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Abstract

In the field of structural dynamics, the structural responses in the time domain are of major concern. There
already exist many methods proposed previously including widely used direct time integration methods such as
ones in the β-Newmark family, Houbolt’s method, and Runge–Kutta method. The time finite element methods
(TFEM) that followed the well-posed variational statement for structural dynamics are found to bring about a
superior accuracy even with large time steps (element sizes), when compared with the results from methods
mentioned above. Some high-order time finite elements were derived with the procedure analogous to the
conventional finite element methods. In the formulation of these time finite elements, the shape functions are
like the ones for a (spatial) 2-order finite beam. In this article, a simplified variant for the TFEM is proposed
where the shape functions similar to the ones for a (spatial) axial bar are used. The accuracy in the obtained
results of some numerical examples is found to be comparable with the accuracy in the previous results.

Keywords: variational formulation; finite element; time finite element; non-linear axial bar element; shape
function; structural dynamics; accuracy.
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1. Introduction

The analysis of vibration response is of crucial importance in practical design of structures sub-
jected to external time-varying actions. For obtaining of dynamic responses of a structure, the finite
element method or a modal superposition approach is commonly used to spatially discretize the struc-
ture, thus leading to a set of ordinary differential equations (ODE) in time whose primary unknowns
are normally the time-varying nodal displacements of the structure. Practically, this set of ODEs can
be solved by one of many time stepping approaches [1, 2]. In general, there are mainly two classes
among the direct time integration methods: explicit and implicit. Although requiring much more com-
putations within a time step than that needed for an explicit method, implicit methods (such as ones
in β-Newmark family, Houbolt’s method, and Runge-Kutta method) often possess unconditional sta-
bility. To the contrary, explicit methods are conditionally stable. When coupled with the conventional
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finite element (FE) computation, the step size in any explicit method depends on the FE spatial mesh
size and thus requires more computational effort in total for certain additional steps. For both implicit
and explicit methods, a priori error analysis is often not easily available, since they are all derived in
the spirit of finite difference. A review of implicit and explicit methods can be found in [3–5].

A different approach for solving dynamic problems is to use of the time (or temporal) finite ele-
ment method (TFEM). The core idea of this approach is to discretize the time domain of the dynamic
problem into “time” elements connected at chosen instants of time called as nodes. This approach
has several potential advantages since the formulation of time finite element (TFE) can be applicable
to both energy equation, and directly to the equations of motion. Usually, the TFEM approximation
yields an accuracy superior to that of more conventional time stepping schemes at same computa-
tional cost [6]. Furthermore, the formulation is convenient for computer implementation. The pioneer
approaches, based on Hamilton’s Law of varying action, can date back to the research of Argyris
and Scharpf, who employed Hermite cubic interpolation polynomials (akin to the beam finite ele-
ment) to express the response over each time finite element [7]. Simkins [8] introduced all boundary
and essential conditions into the “variational statement” as natural boundary conditions. This makes
the variational statement suitable for obtaining approximate solutions for initial and boundary value
problems. Employed this variational statement Simkins developed early finite element in time. Fried
[9] applied the approach based on Hamilton’s principle to study the transient response of a damped
system and transient heat conduction in a slab. Fried used a step-by-step approach to avoid storing
and working with large matrices. Zienkiewicz and Parekh [10] used a time finite element approach
to solve heat conduction problems. The formulation was based on Galerkin procedure over a time
interval. In [11], Hulbert also employed the time-discontinuous Galerkin method and incorporates
stabilizing terms having least-squares form. A general convergence theorem can be proved in a norm
stronger than the energy norm. French and Peterson [12] proposed a time-continuous finite element
method by transforming the second-order differential equations into first-order ones. Some other re-
searchers have presented the variational formulation by allowing the TFE solution to be discontinuous
at the end of each time element interval. Tang and Sun [13] introduced a unified TFE framework for
the numerical discretization of ordinary differential equations based on TFE methods. In [6], Park
extended a bi-linear formulation for linear systems and developed a TFEM to obtain transient re-
sponses of both linear, nonlinear, damped and undamped systems. The sensitivity of the response
with respect to various design parameters was also established. Through numerical examples, Park
illustrated many applications of TFEM in sensitivity analysis, in parametric identification of non-
linear structural dynamic systems, and in optimal control. Results for both the transient response
and its sensitivity to system parameters, when compared to a previously available approach that em-
ploys a multi-step method, are excellent. Recently, Wang and Zhong [14] proposed a time continuous
Galerkin finite element method for structural dynamics. Its convergence property was proved through
an a priori error analysis. The method provided by Wang and Zhong can give very accurate results
compared with many other earlier methods. In 2020, Nguyen and Tran [15] proposed several devel-
opments of high-order TFEs including the bp-TFEs which are analogous to the spatial second-order
beam element, with the time-to-go (T − t) raised to the power of p. The formulation of bp-TFEs is
based on the six shape functions of polynomials of degree 5 leading to element matrices of big sizes.
Thus, in this article, we proposed a simplified variant of TFEM that can reduce the size of element
matrices, using four shape functions for an axial bar element which are polynomial of degree 3 only.
The accuracy in the results obtained by using this type of TFEs is less than that by using bp-TFEs,
but is still superior than that by methods in β-Newmark family and is comparable to the ones given by
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[14] in many cases.
The rest of the article is as follows. In Section 2, a brief introduction of the variational formulation

