-
sine and power-law forms as follows.

O (z) = (Om − Oc) [(h4 − z) / (h4 − h3)]k + Oc, h3 ≤ z ≤ h4
O (z) = Om [1 − eocos (πz/ (h3 − h2))] , h2 ≤ z ≤ h3

O (z) = (Om − Oc) [(z − h1) / (h2 − h1)]k + Oc, h1 ≤ z ≤ h2

(1)


ρ (z) = (ρm − ρc) [(h4 − z) / (h4 − h3)]k + ρc, h3 ≤ z ≤ h4
ρ (z) = ρm [1 − emcos (πz/ (h3 − h2))] , h2 ≤ z ≤ h3

ρ (z) = (ρm − ρc) [(z − h1) / (h2 − h1)]k + ρc, h1 ≤ z ≤ h2

(2)

In Eqs. (1) and (2), O stands for elastic modulus E, thermal expansion coefficient α; k is the
power-law index; ρ is the mass density; eo is the porosity coefficient; the porosity coefficient for mass
density em is determined by the relation em = 1 −

√
1 − eo [1]. The subscripts “c” and “m” denote

the ceramic and metal materials which constitute the beam. The Poisson’s ratio ν is summed to be
unchanged in each layer.

2.3. Temperature distributions

In this study, two typical types of temperature distribution along the beam thickness, i.e., uniform
temperature rise (UTR) and linear temperature rise (LTR), are supposed. The beam is assumed to
have no thermal stresses at the temperature T0 = 300 K.

a. Uniform temperature rise

The whole domain of the beam is subjected to a temperature change ∆t from the initial temperature
T0. Hence, the current temperature T (z) at any point in the beam can be written as

T (z) = T0 + ∆T (3)

b. Linear temperature rise

The temperature field in the beam varies linearly along the thickness and could be expressed as

T (z) = tL + ∆T (z/h + 1/2) ; ∆T = (tU − tL) (4)

where tU and tL are current temperatures at the bottom (z = −h/2) and the top (z = h/2) of the beam,
respectively. Unless otherwise stated, tL = T0 = 300 K throughout the study.

2.4. Displacement and strain fields

In this study, ROBT [17, 18] is employed. The displacement components u,w, respectively, in x-
and z-directions can be expressed:

d =

{
u
w

}
=

[
1 0 −z f (z)
0 1 0 0

]
A1 (5)

AT
1 =

{
uo (x, t) wo (x, t)

∂wo (x, t)
∂x

φos (x, t)
}

; f (z) = z
(
1 −

4z2

3h2

)
(6)
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where uo,wo, φos are three unknown displacements on the mid-surface of the beam. The strain tensor
can be determined by taking the derivatives of the displacements and described as

ε =

{
εx

γxz

}
=

 1 −z f (z) 0

0 0 0
∂ f (z)
∂z

 A2 (7)

AT
2 =

{
∂uo

∂x
∂2wo

∂x2

∂φos

∂x
φos

}
(8)

2.5. Constitutive relation

For the foam core and two middle FGM layers, (h1 ≤ z ≤ h4), based on Hook’s law, the constitu-
tive equations including the thermal effect can be written below{

σx = E [εx − α(T − T0)] ; τxz = Gγxz

G = E/ (2 + 2ν)
(9)

In the case of the piezoelectric layers, (h1 − ha ≤ z ≤ h1) ∪ (h4 ≤ z ≤ h4 + ha), the constitutive
equations including both the thermal and electrical effects may be written as follows [11]{

σx = Ea {εx − αa(T − T0) − d31Ez} ; τzx = Gaγxz

Ez = Vo/ha; Ga = Ea/ (2 + 2νa) (10)

In Eqs. (9) and (10), σx, σxz are the axial and shear stresses, respectively; Vo is the applied voltage
across the thickness of the piezoelectric layers; d31 is the dielectric permittivity coefficient [10–12].
The subscript “a” denotes the properties that belong to the piezoelectric material.

2.6. Energy expressions and governing equations

Internal strain energy due to the mechanical stresses, neglecting thermo-electrical effects, can be
calculated by following formulations

U in =
1
2

∫
V

{
σx

τxz

}T

εdV =
1
2

∫
V

εT EdεdV =
1
2

L∫
0

AT
2 DEA2dx (11)

where

Ed =

[
E, Ea 0

0 G,Ga

]
(12)

DE = b

h/2∫
−h/2

 1 −z f (z) 0

0 0 0
∂ f (z)
∂z


T

Ed

 1 −z f (z) 0

0 0 0
∂ f (z)
∂z

dz (13)

In Eq. (12) E and G are used when formulating for the core and FGM layers, whereas Ea and Ga

are for the piezoelectric layers
The potential energy of the elastic foundation can be expressed as

U f =
1
2

b

L∫
0

kww2
o + ks

(
∂wo

∂x

)2
dx =

1
2

b

L∫
0

kww2
o + ks

(
∂wo

∂x

)2
dx (14)
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where kw and ks are the two elastic coefficients of the Pasternak foundation.
The work done by thermal and electrical stress resultants is written as

V =
1
2

L∫
0

Ne
(
∂wo

∂x

)2

dx +
1
2

L∫
0

Nth
(
∂wo

∂x

)2

dx (15)

where Ne is the electrical stress resultant of the outer piezoelectric layers, and Nth is the thermal stress
resultant. They are defined as

Ne = −2bVoEad31

Nth = −b

h1∫
h1−ha

Eaαa (T − T0) dz − b

h4∫
h1

Eα (T − T0) dz − b

h4+ha∫
h4

Eaαa (T − T0) dz (16)

The kinetic energy of the beam is presented as

K =
1
2

b

L∫
0

h4+ha∫
h1−ha

ρ (z)

(∂u
∂t

)2

+

(
∂w
∂t

)2dxdz =
1
2

L∫
0

∂AT
1

∂t
DR

∂A1

∂t
dx (17)

where

DR = b

h4+ha∫
h1−ha

ρ (z)
[

1 0 −z f (z)
0 1 0 0

]T [
1 0 −z f (z)
0 1 0 0

]
dz (18)

In this study, Lagrange equations are adopted to derive the equations of motion. These equations
are then discretized by Ritz method for the approximate solution.

According to the concept of Ritz method, the displacement functions uo,wo, and φos are approx-
imated by series of admissible functions that should satisfy the kinetic boundary conditions. If the
functions violate this requirement, additional techniques, such as Lagrange multipliers [21], penalty
method [22], can be used to treat; this approach, however, needs more computational effort. Some
functions, such as trigonometric, algebraic polynomial, and orthogonal polynomial functions, are of-
ten used. In this study, the admissible functions which have polynomial form [23, 24] for single-span
beam are selected and given in Table 1. These functions are simple to satisfy different cases of the

Table 1. Polynomial admissible functions with different BCs

BCs uo (x, t) wo (x, t) φos (x, t)

SS
N∑

i=1

Uoi (t)x1(L − x)1xi−1
N∑

i=1

Woi (t)x1(L − x)1xi−1
N∑

i=1

Φosi (t) x0(L − x)0xi−1

CH
N∑

i=1

Uoi (t) x1(L − x)1xi−1
N∑

i=1

Woi (t) x2(L − x)1xi−1
N∑

i=1

Φosi (t)x1(L − x)0xi−1

CC
N∑

i=1

Uoi (t) x1(L − x)1xi−1
N∑

i=1

Woi (t) x2(L − x)2xi−1
N∑

i=1

Φosi (t)x1(L − x)1xi−1

20



Hung, T. Q., et al. / Journal of Science and Technology in Civil Engineering

boundary conditions (BCs) as well as effective in analytical calculations. Different immovable BCs,
such as simply–supported (SS), clamped–hinged (CH), and clamped–clamped (CC), are considered.

In Table 1, N is the number of polynomial terms. It is determined in the analysis so that the
obtained results satisfy the accuracy. Uoi,Woi,Φosi are the time-dependent unknown coefficients.

Substituting the trial functions in Table 1 into the energy expressions of Eqs. (11), (14), (15) and
(17) then applying the Lagrange equations, Eq. (19) below, yields the equilibrium equation system.