and bp-TFEs is presented. In Section 3, we propose a simplified variant of high-order TFEs, called
as ap-TFE where “a” reminds the analogy to “axial” bar, whose shape functions of axial finite bars
are used. Numerical examples are shown in Section 4, to illustrate the use of proposed ap-TFE. The
article is finalized with conclusions in Section 5.

2. Variational formulation and bp-TFEs [15]

Consider a structure having n degrees of freedom in the time interval LT =]0,T [. The mass
matrix M ∈ Rn×n, and stiffness matrix K ∈ Rn×n are, generally, symmetric and positive definite. The
damping matrix C ∈ Rn×n is, generally, symmetric non-negative definite. The structure is subjected
to initial conditions u0 and u̇0, in addition to an external load F ∈ L2(LT ), where L2(LT ) is denoted for
the Hilbert space on the time interval LT . The governing equation with the unknown u is as follows

Lu ≡Mü + Cu̇ +Ku = F, u(0) = u0, u̇(0) = u̇0 (1)

Denote H2(LT ) as the Sobolev space of order two. The two spaces were introduced as follows

H2
0p (LT ) =

{
u ∈ H2 (LT ) : u(0) = u0, u̇(0) = u̇0

}
(2)

H2
00 (LT ) =

{
u ∈ H2 (LT ) : u(0) = 0, u̇(0) = 0

}
(3)

The strong form of structural dynamics in the above equation is equivalent to the following formula-
tion [14]: find u ∈ H2

0p(LT ) such that

B(u, v) = `(v), ∀v ∈ H2
00 (LT ) (4)

where

B(u, v) =
∫ T

0

∫ s

0
v̇T (Mü + Cu̇ +Ku)dtds =

∫ T

0
(T − t)v̇T (Mü + Cu̇ +Ku)dt (5)

`(v) =
∫ T

0

∫ s

0
v̇T Fdtds =

∫ T

0
(T − t)v̇T Fdt (6)

Let the interval [0,T ] be divided into a finite number N of non-overlap sub-intervals each of which
has the length of Ti. Denote H2

0p,τ(LT ) and H2
00,τ(LT ) as the finite dimensional sub-spaces of H2

0p(LT )
and H2

00(LT ), respectively. Usually, H2
0p,τ(LT ) and H2

00,τ(LT ) are assumed to be of polynomial forms in
each element with degree greater than or equal to two. Then, by referring to the variational formulation
(5), the problem can be stated as: find uτ ∈ H2

0p,τ(LT ) such that

B (uτ, vτ) = ` (vτ) , ∀vτ ∈ H2
00,τ (LT ) (7)

Based on the above variational formulation, the work in [15] proposed high-order bp-TFEs whose
element stiffness matrix KKK and nodal element load vector fff are given as follows

KKK =

∫ Ti

0
(T − t)p ḢT

(
MḦ + CḢ +KH

)
dt (8)

fff =

∫ Ti

0
(T − t)p ḢT Fdt (9)
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where a family of bp-TFEs can be obtained by selecting different values of p. The matrix H is analo-
gous to the matrix of shape functions of a compatible second-order beam element with three equidis-
tant nodes.

H1 = 1 − 23ξ2 + 66ξ3 − 68ξ4 + 24ξ5, H2 =
(
ξ − 6ξ2 + 13ξ3 − 12ξ4 + 4ξ5

)
Ti

H3 = 16ξ2 − 32ξ3 + 16ξ4, H4 =
(
−8ξ2 + 32ξ3 − 40ξ4 + 16ξ5

)
Ti

H5 = 7ξ2 − 34ξ3 + 52ξ4 − 24ξ5, H6 =
(
−ξ2 + 5ξ3 − 8ξ4 + 4ξ5

)
Ti

(10)

where ξ = τ/Ti ∈ [0, 1]. It is noted here that when p = 1 and if the shape functions for a linear beam
element are used, then Eqs. (8) and (9) will give the element matrices of the TFE in [14].

3. A simplified variant of time finite element: the ap-TFE

In Eqs. (8) and (9), for an n-DOF system, the matrix H used for bp-TFEs is of the form

H =



H1
H1

. . .

H1︸                    ︷︷                    ︸
diag.matrix of size n

H2
H2

. . .

H2︸                    ︷︷                    ︸
diag.matrix of size n

· · ·

H6
H6

. . .

H6︸                    ︷︷                    ︸
diag.matrix of size n


(11)

The six shape functions here are exactly the ones for a compatible second-order finite beam with
three equidistantly located nodes. With these shape functions, we can interpolate the displacement
field and velocity field of a time element through the six nodal values of responses [15]. The size
of H matrix is n × 6n, thus for bp-TFEs, the size of element “stiffness” matrix is 6n × 6n, and that
of element “equivalent force” is 6n × 1. It raises to the idea of using non-compatible (spatial) finite
axial bar elements from which the displacement field and velocity field can still be interpolated with
polynomials of high degree through a lower number of nodal values, only at the beginning and at
the end of the time interval (see Fig. 1). For each TFE now, we select only the displacements and
velocities at its two ends as the unknown nodal values of responses. Following this idea, the number
of shape functions needed to interpolate the fields of responses of the time element can be reduced to
4, so that the matrix H now becomes of lower size n × 4n as

H =



H1
H1

. . .

H1︸                    ︷︷                    ︸
diag.matrix of size n

H2
H2

. . .

H2︸                    ︷︷                    ︸
diag.matrix of size n

· · ·

H4
H4

. . .

H4︸                    ︷︷                    ︸
diag.matrix of size n


(12)

We have plenty of choice for shape functions of non-compatible axial bar elements. Since the
formulation shown in Eq. (8) requires second derivatives of H, in this article, the shape functions are
chosen as polynomials of degree three as follows

H1 (ξ) = 1 − 3ξ2 + 2ξ3,H2 (ξ) =
(
ξ − 2ξ2 + ξ3

)
Ti (13)

H3 (ξ) = 3ξ2 − 2ξ3,H4 (ξ) =
(
−ξ2 + ξ3

)
Ti (14)
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where ξ = τ/Ti ∈ [0, 1], and Ti is the “length” of the ith element. Derivation for the above shape
functions follows the procedure that is commonly used in the conventional FEM to obtain the shape
functions for high-order incompatible elements. With this choice of shape functions, the size of el-
ement “stiffness” matrix can reduce to 4n × 4n instead of 6n × 6n as in [15]. In addition, with this
choice of shape functions, the size of element “equivalent force” vector can reduce to 4n × 1 instead
of 6n × 1.

the above shape functions follows the procedure that is commonly used in the 
conventional FEM to obtain the shape functions for high-order incompatible elements. 
With this choice of shape functions, the size of element “stiffness” matrix can reduce to 
4𝑛 × 4𝑛 instead of 6𝑛 × 6𝑛 as in [15]. In addition, with this choice of shape functions, 
the size of element “equivalent force” vector can to 4𝑛 × 1 instead of 6𝑛 × 1. 

 
Figure 1. (a) Conventional (spatial) incompatible axial bar finite element; and (b) 

Corresponding ap-TFE 

 

When all element matrices are already determined, the global stiffness matrix and global 
equivalent force vector can be found by usual assembling procedure as in conventional 
finite element method, as 

𝕶sys𝐪sys = 𝖋sys (15) 

where 𝐪sys collects all nodal responses in all temporal elements of the system. Eq. (15) 
can be efficiently solved by several usual algorithms, including the parallel method [14].  