∂J
∂Uoi

−
d
dt
∂J
U̇oi

= 0

∂J
∂Woi

−
d
dt

∂J
Ẇoi

= 0

∂J
∂Φosi

−
d
dt

∂J
Φ̇osi

= 0, i = 1, ...,N

(19)

where J = U in + U f + V − K, and the over dot (•̇) implies the derivative with respect to time.
Carrying out Eq. (19) leads to is a system of linear equations which can be described by a matrix

equation as

(
[K]3N×3N +

(
Ne + Nth

)
[KG]3N×3N

) 
Uo

Wo

Φos


3N×1

+ [M]3N×3N


Üo

Ẅo

Φ̈os


3N×1

= {0}3N×1 (20)

where K,KG and M are the elastic stiffness, geometric stiffness, and mass matrices, respectively.
For free vibration analysis, the displacement functions are harmonic. The time-dependent un-

known coefficients could be assumed as sinusoidal form:
Uo

Wo

Φos

 =


Uo

Wo

Φos

 sin (ωt) (21)

in which ω is the natural frequency, and Uo,Wo,Φos are the vectors of the coefficients of vibration
amplitude.

Substituting Eq. (21) back into Eq. (20) leads to the frequency equation as follows

(
[K]3N×3N +

(
Ne + Nth

)
[KG]3N×3N − ω

2[M]3N×3N

) 
Uo

Wo

Φos


3N×1

= {0}3N×1 (22)

For each pair of Ne and Nth by the applied thermal and electrical loadings, the non-trivial solu-
tion of Eq. (22) yields the natural frequencies ω and their eigenvector that is used to determine the
corresponding mode shape. Obviously, by actively adjusting the pre-stress resultant Ne through the
electrical voltage Vo, the frequencies can be enhanced.

3. Computational results

In this section, numerical analysis is conducted to validate the developed theories and examine
the vibration characteristics of the beam. In the presentation, non-dimensional frequency is defined
as [25, 26].

λ =
ωL2

h

√
ρm

Em
(23)
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Also, non-dimensional coefficients of elastic foundation coefficients are introduced by [25].

Kw =
12kwL4

Embh3 ; Ks =
12ksL2

π2Embh3 (24)

3.1. Validation

For the first validation, consider a single-layer FGM beam by omitting two piezoelectric layers
(setting ha = 0), the bottom FGM and the core layers (setting h1 = h2 = h3 = −h/2). The beam
interacts with the foundation but is not subjected to temperature change (∆T = 0). Free vibration
of this beam was analyzed by Zahedinejad [25]. Mechanical properties of materials and conditions
for the analysis are taken the same as Ref. [25]. To be consistent with the study of Zahedinejad [25],
interchanging the roles of ceramic (Oc, ρc) and metal (Om, ρm), and replacing the minus sign by the
plus sign for z variable in Eqs. (1) and (2). The calculated results for some situations are given in
Table 2.

Table 2. The first non-dimensional frequency λ1 of single-layer FGM (Al/Al2O3) beam
(L/h = 10,Kw = 10,Ks = 1)

BCs Source Theory
k

0 1 2 5 10

SS Present ROBT 5.9285 5.1957 5.0418 4.8744 4.6925
Zahedinejad [25] HOBT 5.9280 5.1950 5.0410 4.8740 4.6920

CC Present ROBT 11.9739 9.5200 8.7706 8.3047 8.0573
Zahedinejad [25] HOBT 11.9690 9.5170 8.7680 8.3020 8.0540

The second validation is devoted to a solid FGM sandwich beam without piezoelectric layers,
thermal environment, and foundation by setting ha = 0, kw = ks = 0, eo = 0, and ∆T = 0 in the
analysis. The natural frequencies of this beam type were studied by Vo et al. [26]. The same materials
and working conditions as Ref. [26] are applied for the analysis. Some obtained results are listed in
Table 3.

Table 3. The first non-dimensional frequency λ1 of FGM (Al/Al2O3) sandwich beam with soft core
(L/h = 5, hc/h f = 8)

BCs Source Theory
k

0 0.5 1 2 5 10

SS Present ROBT 2.6773 3.4342 3.7064 3.9303 4.1139 4.1855
Ref. [26] HOBT 2.6773 3.4342 3.7065 3.9303 4.1139 4.1855

CC Present ROBT 5.2330 6.3348 6.6721 6.9250 7.1173 7.1903
Ref. [26] HOBT 5.2311 6.3333 6.6705 6.9233 7.1155 7.1884