4. Numerical examples 

4.1. Forced vibration of an undamped SDOF system 

Given a SDOF system having the mass of 𝑚 = 1, the stiffness of 𝑘 = 𝜋%/4, and there 
is no damping 𝑐 = 0. The system is at rest when it is suddenly enforced by a pulse force 
𝑓(𝑡) given below 

𝑓(𝑡) = o1, 0 < 𝑡 < 1
0, 𝑡 ≥ 1  

The exact displacement and velocity responses of the system are found to be 

𝑢(𝑡) = s4
(1 − cos(𝜋𝑡/2))/𝜋%, 0 < 𝑡 < 1
4(sin(𝜋𝑡/2) − cos(𝜋𝑡/2))/𝜋%, 𝑡 ≥ 1

 

and 

𝑢̇(𝑡) = s2 sin
(𝜋𝑡/2) /𝜋, 0 < 𝑡 < 1

2(cos(𝜋𝑡/2) + sin(𝜋𝑡/2))/𝜋, 𝑡 ≥ 1  

(a)
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Figure 1. (a) Conventional (spatial) incompatible axial bar finite element; and (b) Corresponding ap-TFE

When all element matrices are already determined, the global stiffness matrix and global equiv-
alent force vector can be found by usual assembling procedure as in conventional finite element
method, as

KKK
sysqsys = fffsys (15)

where qsys collects all nodal responses in all temporal elements of the system. Eq. (15) can be effi-
ciently solved by several usual algorithms, including the parallel method [14].

4. Numerical examples

4.1. Forced vibration of an undamped SDOF system

Given a SDOF system having the mass of m = 1, the stiffness of k = π2/4, and there is no
damping c = 0. The system is at rest when it is suddenly enforced by a pulse force f (t) given below

f (t) =

1, 0 < t < 1
0, t ≥ 1

The exact displacement and velocity responses of the system are found to be

u (t) =

4 (1 − cos (πt/2)) /π2, 0 < t < 1
4 (sin (πt/2) − cos (πt/2)) /π2, t ≥ 1

and

u̇ (t) =

2 sin (πt/2) /π, 0 < t < 1
2 (cos (πt/2) + sin (πt/2)) /π, t ≥ 1

For comparison, the problem is also solved by β-Newmark method - the most popular numerical
integration method for transient structural dynamics - with three different sets of parameters (γ, β),
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namely (0, 0), (1/2, 1/4), and (1/2, 1/6). The most accurate results obtained by using β-Newmark
methods with these sets of parameters are shown in Tables 1 and 2, together with the results offered
by [14, 15]. In [15], among results from bp-TFEs with different values of p, only the best result and
the result with p = 1 are listed.

The responses over the time interval [0,T ] are considered, where T = 12 seconds. The time inter-
val [0,T ] is uniformly divided into N elements such that mesh size is τ = T/N. Four different mesh
sizes are considered, namely τ = 1/2; 1/4; 1/8; and 1/16. For each mesh size, to quantify specifi-
cally the accuracy, discrete max-norm errors, defined as maximum of absolute point-wise errors at all
time nodes are computed and listed in Tables 1 and 2. The L2 norm error for displacement response
‖u − uτ‖0 and the L2 norm error for velocity response ‖u̇ − u̇τ‖0 are plotted in Fig. 2. It is seen that
these L2 norm errors possess a quadratic convergence rate, a bit lower than that from [14]. The lower

Table 1. Discrete max-norm error in displacement with the use of Newmark (γ, β) method
and with the use of variants of TFEs

Mesh size τ 1/2 1/4 1/8 1/16

Newmark (γ, β) 2.0725 · 10−1 5.6488 · 10−2 1.4457 · 10−2 3.6345 · 10−2

From [14] 5.6461 · 10−4 6.0392 · 10−5 1.0574 · 10−5 2.3831 · 10−6

bp-TFEs
[15]

Best 7.5843 · 10−6 4.8081 · 10−7 2.9627 · 10−8 1.8455 · 10−9

p = 1 3.7165 · 10−5 2.2662 · 10−6 1.4023 · 10−7 8.7608 · 10−9

ap-TFEs

p = −1 3.0051 · 10−3 7.7250 · 10−4 1.9172 · 10−4 4.7892 · 10−5

p = 0 4.2177 · 10−3 1.0449 · 10−3 2.6062 · 10−4 6.5117 · 10−5

p = 1 1.5075 · 10−2 3.6228 · 10−3 8.9415 · 10−4 2.2342 · 10−4

p = 2 4.2525 · 10−2 9.4843 · 10−3 2.2943 · 10−3 5.6710 · 10−4

p = 3 1.2681 · 10−1 2.5448 · 10−2 5.9493 · 10−3 1.4609 · 10−3

Table 2. Discrete max-norm error in velocity with the use of Newmark (γ, β) method
and with the use of variants of TFEs