The third validation is performed for the case of piezoelectric FGM beam without thermal envi-
ronment and foundation by setting h1 = h2 = h3 = −h/2+ha, kw = ks = 0, and ∆T = 0 in the analysis.
Vibration problems of this beam type with CC end supports were dealt by Fu et al. [13]. FGM is
composed of Silicon nitride (Si3N4) and stainless steel (SUS304), and the geometry parameters are

22



Hung, T. Q., et al. / Journal of Science and Technology in Civil Engineering

taken as L = 200 mm, h = 10 mm, and ha = 1 mm (Fu et al. [13]). In order to be consistent with the
study of Fu et al. [13] in which Euler beam theory was employed, the unknown component is set to
zero in the analysis. Also, Eqs. (1) and (2) describing physical properties of FGM layer φos(x, t) is
treated the same as the first validation. The first non-dimensional frequency is reported and compared
with those of Fu et al. [13] as in Table 4.

Table 4. The first non-dimensional frequency λ1 = ω1L
√
ρc/Ec of piezoelectric single-layer FGM

(Si3N4/ SUS304) beam

Source Vo (V)
k

0 0.5 1 2 5

Present 200 0.21826 0.17012 0.15440 0.14229 0.13209
Fu et al. [13] 200 0.22264 0.17358 0.15753 0.14516 0.13473

Present −200 0.21834 0.17019 0.15447 0.14236 0.13215
Fu et al. [13] −200 0.22273 0.17366 0.15760 0.14523 0.13480

Further validation is conducted for free vibration of single-layer porous beam without thermal
environment and foundation by setting ha = 0, h1 = h2 = −h/2, h3 = h4 = h/2, kw = ks = 0, and
∆T = 0. The material properties of the porous beam are Em = 200 GPa, ρm = 7850 kg/m3, νm = 0.33
and eo = 0.5 [27]. Some values of the first non-dimensional frequency are reported and compared
with the previous publish of Noori et al. [27] in Table 5.

Table 5. The first non-dimensional frequency λ1 of single-layer porous beam

BCs
L/h = 20 L/h = 50

Present (ROBT) Ref. [27] (FOBT) Present (ROBT) Ref. [27] (FOBT)

CC 6.3366 6.3476 6.4569 6.4588
CH 4.4080 4.4125 4.4566 4.4574

Table 6. The first non-dimensional frequency λ1 =
ω1L2

h

√
Io/Eo of single-layer FGM (Al2O3/SUS304) beams

under UTR (L/h = 30, Io =

h/2∫
−h/2

ρmdz, Eo =

h/2∫
−h/2

Emdz)

BCs Source Theory
k = 0.2 k = 2

∆T = 0 K 50 K 100 K ∆T = 0 K 50 K 100 K

CC Present ROBT 6.6377 6.1201 5.5493 6.7344 5.9824 5.1091
Ref. [28] HOBT 6.6373 6.1198 5.5490 6.7339 5.9821 5.1090

CH Present ROBT 4.5902 3.8552 2.9280 4.6625 3.5699 1.8882
Ref. [28] HOBT 4.5901 3.8552 2.9281 4.6625 3.5699 1.8886

Final validation is carried out for thermal vibration of a single-layer FGM (Al2O3/SUS304) beam
without an elastic foundation. To reduce to the single-layer FGM beam, the conditions for layer struc-
ture in the analysis are set the same as the first validation. The material properties, as well as the
relationship between stresses and strains, are chosen as the study by Nguyen et al. [28] for the ver-
ification purpose. The first non-dimensional frequencies of the beam under UTR are presented in
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Table 6. Observing all the data from comparative studies in Tables 2–6 can conclude that the correct-
ness of the current study is excellently achieved.

3.2. Comprehensive studies

In the next examples, materials which compose the beam are taken from the papers of Kiani et al.
[10], She et al. [12], Fu et al. [13], and Vo et al. [26]. Metal is Aluminum (Al): Em = 70 GPa, ρm =
2702 kg/m3, αm = 23 × 10−6/K. Ceramic is Alumina (Al2O3): Ec = 380 GPa, ρc = 3960 kg/m3, αc

= 7.4 × 10−6/K. PZT-5A is selected for the piezoelectric layers. Its properties are Ea = 63 GPa, ρa

= 7600 kg/m3, d31 = 2.54 × 10−10 m/V, αa = 0.9 × 10−6/K. Poisson’s ratio in the whole domain is
assumed to be constant (ν = νa = 0.3). Geometrical parameters of the cross-section are h = 0.06 m,
h f = 0.005 m, hc = 0.04 m, ha = 0.005 m; the width of the beam is unity.