Mesh size τ 1/2 1/4 1/8 1/16

Newmark (γ, β) 3.4703 · 10−1 9.7632 · 10−2 2.5006 · 10−2 6.2638 · 10−3

From [14] 1.0041 · 10−2 2.4368 · 10−3 6.0898 · 10−4 1.5183 · 10−4

bp-TFEs
Best 3.1248 · 10−5 1.9402 · 10−6 1.2238 · 10−7 7.6559 · 10−9

p = 1 1.0278 · 10−4 6.2780 · 10−6 3.9268 · 10−7 2.4459 · 10−8

ap-TFEs

p = −1 1.2759 · 10−2 3.1953 · 10−3 8.0830 · 10−4 2.0235 · 10−4

p = 0 2.0884 · 10−2 5.3131 · 10−3 1.3232 · 10−3 3.3096 · 10−4

p = 1 4.2624 · 10−2 1.0111 · 10−2 2.5148 · 10−3 6.2557 · 10−4

p = 2 1.0224 · 10−1 2.2706 · 10−2 5.4982 · 10−3 1.3621 · 10−3

p = 3 2.8097 · 10−1 5.6330 · 10−2 1.3178 · 10−2 3.2294 · 10−3
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convergence rate when compared to that from [14] is not always the case, but is case-dependent.

𝑝 = 1 1.5075 ⋅ 10!# 3.6228 ⋅ 10!* 8.9415 ⋅ 10!$ 2.2342 ⋅ 10!$ 

𝑝 = 2 4.2525 ⋅ 10!# 9.4843 ⋅ 10!* 2.2943 ⋅ 10!* 5.6710 ⋅ 10!$ 

𝑝 = 3 1.2681 ⋅ 10!" 2.5448 ⋅ 10!# 5.9493 ⋅ 10!* 1.4609 ⋅ 10!* 

Table 2. Discrete max-norm error in velocity with the use of Newmark (𝛾, 𝛽) method; 
and with the use of variants of TFEs 

Mesh size 𝜏 1/2 1/4 1/8 1/16 

Newmark (𝛾, 𝛽) 3.4703 ⋅ 10!" 9.7632 ⋅ 10!# 2.5006 ⋅ 10!# 6.2638 ⋅ 10!* 

From [14] 1.0041 ⋅ 10!# 2.4368 ⋅ 10!* 6.0898 ⋅ 10!$ 1.5183 ⋅ 10!$ 

bp-
TFEs 

Best 3.1248 ⋅ 10!% 1.9402 ⋅ 10!& 1.2238 ⋅ 10!' 7.6559 ⋅ 10!) 

𝑝 = 1 1.0278 ⋅ 10!$ 6.2780 ⋅ 10!& 3.9268 ⋅ 10!' 2.4459 ⋅ 10!( 

ap
-T

FE
s 
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𝑝 = 0 2.0884 ⋅ 10!# 5.3131 ⋅ 10!* 1.3232 ⋅ 10!* 3.3096 ⋅ 10!$ 

𝑝 = 1 4.2624 ⋅ 10!# 1.0111 ⋅ 10!# 2.5148 ⋅ 10!* 6.2557 ⋅ 10!$ 

𝑝 = 2 1.0224 ⋅ 10!" 2.2706 ⋅ 10!# 5.4982 ⋅ 10!* 1.3621 ⋅ 10!* 

𝑝 = 3 2.8097 ⋅ 10!" 5.6330 ⋅ 10!# 1.3178 ⋅ 10!# 3.2294 ⋅ 10!* 

 

 

Figure 2. Convergence for an undamped SDOF system

As observed from Tables 1 and 2, the smaller the mesh size is, the higher magnitude order of
accuracy. The ap-TFEs give comparable, though a little bit less, accurate results when compared even
to the results offered by [14], not to mention about the comparison with bp-TFEs. However, when
compared with the results offered by the best method among the β-Newmark family, the results from
ap-TFEs are more accurate, even for the worst case. There is also an interesting observation. Similar
to the results from bp-TFEs, although the cases with p = −1 or p = 0 are not supported by strictly
mathematical arguments, the corresponding results are still more accurate than that obtained with
ap-TFEs with higher values of p.