Table 7 presents the first non-dimensional frequency λ1 of the piezoelectric sandwich beam cal-
culated for different values of applied voltage and temperature change. It is seen that increasing the
applied voltage and/or temperature change leads to the decrease of λ1. This is because the compres-
sive pre-stress resultant (Ne + Nth) increases as Vo and/or ∆T increases which reduces the stiffness
of the system. It is also pointed out that the applied voltage in the piezoelectric layers has little effect,
whereas temperature change has a strong effect on the frequency. Besides, under the same tempera-
ture change ∆T , UTR, with all points in the cross-section of the beam subjected to the same ∆T , gives
much lower values of λ1 than LTR does. In addition, it is interesting that the frequency predicted by
UTR and ∆T = 40 K is identical to that predicted by LTR and ∆T = 80 K for the same situation of Vo.
In general, the reason is the symmetry of the layer structure; hence, the thermal pre-stress resultant
Nth caused by UTR with ∆T is equal to that caused by LTR with 2 × ∆T .

Table 7. The first non-dimensional frequency λ1 of the piezoelectric FGM sandwich porous beam
(SS, Kw = 10,Ks = 0.5, L/h = 20, eo = 0.6)

Temperature
rise Vo (V)

∆T = 0 K ∆T = 40 K ∆T = 80 K

k = 0.5 k = 5 k = 0.5 k = 5 k= 0.5 k = 5

UTR 500 3.6519 4.1191 3.4000 3.8984 3.1280 3.6645
200 3.6529 4.1200 3.4011 3.8994 3.1292 3.6655

0 3.6536 4.1206 3.4019 3.9000 3.1300 3.6662
−200 3.6543 4.1212 3.4026 3.9006 3.1308 3.6669
−500 3.6554 4.1221 3.4038 3.9016 3.1320 3.6679

LTR 500 3.6519 4.1191 3.5282 4.0103 3.4000 3.8984
200 3.6529 4.1200 3.5293 4.0112 3.4011 3.8994

0 3.6536 4.1206 3.5300 4.0118 3.4019 3.9000
−200 3.6543 4.1212 3.5307 4.0124 3.4026 3.9006
−500 3.6554 4.1221 3.5318 4.0134 3.4038 3.9016

Table 8 reports the first non-dimensional frequency λ1 for different values of elastic foundation
coefficients (Kw,Ks) and of the power-law index k. The obtained results show that λ1 increases when
the power-law index and/or foundation coefficients increases. The reason is that increasing in the
value of those parameters makes the system become stiffer.

Fig. 2 plots the variation of the lowest non-dimensional frequency λ1 versus the porosity coeffi-
cient eo for two cases of temperature rise, i.e., UTR and LTR. It is seen that the frequency increases
with the increase of eo for all cases of the temperature change, even if ∆T = 0. The greater ∆T is, the
greater the rate of the increase in λ1 with respect to eo is. This confirms the effectiveness of porosity
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Table 8. The first non-dimensional frequency λ1 of the piezoelectric FGM sandwich porous beam
(CC, L/h = 30, eo = 0.6,Vo = 200 V,∆T = 60 K)

UTR/LTR Kw Ks
k

0 0.2 0.5 1 2 5 10

UTR 0 0 5.0807 5.6932 6.2545 6.7623 7.2171 7.6183 7.7820
10 0.0 5.1517 5.7559 6.3110 6.8140 7.2651 7.6633 7.8259
10 0.5 5.5631 6.1225 6.6430 7.1189 7.5484 7.9293 8.0852

102 0.5 6.1222 6.6291 7.1076 7.5497 7.9516 8.3101 8.4572
102 1.0 6.4696 6.9479 7.4024 7.8247 8.2103 8.5551 8.6969

LTR 0 0 5.3677 5.9918 6.5462 7.0391 7.4758 7.8577 8.0127
10 0.0 5.4349 6.0514 6.6002 7.0888 7.5221 7.9013 8.0553
10 0.5 5.8244 6.3994 6.9169 7.3812 7.7951 8.1587 8.3067

102 0.5 6.3605 6.8857 7.3643 7.7975 8.1862 8.5293 8.6692
102 1.0 6.6940 7.1916 7.6480 8.0630 8.4367 8.7674 8.9025

in increasing the frequency of porous structures, especially when the structures work in a high tem-
perature environment. Also, as discussed about the predicted results in Table 7, the curve of UTR
with ∆T = 50 K coincides with that of LTR with ∆T = 100 K.
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the frequency λ1

Variation of the non-dimensional frequency λ1 with respect to eo is portrayed in Fig. 3 for different
values of span-to-height ratio L/h. The figure shows that the smaller L/h is, the greater λ1 is obtained.
This is due to the fact that the smaller L/h is, the greater the geometric stiffness of the beam is, since
the slenderness of the beam decreases with the decreasing of L/h. Besides, the smaller L/h is, the
smaller the rate of the increase in λ1 with respect to eo is.

Fig. 4 has the purpose to investigate the effect of temperature change ∆T and porosity coefficient
eo on the non-dimensional frequency λ1. As expected, the larger eo is, the greater the frequency is
obtained. It can be seen that the temperature change results in a reduction of the frequency. This is be-
cause an increase in the temperature change makes the compressive force Nth increase. Consequently,
the stiffness of the system is reduced. The frequency vanishes as the temperature reaches the critical
temperature. Furthermore, the rate of the reduction increases rapidly with increasing ∆T .

To examine the effects of boundary conditions (BCs) on the non-dimensional frequency λ1 of the
beam, Fig. 5 illustrates the variation of λ1 with respect to ∆T for three cases of BC, i.e., SS, CH, and
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CC. The figure shows that among the three BCs, the greatest and the smallest frequency λ1 belong to
CC and SS, respectively. Besides, the temperature that corresponds to the zero frequency of the CC
beam is much higher when compared to that of the CH or SS one.
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(a)  

Coupling elastic foundation with eo. 

Figure 6. Effects of elastic foundation on the frequency 1 

(b)  

Coupling elastic foundation with T. 

(c) 

 Coupling elastic foundation with L/h. 

Figure 4. Variation of the frequency λ1 with respect
to ∆T
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(b)  

Coupling elastic foundation with T. 

(c) 

 Coupling elastic foundation with L/h. 

Figure 5. Effects of BCs and temperature change on
the frequency λ1

Finally, effects of elastic foundation coupled with porosity coefficient eo/temperature change
∆T /span-to-height ratio L/h are plotted in Fig. 6. Observing the figures points out that the elas-
tic foundation coefficients have strong effects on the frequency. These coupling effects are sensitive
when the foundation coefficients are small.
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4. Conclusions

Thermo-electrical free vibration of FG sandwich beam composed of a metal foam core integrated
with piezoelectric layers is investigated. The beam interacts with Pasternak foundation and is pre-
stressed through a constant voltage and a uniform/linear temperature rise. Material properties of the
core and two middle layers vary smoothly through the thickness direction. Lagrange equations in con-
junction with the Reddy third-order beam theory are employed to derive the equilibrium equations of
the system. The polynomial trial function-based Ritz method is adopted to obtain the approximate nat-
ural frequency. The correctness of the established theories is confirmed through comparative studies.
Influences of geometry parameters, material property distribution, applied voltage, elastic foundation,
temperature rises, i.e., UTR and LTR, temperature change, porosity coefficient, span-to-height ratio,
and boundary conditions are investigated through parametric studies. From the numerical investiga-
tions, some important conclusions can be reached:

- Porosities have high effectiveness in enhancing the thermal vibration frequency of porous sand-
wich beams.

- The pre-stress caused by thermal loading has strong effects on the frequency of the beam; how-
ever, that by electrical one has insignificant effects.

- As the temperature change increases, the frequency is reduced and finally vanished at the critical
temperature.

- The response of the symmetric layer structure beams under LTR with temperature change ∆T
could be predicted through UTR with half of ∆T (∆T /2). This has a special meaning in practical
implementation for simplifying the problem in analysis.

- Elastic foundation, power-law index, span-to-height ratio, and boundary supports also have im-
portant effects on the frequency.
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