4.2. Forced vibration of a damped SDOF system

The system in the first example is now changed with the damping property added. The damping
coefficient considered is c = 0.2π. The initial conditions are u (0) = 4/π2 and u̇ (0) = 0. The exact
responses of the system are found to be

u (t) =

4/π2, 0 < t < 1
e−ζωnt (A cos (ωDt) + B sin (ωDt)) , t ≥ 1

and

u̇ (t) =


0, 0 < t < 1

e−ζωnt

 A (−ζωn cos (ωDt) − ωD sin (ωDt))+
B (−ζωn sin (ωDt) + ωD cos (ωDt))

 , t ≥ 1

where ωn =
√

k/m, ζ = c/ (2mωn), ωD = ωn

√
1 − ζ2, and A, B are solution of the following equation cosωD sinωD

−ζ cosωD −

√
1 − ζ2 sinωD −ζ sinωD +

√
1 − ζ2 cosωD

 [ A
B

]
=

[
4eζωn/π2

0

]
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Table 3. Discrete max-norm error in displacement with the use of Newmark (γ, β) method
and with the use of variants of TFEs

Mesh size τ 1 1/2 1/4 1/8

Newmark (γ, β) 6.2597 · 10−2 1.6248 · 10−2 4.2875 · 10−3 1.0858 · 10−3

From [14] 3.2618 · 10−3 7.6250 · 10−4 1.8740 · 10−4 4.7333 · 10−5

ap-TFEs

p = −1 3.1360 · 10−3 7.2839 · 10−4 1.7896 · 10−4 4.4597 · 10−5

p = 0 3.9057 · 10−3 9.1779 · 10−4 2.2595 · 10−4 5.7094 · 10−5

p = 1 4.8398 · 10−3 1.1319 · 10−3 2.8783 · 10−4 7.1898 · 10−5

p = 2 6.9592 · 10−3 1.5771 · 10−3 4.0280 · 10−4 9.9441 · 10−5

p = 3 1.0113 · 10−2 2.4408 · 10−3 5.9590 · 10−4 1.4906 · 10−4

Table 4. Discrete max-norm error in velocity with the use of Newmark (γ, β) method
and with the use of variants of TFEs

Mesh size τ 1 1/2 1/4 1/8

Newmark (γ, β) 9.3062 · 10−2 2.5437 · 10−2 6.7757 · 10−3 1.7218 · 10−3

From [14] 2.3461 · 10−2 5.7848 · 10−3 1.5065 · 10−3 3.7517 · 10−4

ap-TFEs

p = −1 2.1751 · 10−2 5.3271 · 10−3 1.3971 · 10−3 3.4834 · 10−4

p = 0 2.4464 · 10−2 6.1412 · 10−3 1.5824 · 10−3 3.9410 · 10−4

p = 1 2.7502 · 10−2 7.1079 · 10−3 1.7921 · 10−3 4.4844 · 10−4

p = 2 3.1272 · 10−2 8.3309 · 10−3 2.0461 · 10−3 5.1651 · 10−4

p = 3 3.6942 · 10−2 1.0083 · 10−2 2.4470 · 10−3 6.1067 · 10−4

As in Example 1, we consider four different mesh sizes, including a coarser mesh, namely τ =
1; 1/2; 1/4; and 1/8. For this problem, among three options of (γ, β) of (0, 0) , (1/2, 1/4), and (1/2, 1/6)
in the β-Newmark, the method with γ = 1/2 and β = 1/6 gives most accurate results as listed in the
Tables 3 and 4 for comparison. Again here, better accuracy given by ap-TFEs can be pointed out,
compared with ones offered by β-Newmark methods. For comparison with results from [14], the ap-
TFE with p = −1 (shown in bold numbers) gives higher accuracy. However, this is not true with other
values of p where the accuracy offered by ap-TFEs are often lower. Pointwise errors in results for the
case when τ = 1/8 are depicted in Fig. 3 where a quick decay can be observed as time evolves. Also,
for some interval of time, the ap-TFE can give better accuracy. However, the overall performance in
most of the time considered of ap-TFEs with p = 1 is worse than that from [14]. Fig. 4 shows the
convergence rate of the errors which is also approximately equal to 2.
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Figure 3. History of pointwise errors of responses under mesh 𝜏 = 1/8 for a damped 
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4.3. Free vibration of damped MDOF system

A 2-DOF system subjected to an initial condition is shown in Fig. 5. The total mass of the bar is
m = 1. The spring stiffness is k = 1, and the damping coefficient of the dampers is c = 0.2. With the
above values, the structural matrices can be obtained as

M =
1
6
×

[
2 1
1 2

]
, C = 0.2 ×

[
1 0
0 1

]
, K =

[
1 0
0 1

]

The initial conditions are u (0) =
[

1.0 0.0
]T

and u̇ (0) =
[

0.0 0.0
]T

. The exact responses of the
system are found to be [14]
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u (t) =
1
2

2∑
i=1

φie−ζiωit

cosωDit +
ζi√

1 − ζ2
i

sinωDit


u̇ (t) = −

1
2

2∑
i=1

φi
ωi√

1 − ζ2
i

e−ζiωit sinωDit

with ω1 =
√

6k/m, ω2 =
√

2k/m, ζ1 = 3c/ (mω1), ζ2 = c/ (mω2), φ1 =
[

1 −1
]T

, φ2 =
[

1 1
]T

,

and ωDi = ωi

√
1 − ζ2

i .

4.3. Free vibration of damped MDOF system 

A 2-DOF system subjected to an initial condition is shown in Figure 5. The total mass 
of the bar is 𝑚 = 1. The spring stiffness is 𝑘 = 1, and the damping coefficient of the 
dampers is 𝑐 = 0.2. With the above values, the structural matrices can be obtained as 

𝐌 =
1
6 × �

2 1
1 2� , 𝐂 = 0.2 × �1 0

0 1� , 𝐊 = �1 0
0 1� 

The initial conditions are 𝐮(0) = [1.0 0.0]! and 𝐮̇(0) = [0.0 0.0]!. The exact 
responses of the system are found to be [14] 

𝐮(𝑡) =
1
2�𝛟(𝑒@A!B!C �cos𝜔D(𝑡 +

𝜁(
�1 − 𝜁(%

sin𝜔D(𝑡�
%

(E+

 

𝐮̇(𝑡) = −
1
2�𝛟(

𝜔(
�1 − 𝜁(%

𝑒@A!B!C sin𝜔D(𝑡
%

(E+

 

with 𝜔+ = �6𝑘/𝑚, 𝜔% = �2𝑘/𝑚, 𝜁+ = 3𝑐/(𝑚𝜔+), 𝜁% = 𝑐/(𝑚𝜔%), 𝛟+ = [1 −1]!, 

𝛟% = [1 1]!, and 𝜔D( = 𝜔(�1 − 𝜁(%.  

 
Figure 5. Free vibration of a damped 2-DOF system 
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from the 𝛽-Newmark method with 𝛾 = 1/2, 𝛽 = 1/6 in the finest mesh size 𝜏 = 1/16. 
It is noted here that, in [14], there is no data for the case when the mesh size is 𝜏 = 1/8. 
Since the accuracy given by bp-TFEs is much higher than all other variants of TFEs, as 
shown in Example 1, we do not include the results from using bp-TFEs here for the 
comparison. In these tables, the numbers in bold format show the cases in which the use 
of ap-TFEs gives better accuracy when compared with the corresponding values from 
[14]. This finding is supportive for the comment we made following Example 1 saying 
that the conventional TFEs do not always give better accuracy against the ap-TFEs. The 
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Uniform meshes are adopted with mesh sizes
τ = 1/2, 1/4, 1/8, and 1/16. The pointwise errors
in the results obtained with these meshes using ap-
TFEs of different values of p are shown in Tables 5
and 6, side-by-side with results from [14] and from
the β-Newmark method with γ = 1/2, β = 1/6
in the finest mesh size τ = 1/16. It is noted here
that, in [14], there is no data for the case when the
mesh size is τ = 1/8. Since the accuracy given
by bp-TFEs is much higher than all other variants
of TFEs, as shown in Example 1, we do not include the results from using bp-TFEs here for the
comparison. In these tables, the numbers in bold format show the cases in which the use of ap-

Table 5. Discrete max-norm error in displacements with the use of Newmark (γ, β) method
and with the use of variants of TFEs

Mesh size τ 1/2 1/4 1/8 1/16

u1

Newmark (γ, β) - - - 6.3087 · 10−4

From [14] 3.9984 · 10−3 9.5821 · 10−4 - 6.0209 · 10−5

ap-TFEs

p = −1 3.9079 · 10−3 9.8772 · 10−4 2.5021 · 10−4 6.2460 · 10−5

p = 0 4.3529 · 10−3 1.0445 · 10−3 2.6396 · 10−4 6.5828 · 10−5

p = 1 4.8662 · 10−3 1.1483 · 10−3 2.8287 · 10−4 7.1029 · 10−5

p = 2 5.5823 · 10−3 1.2968 · 10−3 3.1816 · 10−4 7.9125 · 10−5

p = 3 6.8782 · 10−3 1.5723 · 10−3 3.8374 · 10−4 9.5234 · 10−5

u2

Newmark (γ, β) - - - 9.4162 · 10−4

From [14] 3.0197 · 10−3 7.1961 · 10−4 - 4.4264 · 10−5

ap-TFEs

p = −1 3.0519 · 10−3 7.3939 · 10−4 1.8471 · 10−4 4.6400 · 10−5

p = 0 3.0428 · 10−3 7.2326 · 10−4 1.7840 · 10−4 4.4449 · 10−5

p = 1 2.9384 · 10−3 6.8345 · 10−4 1.6789 · 10−4 4.1912 · 10−5

p = 2 2.7087 · 10−3 6.8871 · 10−4 1.6666 · 10−4 4.1229 · 10−5

p = 3 4.7642 · 10−3 1.1544 · 10−3 2.7986 · 10−4 6.9635 · 10−5
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Table 6. Discrete max-norm error in velocities with the use of Newmark (γ, β) method
and with the use of variants of TFEs

Mesh size τ 1/2 1/4 1/8 1/16

u̇1

Newmark (γ, β) - - - 1.2609 · 10−3

From [14] 2.5823 · 10−2 6.2776 · 10−3 - 3.9686 · 10−4

ap-TFEs

p = −1 2.4327 · 10−2 5.9301 · 10−3 1.4988 · 10−3 3.7484 · 10−4

p = 0 2.6025 · 10−2 6.3236 · 10−3 1.6020 · 10−3 3.9987 · 10−4

p = 1 2.7866 · 10−2 6.7484 · 10−3 1.7130 · 10−3 4.2720 · 10−4

p = 2 3.0016 · 10−2 7.2427 · 10−3 1.8435 · 10−3 4.5952 · 10−4

p = 3 3.2989 · 10−2 7.9196 · 10−3 2.0280 · 10−3 5.0509 · 10−4

u̇2

Newmark (γ, β) - - - 1.9733 · 10−3

From [14] 1.8854 · 10−2 4.5497 · 10−3 - 2.8106 · 10−4

ap-TFEs

p = −1 1.7774 · 10−2 4.3001 · 10−3 1.0662 · 10−3 2.6603 · 10−4

p = 0 1.8856 · 10−2 4.5463 · 10−3 1.1259 · 10−3 2.8080 · 10−4

p = 1 1.9832 · 10−2 4.7654 · 10−3 1.1789 · 10−3 2.9390 · 10−4

p = 2 2.0503 · 10−2 4.9123 · 10−3 1.2143 · 10−3 3.0267 · 10−4

p = 3 2.1167 · 10−2 5.7390 · 10−3 1.4071 · 10−3 3.4948 · 10−4

TFEs gives better accuracy when compared with the corresponding values from [14]. This finding is
supportive for the comment we made following Example 1 saying that the conventional TFEs do not
always give better accuracy against the ap-TFEs. The responses computed with the mesh size τ = 1/2
are depicted in Fig. 6 for schematic view.

responses computed with the mesh size 𝜏 = 1/2 are depicted in Figure 6 for schematic 
view. 

 
Figure 6. Responses for a damped rigid bar under mesh 𝜏 = 1/2 
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Figure 6. Responses for a damped rigid bar under mesh τ = 1/2
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5. Conclusions

Motivated by effective use of high-order time finite elements in solving dynamic problems shown
in [14, 15], a modification in choosing shape functions was made to have a simplified variant of
time finite elements, denoted by ap-TFE. In this article, the ap-TFEs are obtained using four shape
functions, opposed to six ones as for bp-TFEs, in the form of polynomials of degree three, opposed to
degree five as for bp-TFEs. With this proposal, the size of matrix H is reduced to n × 4n, instead of
n × 6n as in the case of bp-TFEs, leading to the size of element “stiffness” matrix of 4n × 4n, instead
of 6n× 6n as in the case of bp-TFEs. As a compromise, the accuracy given by using ap-TFEs is much
lower when compared with ones given by using bp-TFEs as shown in [15]. Nevertheless, the proposed
ap-TFEs still give much better accuracy when compared with methods in β-Newmark family. They
also possess a comparable accuracy and convergence rate when compared with the ones provided by
[14]. The good performance of ap-TFEs illustrated through examples in this article sounds that this
type of TFE would be an alternative effective tool for structural dynamic analysis.
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